Studying the Effect of Design Management in the Performance Improvement of the Organizations
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Linking Design Management Skills and Design Function Organization: an Empirical Study of Spanish and Italian Ceramic Tile Producers
CASTELLÓN (SPAIN) LINKING DESIGN MANAGEMENT SKILLS AND DESIGN FUNCTION ORGANIZATION: AN EMPIRICAL STUDY OF SPANISH AND ITALIAN CERAMIC TILE PRODUCERS Ricardo Chiva (1), Joaquín Alegre (2), David Gobert (3), Rafael Lapiedra (1) (1) Universitat Jaume I, (2) Universitat de València, (3) ITC, Universitat Jaume I, ABSTRACT Design management is an increasingly important concept, research into which is very scarce. This paper deals with the fit between design management skills and design function organization, ranging from solely in-house to solely outsourced and including a mixture of the two. We carried out a survey in the Spanish and Italian ceramic tile industry, to which 177 product development managers responded. Our results revealed that companies have different degrees of design management skills depending on the approach to design function organization. Solely in-house design approach companies are the most skilled firms and solely outsourced ones are the least skilled. Despite the fact that the design function has apparently evolved towards outsourcing, this research supports the idea that, under certain conditions, the in-house design department is the best option in order to attain higher degrees of design management skills. Implications of the findings for both academics and practitioners are examined. P.BA - 79 CASTELLÓN (SPAIN) 1. INTRODUCTION In today’s competitive environment, design is becoming increasingly important. Good design, though, does not emerge by accident but as the result of a managed process (Bruce and Bessant, 2002, p. 38). Apart from the development process leading up to the creation of an artifact or product, the concept of design has traditionally involved a series of organizational activities, practices or skills that are required for this development to be achieved (Gorb and Dumas, 1987). -
Privacy When Form Doesn't Follow Function
Privacy When Form Doesn’t Follow Function Roger Allan Ford University of New Hampshire [email protected] Privacy When Form Doesn’t Follow Function—discussion draft—3.6.19 Privacy When Form Doesn’t Follow Function Scholars and policy makers have long recognized the key role that design plays in protecting privacy, but efforts to explain why design is important and how it affects privacy have been muddled and inconsistent. Tis article argues that this confusion arises because “design” has many different meanings, with different privacy implications, in a way that hasn’t been fully appreciated by scholars. Design exists along at least three dimensions: process versus result, plan versus creation, and form versus function. While the literature on privacy and design has recognized and grappled (sometimes implicitly) with the frst two dimensions, the third has been unappreciated. Yet this is where the most critical privacy problems arise. Design can refer both to how something looks and is experienced by a user—its form—or how it works and what it does under the surface—its function. In the physical world, though, these two conceptions of design are connected, since an object’s form is inherently limited by its function. Tat’s why a padlock is hard and chunky and made of metal: without that form, it could not accomplish its function of keeping things secure. So people have come, over the centuries, to associate form and function and to infer function from form. Software, however, decouples these two conceptions of design, since a computer can show one thing to a user while doing something else entirely. -
Strategic Approach to Product Design and Development Process, And
İşletme Fakültesi Dergisi, Cilt 8, Sayı 1, 2007, 43-67 STRATEGIC APPROACH TO PRODUCT DESIGN AND DEVELOPMENT PROCESS, AND EFFECTIVENESS OF INDUSTRIAL DESIGN PRACTICES Aykut Berber *, İbrahim Aksel ** ABSTRACT Emerging economies face international competition and moreover, similar technology applies to organizations in the relevant industry. Therefore companies must strive to keep their market positions or create new business opportunities. Novel and innovative strategies are required in either case, which depends on differentiation in the market. Recognized as a value for sustainable competitive advantage and commercial success, industrial design (ID) has an essential role. This paper proposes that strategic approach to product design and development process is beneficial for the effectiveness of ID practices. Context of the research in the study is divided into two sections. The first section derived from a study previously conducted in Poland and aimed to observe whether Turkish companies recognized ID as a strategic tool for differentiation. A comparison of the results was made with the results obtained in Poland. The second section of the research context focuses on Turkish companies. To explore how strategic approach to product design and development process impacts on ID practices; factors and hypotheses were generated through principal components analysis prior to regression analysis to analyze the relationship. 198 companies from textile, furniture, and home appliances industries took part in the research. Major indications of the research show that strategic effect of teamwork has a central role in effective ID practices. Keywords: Industrial Design, Strategic Innovation, Product Development ÜRÜN TASARIM VE GELİŞTİRME SÜRECİNE STRATEJİK YAKLAŞIM VE ENDÜSTRİYEL TASARIM FAALİYETLERİNİN ETKİNLİĞİ ÖZET Gelişmekte olan ekonomilerdeki işletmeler, hiç kuşkusuz bir yandan uluslararası rekabet koşullarıyla öte yandan aynı alanda faaliyet gösteren diğer işletmelerin aynı teknolojiyi kullanmasının yaygınlaşmasıyla mücadele etmek durumundadır. -
The Principles of Inclusive Design
Proceedings of COBEM 2005 18th International Congress of Mechanical Engineering Copyright © 2005 by ABCM November 6-11, 2005, Ouro Preto, MG THE PRINCIPLES OF INCLUSIVE DESIGN Flavia Bonilha Alvarenga Universidade Estadual de Campinas – DPM/FEM/UNICAMP – C.P.- 6122 – Cep 13083-860 Campinas - SP [email protected] Franco Giuseppe Dedini Universidade Estadual de Campinas – DPM/FEM/UNICAMP – C.P.- 6122 – Cep 13083-860 Campinas - SP [email protected] Abstract. The world population is aging and the number of people with special needs is also increasing. Nowadays, new technology and products have been developed to improve quality of life. In general, the products are designed for a specific target, the able-bodied people, excluding the rest of the population. It is known that many products are not accessible to large sections of the population. Hence, there is an urgent need for developing an inclusive methodology based on better understanding of the principles of inclusive design, which will lead to minimizing the impact of impairments and thereby extend life quality. A discussion about what constitutes good inclusive design is presented. The aim of this paper is to introduce and discuss the principles of inclusive design for implementing an inclusive methodology. Keywords: Inclusive design, Design for all, Inclusive methodology, Inclusion, Accessibility. 1. Introduction The world population is aging and the number of people with special needs is increasing. There is a need to design inclusive products to accommodate this wide range of capabilities and develop a methodology to guide the designers. The design of a product, when initiated, follows a sequence of events, in a chronological order, forming a model, which usually is common to all the designs (Back, 1983). -
Theoretically Comparing Design Thinking to Design Methods for Large- Scale Infrastructure Systems
The Fifth International Conference on Design Creativity (ICDC2018) Bath, UK, January 31st – February 2nd 2018 THEORETICALLY COMPARING DESIGN THINKING TO DESIGN METHODS FOR LARGE- SCALE INFRASTRUCTURE SYSTEMS M.A. Guerra1 and T. Shealy1 1Civil Engineering, Virginia Tech, Blacksburg, USA Abstract: Design of new and re-design of existing infrastructure systems will require creative ways of thinking in order to meet increasingly high demand for services. Both the theory and practice of design thinking helps to exploit opposing ideas for creativity, and also provides an approach to balance stakeholder needs, technical feasibility, and resource constraints. This study compares the intent and function of five current design strategies for infrastructure with the theory and practice of design thinking. The evidence suggests the function and purpose of the later phases of design thinking, prototyping and testing, are missing from current design strategies for infrastructure. This is a critical oversight in design because designers gain much needed information about the performance of the system amid user behaviour. Those who design infrastructure need to explore new ways to incorporate feedback mechanisms gained from prototyping and testing. The use of physical prototypes for infrastructure may not be feasible due to scale and complexity. Future research should explore the use of prototyping and testing, in particular, how virtual prototypes could substitute the experience of real world installments and how this influences design cognition among designers and stakeholders. Keywords: Design thinking, design of infrastructure systems 1. Introduction Infrastructure systems account for the vast majority of energy use and associated carbon emissions in the United States (US EPA, 2014). -
New Product Development Methods: a Study of Open Design
New Product Development Methods: a study of open design by Ariadne G. Smith S.B. Mechanical Engineering Massachusetts Institute of Technology, 2010 SUBMITTED TO THE DEPARTMENT OF ENGINEERING SYSTEMS DEVISION AND THE DEPARTMENT OF MECHANICAL ENGINEERING IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREES OF MASTER OF SCIENCE IN TECHNOLOGY AND POLICY AND MASTER OF SCIENCE IN MECHANICAL ENGINEERING A; SW AT THE <iA.Hu§TTmrrE4 MASSACHUSETTS INSTITUTE OF TECHNOLOGY H 2 INSTI' SEPTEMBER 2012 @ 2012 Massachusetts Institute of Technology. All rights reserved. Signature of Author: Department of Engineering Systems Division Department of Mechanical Engineering Certified by: LI David R. Wallace Professor of Mechanical Engineering and Engineering Systems Thesis Supervisor Certified by: Joel P. Clark P sor of Materials Systems and Engineering Systems Acting Director, Te iology and Policy Program Certified by: David E. Hardt Ralph E. and Eloise F. Cross Professor of Mechanical Engineering Chairman, Committee on Graduate Students New Product Development Methods: a study of open design by Ariadne G. Smith Submitted to the Departments of Engineering Systems Division and Mechanical Engineering on August 10, 2012 in Partial Fulfillment of the Requirements for the Degree of Master of Science in Technology and Policy and Master of Science in Mechanical Engineering ABSTRACT This thesis explores the application of open design to the process of developing physical products. Open design is a type of decentralized innovation that is derived from applying principles of open source software and crowdsourcing to product development. Crowdsourcing has gained popularity in the last decade, ranging from translation services, to marketing concepts, and new product funding. -
Managing Design with the Effective Use of Communication Media: the Relationship Between Design Dialogues and Design Team Meetings
1072 CIB World Building Congress 2007 CIB2007- 213 Managing Design With The Effective Use Of Communication Media: The Relationship Between Design Dialogues And Design Team Meetings Stephen Emmitt and Ad den Otter ABSTRACT Effective and efficient design team communication is an essential component of architectural design and construction projects. Face-to-face communication, via meetings and dialogue, is an essential means for design team members to discuss and communicate design ideas. Meetings represent an important forum in which all parties have an opportunity to understand the implications of design decisions on a number of levels. Dialogue between design team members forms an important part of the interpersonal communication that occurs during design development. Dialogues have the highest chance of achieving understanding of the design, especially in the early phases when uncertainty is high and less design information is generated compared with later stages in the project. A survey of communication practices via project websites across multiple cases found that design team members chose dialogues as their preferred communication medium. The results are discussed against research findings from communication in design and management team meetings. The relationship between dialogues and team meetings is then explored from a design team management perspective. The results have implications for the effectiveness of communications within international design teams and hence the manner in which communications are planned and managed. Keywords: Design management, Team communication, Dialogues, Interaction, Meetings, Project Websites. CIB World Building Congress 2007 1073 1. INTRODUCTION Architectural design is a collaborative act that relies on effective interaction between project actors and stakeholders. Interaction affects the strength of relationships between the actors and ultimately colors their ability to work together successfully. -
World-Class Product Design: Ideas and Well-Structured Practices
Product Excellence Design to value World-class product design: ideas and well-structured practices Top-performing design functions share ten traits that set them apart Joachim Ebert, Manu Murthy, and Swarna Ramanathan Product design excellence—design that is innovative, aesthetically appealing, and highly usable—is increasingly vital to success. Companies in electronics, home appliances, and even fast-moving consumer goods have invested in cutting-edge design capabilities that were once mainly the concern of industries characterized by rapidly evolving style preferences, such as automotive and apparel. The incen- tives are clear: companies with a track record of launching well-designed prod- ucts show strong sales growth and solid brand images. Apple is perhaps the most visible example of how good design can drive market success, generating new interest in longtime mass-market categories (such as desktop computers) while creating mass-market demand for one-time niche products (such as tablets). Similarly innovative and iconic product design has been essential to organizations as diverse as cleaning-products company Method and vacuum manufacturer Dyson. Several forces are coming together to promote design as a fundamental busi- ness capability. Rising product complexity, for example, increases the value of intuitive interfaces, while for mature product lines, the threat of commoditization leaves design as one of the few remaining points of differentiation. Furthermore, rapidly expanding middle classes in emerging markets are exposing companies to new sets of preferences and to consumers who are discriminating about the products they choose. Companies that succeed amid these pressures do quite well indeed; even players in less glamorous industries can use design to thrive. -
Changing Cultures of Design Identifying Roles in a Co-Creative Landscape
Changing Cultures of Design Identifying roles in a co-creative landscape Marie Elvik Hagen Department of Product Design Norwegian University of Science and Technology ABSTRACT The landscape of design is expanding and designers today are moving from expert practice to work with users as partners on increasingly complex issues. This article draws up the lines of the emerging co-creative design practice, and discusses the changing roles of the designer, the user as a partner, and design practice itself. Methods and tools will not be considered, as the roles will be discussed in terms of their relations. The co-design approach breaks down hierarchies and seeks equal participation. Research suggests that the designer needs to be responsive or switch tactics in order to take part in a co-creative environment. A case study exploring co-creative roles complements the theory, and finds that the designer role needs to be flexible even when having equal agency as partners and other stakeholders. Sometimes it is necessary to lead and facilitate as long as it is a collaborative decision. Bringing users in as partners in the process changes the design culture, and this article suggests that Metadesign can be the holistic framework that the design community need in order to understand how the different design practices are connected. KEYWORDS: Co-design, Co-creativity, Roles in the Design Process, Participatory Design, Metadesign, Cultures of participation, Design Agenda 1. INTRODUCTION This article seeks to examine how the role of the designer, the role of the user and the role The landscape of design is changing. -
Design Update
Design Update CREATING CITYCENTER MGM MIRAGE’s urbane and sustainable “city within a city” redefines Las Vegas CityCenter is for people who want the Las Vegas they’ve never seen before. Jim Murren, Chairman and CEO, MGM MIRAGE This is the future of Las Vegas—CityCenter is in an entirely different category. Bobby Baldwin, President and CEO, CityCenter CityCenter is the best example anywhere of a REINVENTING collaborative design process. Art Gensler, Founder and Chairman, Gensler LAS VEGAS Once a generation, Las Vegas reinvents itself. In the Rat Pack era, it embraced midcentury modernism. Then, The Mirage and Bellagio remade The Strip as an entertainment resort 12/16/09 destination. Early in this new century, MGM MIRAGE CityCenter Grand Opening envisioned a “city within a city”—a new symbol of Las Vegas that, in the words of CityCenter’s Bobby Baldwin, combines “the vitality of Las Vegas with the experiences tourists seek in great cities around the world.” In 2005, master plan in hand, MGM MIRAGE asked Gensler to join it and make CityCenter a reality. How our team helped reinvent Las Vegas is a case study in design leadership. Contents The vision 2Making it happen 14 The challenge 4Greening CityCenter 18 Design leadership 6The vision realized 22 Catalyst for ideas 8Project and team information 24 Branding the destination 10 Gensler Design Update CityCenter 1 CityCenter aims to transform Las Vegas as a new symbol at its core. Bobby Baldwin, President and CEO, CityCenter A CITY WITHIN A CITY THE VISION It took strong design leadership to bring the initial Bobby Baldwin on CityCenter: “This is one of the few CityCenter gives The Strip an urban core—a new plan and building program to a fully realized vision places in the world where we had a completely clean city-scale development that supports a rich, full, 24/7 of an urbane and dynamic place, the heart of a new canvas—and the resources for the best of everything life. -
Product Design Design
College of Product Design Design In addition to UK Core requirements, students in the Department of Product Design 1. File a University application with the Office of Undergraduate Admission and the must complete the following: University Registrar. Request an official transcript of college course work to be • 84 credit hours of major requirements received by University of Kentucky Admissions. • 6 credit hours of directed electives 2. Submit by email to [email protected] an electronic portfolio of student work completed in the university from which they are transferring. • 30 core course credit hours Address correspondence to: • 120 total credit hours standard for graduation. Admissions, College of Design UNDERGRADUATE ADMISSION PROCEDURES Department of Product Design, c/o Amy Foulkes Admission into the Major 112 Pence Hall Students must be admitted both to the University of Kentucky and by secondary University of Kentucky application to the Department of Product Design. The Department of Product Design Lexington, KY 40506-0041 is a selective admissions program; all applicants are required to apply to the University [email protected] of Kentucky at www.uky.edu/Admission as well as complete and submit the creative exercises found in Slideroom at www.ukcod.slideroom.com in order to be considered Transfer Admission Selection Process for admittance into the program; this secondary application to the Department of Admission into the Department of Product Design will be dependent upon the Product Design will include a series of design and writing exercises. Application must applicant’s qualifications and preparation, the indication of general overall academic be completed and submitted by December 1, to the College of Design Department of success (GPA), success in the Major requirements, and probability of success in a Product Design to be considered for scholarship and early notification of admittance to professional program as predicted by a review of the work submitted in the portfolio the program. -
Materials and Product Design
DESIGN Materials and Product Design M. F. Ashby Engineering Department, University of Cambridge, Trumpington Street, Cambridge, CB2 1PZ, UK Granta Design Limited, Rustat House, 62 Clifton Road, Cambridge, CB1 7EG, UK First published February 2004. Version 2.0 © 2008 Granta Design Limited Contents 1. Introduction .................................................................................................................................................................. 2 2. The requirements pyramid .......................................................................................................................................... 2 3. Product character......................................................................................................................................................... 3 4. Using materials and processes to create product personality ................................................................................... 4 5. Materials and the senses: aesthetic attributes ............................................................................................................ 4 Touch: soft-hard / warm-cold. ........................................................................................................................................ 5 Sight: transparency, color, reflectivity............................................................................................................................ 5 Hearing: pitch and brightness. .......................................................................................................................................