Project Appraisal Document
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
(Special Trip) XXXX WER Yes AANDRUS, Bloemfontein 9300
Place Name Code Hub Surch Regional A KRIEK (special trip) XXXX WER Yes AANDRUS, Bloemfontein 9300 BFN No AANHOU WEN, Stellenbosch 7600 SSS No ABBOTSDALE 7600 SSS No ABBOTSFORD, East London 5241 ELS No ABBOTSFORD, Johannesburg 2192 JNB No ABBOTSPOORT 0608 PTR Yes ABERDEEN (48 hrs) 6270 PLR Yes ABORETUM 3900 RCB Town Ships No ACACIA PARK 7405 CPT No ACACIAVILLE 3370 LDY Town Ships No ACKERVILLE, Witbank 1035 WIR Town Ships Yes ACORNHOEK 1 3 5 1360 NLR Town Ships Yes ACTIVIA PARK, Elandsfontein 1406 JNB No ACTONVILLE & Ext 2 - Benoni 1501 JNB No ADAMAYVIEW, Klerksdorp 2571 RAN No ADAMS MISSION 4100 DUR No ADCOCK VALE Ext/Uit, Port Elizabeth 6045 PLZ No ADCOCK VALE, Port Elizabeth 6001 PLZ No ADDINGTON, Durban 4001 DUR No ADDNEY 0712 PTR Yes ADDO 2 5 6105 PLR Yes ADELAIDE ( Daily 48 Hrs ) 5760 PLR Yes ADENDORP 6282 PLR Yes AERORAND, Middelburg (Tvl) 1050 WIR Yes AEROTON, Johannesburg 2013 JNB No AFGHANI 2 4 XXXX BTL Town Ships Yes AFGUNS ( Special Trip ) 0534 NYL Town Ships Yes AFRIKASKOP 3 9860 HAR Yes AGAVIA, Krugersdorp 1739 JNB No AGGENEYS (Special trip) 8893 UPI Town Ships Yes AGINCOURT, Nelspruit (Special Trip) 1368 NLR Yes AGISANANG 3 2760 VRR Town Ships Yes AGULHAS (2 4) 7287 OVB Town Ships Yes AHRENS 3507 DBR No AIRDLIN, Sunninghill 2157 JNB No AIRFIELD, Benoni 1501 JNB No AIRFORCE BASE MAKHADO (special trip) 0955 PTR Yes AIRLIE, Constantia Cape Town 7945 CPT No AIRPORT INDUSTRIA, Cape Town 7525 CPT No AKASIA, Potgietersrus 0600 PTR Yes AKASIA, Pretoria 0182 JNB No AKASIAPARK Boxes 7415 CPT No AKASIAPARK, Goodwood 7460 CPT No AKASIAPARKKAMP, -
Goscor Cleaning Case Study - Medupi.Pdf 1 2017/02/24 2:48 PM
Goscor Cleaning Case Study - Medupi.pdf 1 2017/02/24 2:48 PM CASE STUDY Industry: Industrial Facility Eskom’s Medupi Power Station Environmentally friendly vacuum truck cleans up at Medupi Power Station Customer Overview Medupi Power Station is a Greenfield coal-fired power plant project located west of Lephalale in Limpopo. It is regarded as the biggest dry-cooled power station in the world and the fourth largest coal plant in the Southern Hemisphere. Medupi has a planned operational life of 50 years and is the fourth dry-cooled, baseload station built in 20 years by Eskom after Kendal, Majuba and Matimba power stations. The boiler and turbine contracts for Medupi are the largest C that Eskom has signed in its 90-year history. M Y CM MY CY CMY “ K With the deployment of Challenges Medupi Power Station required specialised equipment to clean the HPVR-1000 vacuum and remove a diverse range of materials, such as ash, slurries, coal, and sludge’s at the power station during the final phase of truck, we have managed the restructuring. Environmentally conscious Medupi requires suppliers to comply with stringent standards. to quickly clear water from trenches, sumps and Solution Medupi Power Station selected Goscor Cleaning Equipment as a cavities. The truck also preferred supplier of specialised cleaning equipment. Goscor delivered the environmentally friendly high point HPVR -1000 makes clearing of coal Liquid ring vacuum truck to the power station and an additional vac truck was delivered to the Kendal Power Station. from coal mills and clear- This locally manufactured and specialised wet and dry vacuum truck was developed specifically to meet South African rugged ing of ash dust spillages conditions. -
The Case of Kusile FINAL
THE EXTERNAL COST OF COAL -FIRED POWER GENERATION: The case of Kusile Prepared by: • Business Enterprises at University of Pretoria (Pty(Pty)) LLtLtdtdd Prepared for: • Greenpeace Africa and Greenpeace International DATE: 29 September 2011 PO Box 14679 Hatfield 0028 University of Pretoria Main Campus, Prospect Street, Hatfield, Graduate Centre, Ground Floor, Entrance 1.82 T: +27 (12) 420 4245 F: +27 (12) 362 5270 TABLE OF CONTENTS 1. Introduction 5 2. Background, problem statement and study limitations 7 3. The externality cost of coal-fired power generation: a sectoral overview 9 3.1 Health 9 3.2 Climate change 11 3.3 Water 13 3.4 Mining 15 4. Results 17 5. Conclusion 19 6. References 21 NOTE: For access to the annexes listed below, please refer to the Greenpeace Africa website: www.greenpeaceafrica.org Annex 0 (Background): Coal and coal-fired power generation in South Africa Annex 1: The health costs of coal-fired power generation in South Africa Annex 2: Climate change: the opportunity cost of Medupi and Kusile power stations Annex 3: Estimating the opportunity cost of water for the Kusile and Medupi coal-fired electricity power plants in South Africa Annex 4: The external costs of coal mining: the case of collieries supplying Kusile power station ACKNOWLEDGEMENTS The authors gratefully acknowledge comments provided by the Greenpeace Africa and Greenpeace International review teams, and by four workshop panellists, Prof Jane Olwoch, Prof Kuku Voyi, Prof Ban Farrell and Mr Meiring du Plessis. This research was financially supported -
The Mineral Industry of South Africa in 2007
2007 Minerals Yearbook SOUTH AFRICA U.S. Department of the Interior March 2010 U.S. Geological Survey THE MINERAL INDUS T RY OF SOU T H AFRICA By Thomas R. Yager The Republic of South Africa remained one of the world’s Production leading mining and mineral-processing countries. In 2007, South Africa’s estimated share of world platinum production In 2007, pyrophyllite production increased by about 65%; amounted to 80%; kyanite, 56%; palladium, 40%; vanadium, flint clay, 57%; attapulgite, 39%; bentonite, 39%; chromite, 39%; chromite, 38%; vermiculite, 38%; zirconium, 33%; rutile, 30%; ferrosilicon, 28%; andalusite, 20%; ferrochromium, 18%; 25%; manganese, 20%; ilmenite, 19%; gold, 11%; fluorspar, manganese ore, 15%; granite, 13%; gypsum, 13%; refined 6%; antimony, 4%; nickel, 3%; aluminum, 2%; phosphate rock; zinc, 12%; and fluorspar, 11%. The output of mineral pigments 2%; and iron ore, 2%. The country’s estimated share of world decreased by 61%; mica, 47%; crude petroleum, 42%; slate, reserves of platinum-group metals (PGM) amounted to 89%; 31%; antimony, 23%; refined nickel, 18%; lead mine, 13%; salt, hafnium, 46%; zirconium, 37%; vanadium, 23%; manganese, 11%; and zinc mine, 10% (Martin Kohler, Deputy Director of 22%; rutile, 20%; fluorspar, 17%; gold, 14%; ilmenite, 9%; Statistics, Department of Minerals and Energy of the Republic phosphate rock, 8%; and nickel, 6% (Bray, 2008; Carlin, 2008; of South Africa, written commun., August 1, 2008). Corathers, 2008; Gambogi, 2008a, b; George, 2008a, b; Jasinski, 2008; Jorgenson, 2008; Kuck, 2008; Magyar, 2008; Miller, Structure of the Mineral Industry 2008; Papp, 2008; Potter, 2008a, b). Most of the South African mineral industry was privately Minerals in the National Economy owned. -
TRANSNET PIPELINES 2020 Transnet Pipelines 2020 1
TRANSNET PIPELINES 2020 Transnet Pipelines 2020 1 Contents 2 Highlights 2 Business overview 3 Where we operate 3 Regulatory environment 4 Operational performance 4 Core initiatives for 2020 5 Overview of key performance indicators 6 Financial performance review 7 Performance commentary 7 Financial sustainability 7 Capacity creation and maintenance 7 Operational performance 7 Capacity utilisation 7 Service delivery 8 Sustainable developmental outcomes 9 Key risks and mitigating activities 9 Opportunities 10 Abbreviations and acronyms Transnet Pipelines 2020 2 Highlights Revenue increased by 8,9% to R5,7 billion. EBITDA decreased by 4,7% to R3,8 billion. Petroleum volumes transported decreased by 0,3% to 17,8 billion litres. Recorded a DIFR of 0,70 against a target of 0,60. The New Multi-Product Pipeline (NMPP), 24-inch trunk Business overview line is in full operation with a capacity of 148 Mℓ per Transnet Pipelines (Pipelines) is the largest multi- week. The line is capable of transporting two diesel product pipeline operator in southern Africa, grades (D10 and D50) and two unleaded petrol grades transporting liquid petroleum and methane-rich gas (93 and 95) as well as jet fuel. through a network of 3 116 kilometres of pipeline The inland accumulation facility, located in the infrastructure. The core strategic objective of strategic node of Jameson Park, Gauteng (TM2) with Pipelines is to play a key role to ensure the product a capacity of 180 Mℓ, has been operational since security of supply for the inland market. Pipelines December 2017. It facilitates security of supply to the offers integrated pipeline network supply chain inland economic hub and surrounding areas. -
Provincial Gazette Provinsiale Koerant
THE PROVINCE OF MPUMALANGA DIE PROVINSIE MPUMALANGA Provincial Gazette Provinsiale Koerant (Registered as a newspaper) • (As ’n nuusblad geregistreer) NELSPRUIT Vol. 24 14 JULY 2017 No. 2830 14 JULIE 2017 We oil Irawm he power to pment kiIDc AIDS HElPl1NE 0800 012 322 DEPARTMENT OF HEALTH Prevention is the cure ISSN 1682-4518 N.B. The Government Printing Works will 02830 not be held responsible for the quality of “Hard Copies” or “Electronic Files” submitted for publication purposes 9 771682 451008 2 No. 2830 PROVINCIAL GAZETTE, 14 JULY 2017 IMPORTANT NOTICE: THE GOVERNMENT PRINTING WORKS WILL NOT BE HELD RESPONSIBLE FOR ANY ERRORS THAT MIGHT OCCUR DUE TO THE SUBMISSION OF INCOMPLETE / INCORRECT / ILLEGIBLE COPY. NO FUTURE QUERIES WILL BE HANDLED IN CONNECTION WITH THE ABOVE. CONTENTS Gazette Page No. No. GENERAL NOTICES • ALGEMENE KENNISGEWINGS 68 Spatial Planning and Land Use Management By-Law, 2016, Chapter 5 and 6: Erf 16643 (Park), Embalenhle Extension 15, Registration Division IS, Mpumalanga ......................................................................................... 2830 11 69 Steve Tshwete Town-planning Scheme, 2004: Portion 1 of Erf 8198, Mhluzi Extension 5 ................................ 2830 11 69 Steve Tshwete-dorpsbeplanningskema, 2004: Gedeelte 1 van Erf 8198, Mhluzi-verlenging 5 ......................... 2830 12 PROVINCIAL NOTICES • PROVINSIALE KENNISGEWINGS 74 Mpumalanga Gaming Act (5/1995), as amended: Application for a transfer of a site operator license: The Old Mill Motel (Machadodorp) (Pty) Ltd ................................................................................................................... -
Producing Meerkat Images with an Unlikely Algorithm SYSTEMS
New Chief Scientist for SKA SA Former Columbia University academic joins SKA South Africa. PAGE 15 2016NEWSLETTER FOR SOUTH AFRICA’s SQUARE KILOMETRE ARRAY PROJECTnews PRODUCING PAGE 10 MEERKAT IMAGESThe search for WITH AN UNLIKELY serendipity ALGORITHM How will we find the PAGE 10 unknown unknowns? NEWS MINISTER NALEDI PANDOR AND DEPUTY MINISTERS VISIT ARRAY RELEASE 1 PAGE 03 SYSTEMS HERA AWARDED $9.5 MILLION FUNDING PAGE 12 OUTREACH LEADING US RADIO ASTRONOMER VISITS CARNARVON HIGH SCHOOL PAGE 16 From 4 of the Major milestone Ten legacy project eventual 64 dishes towards delivering teams share MeerKAT produces first the SKA Existing and future survey remarkable test image SKA selects final dish design project teams present plans SKANEWS 2016/2017 NEWSLETTER FOR SOUTH AFRICA’S SQUARE KILOMETRE ARRAY PROJECT SKA IN AFRICA HERA Thousands of SKA antenna dishes will be built in South Africa The HERA (Hydrogen Epoch of Reionisation Array) radio telescope will (in the Karoo, not far from the Northern Cape town of Carnarvon), be instrumental in detecting the distinctive signature that would allow with outstations in other parts of South Africa, astronomers to understand the formation and evolution of the very first as well as in eight African partner countries. luminous sources: the first stars and galaxies in the Universe. C-BASS KAT-7 The C-Band All Sky Survey project (C-BASS) The seven-dish MeerKAT precursor array, KAT-7, is a project to map the sky in microwave is the world’s first radio telescope array consisting of (short-wavelength radio) radiation. composite antenna structures. KUTUNSE MeerKAT The antenna in Kutunse, Ghana, which is part of the The South African MeerKAT radio telescope is a precursor to the SKA African Very Long Baseline Interferometry Square Kilometre Array (SKA) telescope and will be integrated (VLBI) Network (AVN). -
Energy and Water
ENERGY AND WATER 137 Pocket Guide to South Africa 2011/12 ENERGY AND WATER Energy use in South Africa is characterised by a high level of dependence on cheap and abundantly available coal. South Africa imports a large amount of crude oil. A limited quantity of natural gas is also available. The Department of Energy’s Energy Policy is based on the following key objectives: • ensuring energy security • achieving universal access and transforming the energy sector • regulating the energy sector • effective and efficient service delivery • optimal use of energy resources • ensuring sustainable development • promoting corporate governance. Integrated Resource Plan (IRP) The IRP lays the foundation for the country’s energy mix up to 2030, and seeks to find an appropriate balance between the expectations of different stakeholders considering a number of key constraints and risks, including: • reducing carbon emissions • new technology uncertainties such as costs, operability and lead time to build • water usage • localisation and job creation • southern African regional development and integration • security of supply. The IRP provides for a diversified energy mix, in terms of new generation capacity, that will comprise: • coal at 14% (government’s view is that there is a future for coal in the energy mix, and that it should continue research and development to find ways to clean the country’s abundant coal resources) • nuclear at 22,6% • open-cycle gas turbine at 9,2% and closed-cycle gas turbine at 5,6% • renewable energy carriers, which include hydro at 6,1%, wind at 19,7%, concentrated solar power at 2,4% and photovoltaic at 19,7%. -
Energize RE Supplement
Creating a Cleaner, Brighter Future The 50 MW photovoltaic (PV) De Aar Solar PROJECT DESCRIPTION In November 2012 the project signed a 20 year Power project mobilised its construction teams Power Purchase Agreement with Eskom for the sale of electricity and an implementation agreement in December 2012 and is one of the first solar Located 6 km outside the town of De Aar on land with the Department of Energy for the project. facilities in the country to start construction owned by the Emthanjeni Municipality in the Mobilisation of the construction teams commenced as part of the South African Government’s Re- Northern Cape. The project will cover an estimat- in December 2012 and it is expected to be opera- newable Energy Independent Power Producers ed 100 hectares and will generate about 50 MW of tional in mid 2014. Programme (REIPPP). clean renewable power. Once constructed, the De When generating, the facility will supply enough Aar Solar Power facility will convert energy from clean, renewable electricity to power more than With demand for electricity continuing to grow in the sun into electricity using 167,580 PV panels 30,000 South African homes and eliminate over South Africa, the introduction of this clean energy that will be fed directly into the Eskom 132 KV dis- 82,040 tonnes of carbon emissions each year. will have far reaching benefits for the country’s tribution system. power sector, economy and people. TECHNICAL SUMMARY HOW IS ELECTRICITY PRODUCED Solar Panel Suntech STP 290/295, 24Vd 290/295 Watt FROM THE SUN? Photovoltaic (or solar cells) operate by means of two layers of PV Panel rated capacity 290 Watt and 295 Watt semiconductors, usually silicon. -
The Developing Energy Landscape in South Africa: Technical Report
The developing energy landscape in South Africa: Technical Report RESEARCH REPORT SERIES RESEARCH REPORT The developing energy landscape in South Africa: Technical Report OCTOBER 2017 Energy Research Centre, CSIR, and IFPRI The developing energy landscape in South Africa: Technical Report Suggested citation for this report: ERC, CSIR and IFPRI. 2017. The developing energy landscape in South Africa: Technical Report. Energy Research Centre, University of Cape Town October 2017. Authors: ERC: Gregory Ireland, Faaiqa Hartley, Bruno Merven, Jesse Burton, Fadiel Ahjum, Bryce McCall and Tara Caetano. CSIR: Jarrad Wright IFPRI: Channing Arndt Energy Research Centre University of Cape Town Private Bag X3 Rondebosch 7701 South Africa Tel: +27 (0)21 650 2521 Fax: +27 (0)21 650 2830 Email: [email protected] Website: www.erc.uct.ac.za Energy Research Centre, CSIR, and IFPRI The developing energy landscape in South Africa: Technical Report Contents Executive summary ............................................................................................................ 4 1. Introduction ................................................................................................................. 6 2. Global renewable technology trends ......................................................................... 9 2.1 The implications for climate change mitigation .................................................................... 12 3. South African Energy Context ............................................................................... -
Written Statement of Mxolisi Mgojo, the Chief Executive Officer Of
1 PUBLIC ENTERPRISES PORTFOLIO COMMITTEE INQUIRY INTO ESKOM, TRANSNET AND DENEL WRITTEN STATEMENT OF MXOLISI MGOJO, THE CHIEF EXECUTIVE OFFICER OF EXXARO RESOURCES LIMITED INTRODUCTION ...................................................................................................... 2 COST-PLUS MINES VERSUS COMMERCIAL MINES .......................................... 5 THE SO-CALLED “PRE-PAYMENT” FOR COAL ................................................. 9 PREJUDICE TO EXXARO’S COST-PLUS MINES AND MAFUBE ..................... 11 Introduction ........................................................................................................... 11 Arnot mine ............................................................................................................. 12 Eskom’s failure to fund land acquisition ................................................................. 12 Non-funding of operational capital at Arnot ............................................................ 14 The termination of Arnot’s CSA .............................................................................. 15 Conclusion of the Arnot matters ............................................................................. 19 Mafube mine.......................................................................................................... 19 Matla mine ............................................................................................................. 21 Non-funding of capital of R1.8 billion for mine 1 ................................................... -
Nuweveld North Wind Farm
Nuweveld North Wind Farm Red Cap Nuweveld North (Pty) Ltd Avifaunal assessment October 2020 REPORT REVIEW & TRACKING Document title Nuweveld North Wind Farm - Avifaunal Impact study (Scoping Phase) Client name Patrick Killick Aurecon Status Final-for client Issue date October 2020 Lead author Jon Smallie – SACNASP 400020/06 WildSkies Ecological Services (Pty) Ltd 36 Utrecht Avenue, East London, 5241 Jon Smallie E: [email protected] C: 082 444 8919 F: 086 615 5654 2 Regulation GNR 326 of 4 December 2014, as amended 7 April 2017, Appendix 6 Section of Report (a) details of the specialist who prepared the report; and the expertise of that specialist to Appendix 5 compile a specialist report including a curriculum vitae ; (b) a declaration that the specialist is independent in a form as may be specified by the Appendix 6 competent authority; (c) an indication of the scope of, and the purpose for which, the report was prepared; Section 1.1 & 2 .1 an indication of the quality and age of base data used for the specialist report; Section 3 a description of existing impacts on the site, cumulative impacts of the proposed development Section 3.8 and levels of acceptable change; (d) the duration, date and season of the site investigation and the relevance of the season to Section 2.5 to 2.7 the outcome of the assessment; (e) a description of the methodology adopted in preparing the report or carrying out the Section 2 specialised process inclusive of equipment and modelling used; (f) details of an assessment of the specific identified sensitivity