Ch 6 Analytic Geometry

Total Page:16

File Type:pdf, Size:1020Kb

Ch 6 Analytic Geometry y x Analytic Geometry • Analytic geometry, usually called coordinate geometry or analytical geometry, is the study of geometry using the principles of algebra • The link between algebra and geometry was made possible by the development of a coordinate system which allowed geometric ideas, such as point and line, to be described in algebraic terms like real numbers and equations. • Central idea of analytic geometry – relate geometric points to real numbers. Dimensions Affine space a 0 b V – Vector space 1D – nonempty set of points y 2D x By defining each point with a z unique set of real numbers, geometric figures such as lines, circles, and conics can be 3D y described with algebraic equations. x 1 Affine space "An affine space is nothing more than a vector space whose origin we try to forget about, by adding translations to the linear maps“ Marcel Berger V – Vector space – nonempty set of points PPV v B A There exists point O, such that P V: a A O is one-to-onecorrespondence Affine subspace Let us consider an affine space A and its associated vector space V. Affine subspaces of A are the subsets of A of the form O V O w; w W where O is a point of A, and V a linear subspace of W. The linear subspace associated with an affine subspace is often called its direction, and two subspaces that share the same direction are said parallel. 2 Vectors in R2 • Magnitude of the vector is equal to the distance of head and tail points. A = (1,3) B = (3,1) u = A Radius vector v = B w2 = B – A w = u + v dotprod = u*v mu = Length[u] Magnitude of the cross product (with sgn) crossprod = u ⊗ w Vectors in R3 Linear combination, linear dependence Vector subspace A = (1,3,2) B = (3,1,0) O = (0,0,0) u = A v = B w = u + 2v a = Plane[A,B,O] b = PerpendicularLine[O,a] C = Point[b] n = C dotprod = n*u 3 Linear combination Let V is a vector space over a field R. x x,,,, x x x Vector x V is given by ordered tuple. 1 2 3 n Vector x is a linear combination of set ( e1, … , en ), iff there exists n-tuple ( α1, … , αn ) real numbers which yields n x ai e i a1 e 1 a 2 e 2 a n e n i1 Affine combination Take an arbitrary point A in affine space (O,V) n A O x O ai e i; where e i E i O i1 AOaEOaEO 1 1 2 2 aEOnn n A a1 E 1 a 2 E 2 ... an E n O 1 a i i1 Affine combination of points O, E1,…, En Arbitrary point A in affine space (O,V) could be expressed as an affine combination n A a1 E 1 a 2 E 2 ... an E n O 1 a i i1 n A a1 E 1 a 2 E 2 ... an E n a 0 O , where a i 1 i0 Convex combination of points O, E1,…, En - linear combination of points where all coefficients are non- negative and sum to 1 n AaEaE1 1 2 2 ... aEaOn n 0 , where a i 0 and a i 1 i0 4 Convex combination of points O, E1,…, En 1 4 AaEaEaEaEaO 1 1 2 2 3 3 4 4 0 aii, where a 0 i0 Straight line in two-dimensional space A straight line is unambiquously determined by two different points. A straight line can be analytically expressed in – Slope form y mx q – Parametric form X A t u – General equation ax by cz d 0 5 Parametric equations of a line • All points X = A + t.u where t R form a line and vice versa -- all points on that line have the form X = A + t.u for some real number t. • u – direction vector p X3 u X 2 X1 = A + u X2 = A + 2.u X1 X3 = A + 3.u X4 X4 = A + 1/2 . u A X5 = A + (-1) . u X6 X6 = A + (- 3/2) . u X5 X p X A t u ; t R Task Příklad Determine the parametric form for the line AB. u = B – A C = A+t*u GeoGebra-primka.ggb 6 Linear function y = mx + q The slope of a line m = rise over run. Calculating Slope • Slope (m) = rise (change in y) / run (change in x) • Rise is the vertical change and run is the horizontal change M = y/x M = 3/3 Rise (3) M = 1 The slope is 1. This means that for Run every increase of 1 on the x axis, (3) there will be an increase of 1 on the y axis. 7 Parametric form for the plane in 3D space X2 X3 3v 2u + 3v C v X A u B 2u 1 X1 = A + 2u u = B – A X2 = A + 3v v = C – A X3 = A + 2u + 3v X = A+t*u+s*v Parametric form for the plane in 3D space • All points X = A + t.u + s·v, where t, s R form a plane and vice versa -- all points on that plane have the form X = A + t.u + s·v for some real numbers t,s. • u, v – direction vectors X3 v A u X X A t u sv; t, s R Vektorový součin 8 General equation of the hyperplane in 2D space X p ax by c 0 p X[x; y] (X P) n(a;b) X Arbitrary point on the line p P[ p ; p ] 1 2 n Perpendicular (normal) vector of p X p X P n (for X≠P) X Pn 0 x p1 a y p2 b 0 ax by ap1 bp2 0 label: ap1 bp2 c General equation of the hyperplane in 3D space n(a,b,c) X ax by cz d 0 X[x, y, z] (X P) P[ p , p , p ] 1 2 3 Perpendicular (normal) vector of p X X P n (for X≠P) X Pn 0 x p1 a y p2 b z p3 c 0 ax by cz ap1 bp2 cp3 0 label: ap1 bp2 cp3 d 9 Conic Sections Where do you see conics in real life? 10 Circles A circle is a set of points in a plane that are equidistant from a fixed point. The distance is called the radius of the circle, and the fixed point is called the center. • A circle with center (h, k) and radius r has length r (x h)2 (y k ) 2 to some point (x, y) on the circle. • Squaring both sides yields the center-radius form of the equation of a circle. r 2 (x h)2 ( y k)2 Center-Radius Form of the Equation of a Circle The center-radius form of the equation of a circle with center (h, k) and radius r is ()()x h22 y k r 2. Notice that a circle is the graph of a relation that is not a function, since it does not pass the vertical line test. 11 Finding the Equation of a Circle Example Find the center-radius form of the equation of a circle with radius 6 and center (–3, 4). Graph the circle and give the domain and range of the relation. Solution Substitute h = –3, k = 4, and r = 6 into the equation of a circle. 62 (x (3))2 (y 4)2 36 (x 3)2 (y 4)2 General Form of the Equation of a Circle For real numbers c, d, and e, the equation x2 y2 cx dy e 0 can have a graph that is a circle, a point, or is empty. 12 Parametric equations for the circle xy221 Parametric equations for the circle x rcos t y rsin t ; t 0,2 x2 y 2 r 2 r2cos 2 t r 2 sin 2 t r 2 13 Parabola http://tube.geogebra.org/ Equations and Graphs of Parabolas A parabola is a set of points in a plane equidistant from a fixed point and a fixed line. The fixed point is called the focus, and the fixed line the directrix, of the parabola. • For example, let the directrix be the line y = –c and the focus be the point F with coordinates (0, c). 14 Equations and Graphs of Parabolas • To get the equation of the set of points that are the same distance from the line y = –c and the point (0, c), choose a point P(x, y) on the parabola. The distance from the focus, F, to P, and the point on the directrix, D, to P, must have the same length. d(P,F) d(P,D) (x 0)2 (y c)2 (x x)2 (y (c))2 x2 y2 2yc c2 y2 2yc c2 x2 y2 2yc c2 y2 2yc c2 x2 4cy Parabola with a Vertical Axis and Vertex (0, 0) The parabola with focus (0, c) and directrix y = –c has equation x2 = 4cy. The parabola has vertex (0, 0), vertical axis x = 0, and opens upward if c > 0 or downward if c < 0. • The focal chord through the focus and perpendicular to the axis of symmetry of a parabola has length |4c|. – Let y = c and solve for x. x2 4cy x2 4c2 x 2c or 2c The endpoints of the chord are ( x, c), so the length is |4c|. 15 Determining Information about Parabolas from Equations Example Find the focus, directrix, vertex, and axis of each parabola.
Recommended publications
  • Analytic Geometry
    Guide Study Georgia End-Of-Course Tests Georgia ANALYTIC GEOMETRY TABLE OF CONTENTS INTRODUCTION ...........................................................................................................5 HOW TO USE THE STUDY GUIDE ................................................................................6 OVERVIEW OF THE EOCT .........................................................................................8 PREPARING FOR THE EOCT ......................................................................................9 Study Skills ........................................................................................................9 Time Management .....................................................................................10 Organization ...............................................................................................10 Active Participation ...................................................................................11 Test-Taking Strategies .....................................................................................11 Suggested Strategies to Prepare for the EOCT ..........................................12 Suggested Strategies the Day before the EOCT ........................................13 Suggested Strategies the Morning of the EOCT ........................................13 Top 10 Suggested Strategies during the EOCT .........................................14 TEST CONTENT ........................................................................................................15
    [Show full text]
  • Chapter 11. Three Dimensional Analytic Geometry and Vectors
    Chapter 11. Three dimensional analytic geometry and vectors. Section 11.5 Quadric surfaces. Curves in R2 : x2 y2 ellipse + =1 a2 b2 x2 y2 hyperbola − =1 a2 b2 parabola y = ax2 or x = by2 A quadric surface is the graph of a second degree equation in three variables. The most general such equation is Ax2 + By2 + Cz2 + Dxy + Exz + F yz + Gx + Hy + Iz + J =0, where A, B, C, ..., J are constants. By translation and rotation the equation can be brought into one of two standard forms Ax2 + By2 + Cz2 + J =0 or Ax2 + By2 + Iz =0 In order to sketch the graph of a quadric surface, it is useful to determine the curves of intersection of the surface with planes parallel to the coordinate planes. These curves are called traces of the surface. Ellipsoids The quadric surface with equation x2 y2 z2 + + =1 a2 b2 c2 is called an ellipsoid because all of its traces are ellipses. 2 1 x y 3 2 1 z ±1 ±2 ±3 ±1 ±2 The six intercepts of the ellipsoid are (±a, 0, 0), (0, ±b, 0), and (0, 0, ±c) and the ellipsoid lies in the box |x| ≤ a, |y| ≤ b, |z| ≤ c Since the ellipsoid involves only even powers of x, y, and z, the ellipsoid is symmetric with respect to each coordinate plane. Example 1. Find the traces of the surface 4x2 +9y2 + 36z2 = 36 1 in the planes x = k, y = k, and z = k. Identify the surface and sketch it. Hyperboloids Hyperboloid of one sheet. The quadric surface with equations x2 y2 z2 1.
    [Show full text]
  • ANALYTIC GEOMETRY Revision Log
    Guide Study Georgia End-Of-Course Tests Georgia ANALYTIC GEOMETRYJanuary 2014 Revision Log August 2013: Unit 7 (Applications of Probability) page 200; Key Idea #7 – text and equation were updated to denote intersection rather than union page 203; Review Example #2 Solution – union symbol has been corrected to intersection symbol in lines 3 and 4 of the solution text January 2014: Unit 1 (Similarity, Congruence, and Proofs) page 33; Review Example #2 – “Segment Addition Property” has been updated to “Segment Addition Postulate” in step 13 of the solution page 46; Practice Item #2 – text has been specified to indicate that point V lies on segment SU page 59; Practice Item #1 – art has been updated to show points on YX and YZ Unit 3 (Circles and Volume) page 74; Key Idea #17 – the reference to Key Idea #15 has been updated to Key Idea #16 page 84; Key Idea #3 – the degree symbol (°) has been removed from 360, and central angle is noted by θ instead of x in the formula and the graphic page 84; Important Tip – the word “formulas” has been corrected to “formula”, and x has been replaced by θ in the formula for arc length page 85; Key Idea #4 – the degree symbol (°) has been added to the conversion factor page 85; Key Idea #5 – text has been specified to indicate a central angle, and central angle is noted by θ instead of x page 85; Key Idea #6 – the degree symbol (°) has been removed from 360, and central angle is noted by θ instead of x in the formula and the graphic page 87; Solution Step i – the degree symbol (°) has been added to the conversion
    [Show full text]
  • Analytic Geometry
    STATISTIC ANALYTIC GEOMETRY SESSION 3 STATISTIC SESSION 3 Session 3 Analytic Geometry Geometry is all about shapes and their properties. If you like playing with objects, or like drawing, then geometry is for you! Geometry can be divided into: Plane Geometry is about flat shapes like lines, circles and triangles ... shapes that can be drawn on a piece of paper Solid Geometry is about three dimensional objects like cubes, prisms, cylinders and spheres Point, Line, Plane and Solid A Point has no dimensions, only position A Line is one-dimensional A Plane is two dimensional (2D) A Solid is three-dimensional (3D) Plane Geometry Plane Geometry is all about shapes on a flat surface (like on an endless piece of paper). 2D Shapes Activity: Sorting Shapes Triangles Right Angled Triangles Interactive Triangles Quadrilaterals (Rhombus, Parallelogram, etc) Rectangle, Rhombus, Square, Parallelogram, Trapezoid and Kite Interactive Quadrilaterals Shapes Freeplay Perimeter Area Area of Plane Shapes Area Calculation Tool Area of Polygon by Drawing Activity: Garden Area General Drawing Tool Polygons A Polygon is a 2-dimensional shape made of straight lines. Triangles and Rectangles are polygons. Here are some more: Pentagon Pentagra m Hexagon Properties of Regular Polygons Diagonals of Polygons Interactive Polygons The Circle Circle Pi Circle Sector and Segment Circle Area by Sectors Annulus Activity: Dropping a Coin onto a Grid Circle Theorems (Advanced Topic) Symbols There are many special symbols used in Geometry. Here is a short reference for you:
    [Show full text]
  • Topics in Complex Analytic Geometry
    version: February 24, 2012 (revised and corrected) Topics in Complex Analytic Geometry by Janusz Adamus Lecture Notes PART II Department of Mathematics The University of Western Ontario c Copyright by Janusz Adamus (2007-2012) 2 Janusz Adamus Contents 1 Analytic tensor product and fibre product of analytic spaces 5 2 Rank and fibre dimension of analytic mappings 8 3 Vertical components and effective openness criterion 17 4 Flatness in complex analytic geometry 24 5 Auslander-type effective flatness criterion 31 This document was typeset using AMS-LATEX. Topics in Complex Analytic Geometry - Math 9607/9608 3 References [I] J. Adamus, Complex analytic geometry, Lecture notes Part I (2008). [A1] J. Adamus, Natural bound in Kwieci´nski'scriterion for flatness, Proc. Amer. Math. Soc. 130, No.11 (2002), 3165{3170. [A2] J. Adamus, Vertical components in fibre powers of analytic spaces, J. Algebra 272 (2004), no. 1, 394{403. [A3] J. Adamus, Vertical components and flatness of Nash mappings, J. Pure Appl. Algebra 193 (2004), 1{9. [A4] J. Adamus, Flatness testing and torsion freeness of analytic tensor powers, J. Algebra 289 (2005), no. 1, 148{160. [ABM1] J. Adamus, E. Bierstone, P. D. Milman, Uniform linear bound in Chevalley's lemma, Canad. J. Math. 60 (2008), no.4, 721{733. [ABM2] J. Adamus, E. Bierstone, P. D. Milman, Geometric Auslander criterion for flatness, to appear in Amer. J. Math. [ABM3] J. Adamus, E. Bierstone, P. D. Milman, Geometric Auslander criterion for openness of an algebraic morphism, preprint (arXiv:1006.1872v1). [Au] M. Auslander, Modules over unramified regular local rings, Illinois J.
    [Show full text]
  • Chapter 1: Analytic Geometry
    1 Analytic Geometry Much of the mathematics in this chapter will be review for you. However, the examples will be oriented toward applications and so will take some thought. In the (x,y) coordinate system we normally write the x-axis horizontally, with positive numbers to the right of the origin, and the y-axis vertically, with positive numbers above the origin. That is, unless stated otherwise, we take “rightward” to be the positive x- direction and “upward” to be the positive y-direction. In a purely mathematical situation, we normally choose the same scale for the x- and y-axes. For example, the line joining the origin to the point (a,a) makes an angle of 45◦ with the x-axis (and also with the y-axis). In applications, often letters other than x and y are used, and often different scales are chosen in the horizontal and vertical directions. For example, suppose you drop something from a window, and you want to study how its height above the ground changes from second to second. It is natural to let the letter t denote the time (the number of seconds since the object was released) and to let the letter h denote the height. For each t (say, at one-second intervals) you have a corresponding height h. This information can be tabulated, and then plotted on the (t, h) coordinate plane, as shown in figure 1.0.1. We use the word “quadrant” for each of the four regions into which the plane is divided by the axes: the first quadrant is where points have both coordinates positive, or the “northeast” portion of the plot, and the second, third, and fourth quadrants are counted off counterclockwise, so the second quadrant is the northwest, the third is the southwest, and the fourth is the southeast.
    [Show full text]
  • Analytic Geometry
    INTRODUCTION TO ANALYTIC GEOMETRY BY PEECEY R SMITH, PH.D. N PROFESSOR OF MATHEMATICS IN THE SHEFFIELD SCIENTIFIC SCHOOL YALE UNIVERSITY AND AKTHUB SULLIVAN GALE, PH.D. ASSISTANT PROFESSOR OF MATHEMATICS IN THE UNIVERSITY OF ROCHESTER GINN & COMPANY BOSTON NEW YORK CHICAGO LONDON COPYRIGHT, 1904, 1905, BY ARTHUR SULLIVAN GALE ALL BIGHTS RESERVED 65.8 GINN & COMPANY PRO- PRIETORS BOSTON U.S.A. PEE FACE In preparing this volume the authors have endeavored to write a drill book for beginners which presents, in a manner conform- ing with modern ideas, the fundamental concepts of the subject. The subject-matter is slightly more than the minimum required for the calculus, but only as much more as is necessary to permit of some choice on the part of the teacher. It is believed that the text is complete for students finishing their study of mathematics with a course in Analytic Geometry. The authors have intentionally avoided giving the book the form of a treatise on conic sections. Conic sections naturally appear, but chiefly as illustrative of general analytic methods. Attention is called to the method of treatment. The subject is developed after the Euclidean method of definition and theorem, without, however, adhering to formal presentation. The advan- tage is obvious, for the student is made sure of the exact nature of each acquisition. Again, each method is summarized in a rule stated in consecutive steps. This is a gain in clearness. Many illustrative examples are worked out in the text. Emphasis has everywhere been put upon the analytic side, that is, the student is taught to start from the equation.
    [Show full text]
  • 3 Analytic Geometry
    3 Analytic Geometry 3.1 The Cartesian Co-ordinate System Pure Euclidean geometry in the style of Euclid and Hilbert is what we call synthetic: axiomatic, with- out co-ordinates or explicit formulæ for length, area, volume, etc. Nowadays, the practice of ele- mentary geometry is almost entirely analytic: reliant on algebra, co-ordinates, vectors, etc. The major breakthrough came courtesy of Rene´ Descartes (1596–1650) and Pierre de Fermat (1601/16071–1655), whose introduction of an axis, a fixed reference ruler against which objects could be measured using co-ordinates, allowed them to apply the Islamic invention of algebra to geometry, resulting in more efficient computations. The new geometry was revolutionary, so much so that Descartes felt the need to justify his argu- ments using synthetic geometry, lest no-one believe his work! This attitude persisted for some time: when Issac Newton published his groundbreaking Principia in 1687, his presentation was largely syn- thetic, even though he had used co-ordinates in his derivations. Synthetic geometry is not without its benefits—many results are much cleaner, and analytic geometry presents its own logical difficulties— but, as time has passed, its study has become something of a fringe activity: co-ordinates are simply too useful to ignore! Given that Cartesian geometry is the primary form we learn in grade-school, we merely sketch the familiar ideas of co-ordinates and vectors. • Assume everything necessary about on the real line. continuity y 3 • Perpendicular axes meet at the origin. P 2 • The Cartesian co-ordinates of a point P are measured by project- ing onto the axes: in the picture, P has co-ordinates (1, 2), often 1 written simply as P = (1, 2).
    [Show full text]
  • Synthetic and Analytic Geometry
    CHAPTER I SYNTHETIC AND ANALYTIC GEOMETRY The purpose of this chapter is to review some basic facts from classical deductive geometry and coordinate geometry from slightly more advanced viewpoints. The latter reflect the approaches taken in subsequent chapters of these notes. 1. Axioms for Euclidean geometry During the 19th century, mathematicians recognized that the logical foundations of their subject had to be re-examined and strengthened. In particular, it was very apparent that the axiomatic setting for geometry in Euclid's Elements requires nontrivial modifications. Several ways of doing this were worked out by the end of the century, and in 1900 D. Hilbert1 (1862{1943) gave a definitive account of the modern foundations in his highly influential book, Foundations of Geometry. Mathematical theories begin with primitive concepts, which are not formally defined, and as- sumptions or axioms which describe the basic relations among the concepts. In Hilbert's setting there are six primitive concepts: Points, lines, the notion of one point lying between two others (betweenness), congruence of segments (same distances between the endpoints) and congruence of angles (same angular measurement in degrees or radians). The axioms on these undefined concepts are divided into five classes: Incidence, order, congruence, parallelism and continuity. One notable feature of this classification is that only one class (congruence) requires the use of all six primitive concepts. More precisely, the concepts needed for the axiom classes are given as follows: Axiom class Concepts required Incidence Point, line, plane Order Point, line, plane, betweenness Congruence All six Parallelism Point, line, plane Continuity Point, line, plane, betweenness Strictly speaking, Hilbert's treatment of continuity involves congruence of segments, but the continuity axiom may be formulated without this concept (see Forder, Foundations of Euclidean Geometry, p.
    [Show full text]
  • Math 348 Differential Geometry of Curves and Surfaces Lecture 1 Introduction
    Math 348 Differential Geometry of Curves and Surfaces Lecture 1 Introduction Xinwei Yu Sept. 5, 2017 CAB 527, [email protected] Department of Mathematical & Statistical Sciences University of Alberta Table of contents 1. Course Information 2. Before Classical Differential Geometry 3. Classical DG: Upgrade to Calculus 4. Beyond Classical Differential Geometry 1 Course Information Course Organization • Instructor. Xinwei Yu; CAB 527; [email protected]; • Course Webpage. • http://www.math.ualberta.ca/ xinweiyu/348.A1.17f • We will not use eClass. • Getting Help. 1. Office Hours. TBA. 2. Appointments. 3. Emails. 4. It is a good idea to form study groups. 2 Evaluation • Homeworks. 9 HWs; 20%; Worst mark dropped; No late HW. Due dates: 9/22; 9/29; 10/6; 10/20; 10/27; 11/3; 11/10; 12/1; 12/8. 12:00 (noon) in assignment box (CAB 3rd floor) • Midterms. 30%; 10/5; 11/9. One hour. In class. No early/make-up midterms. • Final Exam. Tentative. 50%; 12/14 @9a. Two hours. > 50% =)> D; > 90% =)> A: 3 Resources • Textbook. • Andrew Pressley, Elementary Differential Geometry, 2nd Ed., Springer, 2010. • Reference books. • Most books calling themselves ”Introductory DG”, ”Elementary DG”, or ”Classical DG”. • Online notes. • Lecture notes (updated from Math 348 2016 Notes) • Theodore Shifrin lecture notes. • Xi Chen lecture notes for Math 348 Fall 2015. • Online videos. • Most relevant: Differential Geometry - Claudio Arezzo (ICTP Math). • Many more on youtube etc.. 4 Geometry, Differential • Geometry. • Originally, ”earth measure”. • More precisely, study of shapes.1 • Differential. • Calculus is (somehow) involved. • Classical Differential Geometry. • The study of shapes, such as curves and surfaces, using calculus.
    [Show full text]
  • Is Geometry Analytic? Mghanga David Mwakima
    IS GEOMETRY ANALYTIC? MGHANGA DAVID MWAKIMA 1. INTRODUCTION In the fourth chapter of Language, Truth and Logic, Ayer undertakes the task of showing how a priori knowledge of mathematics and logic is possible. In doing so, he argues that only if we understand mathematics and logic as analytic,1 by which he memorably meant “devoid of factual content”2, do we have a justified account of 3 a priori knowledgeδιανοια of these disciplines. In this chapter, it is not clear whether Ayer gives an argument per se for the analyticity of mathematics and logic. For when one reads that chapter, one sees that Ayer is mainly criticizing the views held by Kant and Mill with respect to arithmetic.4 Nevertheless, I believe that the positive argument is present. Ayer’s discussion of geometry5 in this chapter shows that it is this discussion which constitutes his positive argument for the thesis that analytic sentences are true 1 Now, I am aware that ‘analytic’ was understood differently by Kant, Carnap, Ayer, Quine, and Putnam. It is not even clear whether there is even an agreed definition of ‘analytic’ today. For the purposes of my paper, the meaning of ‘analytic’ is Carnap’s sense as described in: Michael, Friedman, Reconsidering Logical Positivism (New York: Cambridge University Press, 1999), in terms of the relativized a priori. 2 Alfred Jules, Ayer, Language, Truth and Logic (New York: Dover Publications, 1952), p. 79, 87. In these sections of the book, I think the reason Ayer chose to characterize analytic statements as “devoid of factual” content is in order to give an account of why analytic statements could not be shown to be false on the basis of observation.
    [Show full text]
  • Geometry in the Age of Enlightenment
    Geometry in the Age of Enlightenment Raymond O. Wells, Jr. ∗ July 2, 2015 Contents 1 Introduction 1 2 Algebraic Geometry 3 2.1 Algebraic Curves of Degree Two: Descartes and Fermat . 5 2.2 Algebraic Curves of Degree Three: Newton and Euler . 11 3 Differential Geometry 13 3.1 Curvature of curves in the plane . 17 3.2 Curvature of curves in space . 26 3.3 Curvature of a surface in space: Euler in 1767 . 28 4 Conclusion 30 1 Introduction The Age of Enlightenment is a term that refers to a time of dramatic changes in western society in the arts, in science, in political thinking, and, in particular, in philosophical discourse. It is generally recognized as being the period from the mid 17th century to the latter part of the 18th century. It was a successor to the renaissance and reformation periods and was followed by what is termed the romanticism of the 19th century. In his book A History of Western Philosophy [25] Bertrand Russell (1872{1970) gives a very lucid description of this time arXiv:1507.00060v1 [math.HO] 30 Jun 2015 period in intellectual history, especially in Book III, Chapter VI{Chapter XVII. He singles out Ren´eDescartes as being the founder of the era of new philosophy in 1637 and continues to describe other philosophers who also made significant contributions to mathematics as well, such as Newton and Leibniz. This time of intellectual fervor included literature (e.g. Voltaire), music and the world of visual arts as well. One of the most significant developments was perhaps in the political world: here the absolutism of the church and of the monarchies ∗Jacobs University Bremen; University of Colorado at Boulder; [email protected] 1 were questioned by the political philosophers of this era, ushering in the Glo- rious Revolution in England (1689), the American Revolution (1776), and the bloody French Revolution (1789).
    [Show full text]