DOES the MULTIVERSE REALLY EXIST? Proof of Parallel Universes Radically Di Erent from Our Own May Still Lie Beyond the Domain of Science by George F

Total Page:16

File Type:pdf, Size:1020Kb

DOES the MULTIVERSE REALLY EXIST? Proof of Parallel Universes Radically Di Erent from Our Own May Still Lie Beyond the Domain of Science by George F COSMOLOGY DOES THE MULTIVERSE REALLY EXIST? Proof of parallel universes radically di erent from our own may still lie beyond the domain of science By George F. R. Ellis : universe we see around us is not the only one; that billions of other universes are out there, too. There is not one universe—there is a multiverse. In Scientifi c American articles and books such as Brian Greene’s latest, The Hidden Reality, leading scientists have spoken of a super-Copernican revolution. In this view, not only is our planet one among many, but even Iour entire universe is insignifi cant on the cosmic scale of things. It is just one of countless uni- verses, each doing its own thing. The word “multiverse” has di erent meanings. Astronomers are able to see out to a distance of about 42 billion light-years, our cosmic visual horizon. We have no reason to suspect the uni- verse stops there. Beyond it could be many—even infi nitely many—domains much like the one we see. Each has a di erent initial distribution of matter, but the same laws of physics operate in all. Nearly all cosmologists today (including me) accept this type of multiverse, which Max Tegmark calls “level 1.” Yet some go further. They suggest completely di erent kinds of univers- es, with di erent physics, di erent histories, maybe di erent numbers of spatial dimensions. Most will be sterile, although some will be teeming with life. A chief proponent of this “level 2” 38 Scientifi c American, August 2011 Photograph by Levi Brown sad0811Elli4p.indd 38 6/21/11 4:34 PM George F. R. Ellis is a cosmologist and emeritus mathematics pro- fessor at the University of Cape Town in South Africa. He is one of the world’s leading experts on Einstein’s general theory of relativity and co-author, with Stephen Hawking, of the seminal book The Large Scale Structure of Space-Time (Cambridge University Press, 1975). IN BRIEF The notion of parallel universes leapt out of the pages of fi ction into scientifi c journals in the 1990s. Many scientists claim that mega- millions of other universes, each with its own laws of physics, lie out there, beyond our visual horizon. They are collectively known as the multiverse. The trouble is that no possible as- tronomical observations can ever see those other universes. The ar- guments are indirect at best. And even if the multiverse exists, it leaves the deep mysteries of na- ture unexplained. August 2011, Scientifi cAmerican.com 39 sad0811Elli4p.indd 39 6/21/11 4:34 PM THE PERILS OF EXTRAPOLATION What Lies Beyond? When astronomers peer into the universe, they see out to a distance of about 42 billion light- years‚ our cosmic horizon, which represents how far light has been able to travel since the big bang (as well as how much the universe has expanded in size since then). Assuming that space does not just stop there and may well be infi nitely big, cos- mologists make educated guesses as to what the rest of it looks like. Level 1 Multiverse: Plausible The most straightforward assumption is that our volume of space is a representative Us sample of the whole. Distant alien beings see diff erent volumes‚ but all of these look basically alike, apart from random variations in the distribution of matter. Together these regions, seen and unseen, form a basic type of multiverse. 42 billion light-years Level 2 Multiverse: Questionable Many cosmologists go further and speculate that, suffi ciently far away, things look quite diff erent from what we see. Our environs may be one of many bubbles fl oating in an otherwise empty background. The laws of physics would diff er from bubble to bubble, leading to an almost inconceivable variety of outcomes. Those other bubbles may be impossible to observe even in principle. The author and other skeptics feel dubious about this type of multiverse. Observable Universe multiverse is Alexander Vilenkin, who paints a dramatic picture Tegmark and Dennis Sciama [see “Parallel Universes,” by Max of an infi nite set of universes with an infi nite number of galax- Tegmark; S A, May 2003]. ies, an infi nite number of planets and an infi nite number of peo- Of these options, the most widely accepted is that of chaotic ple with your name who are reading this article. infl ation, and I will concentrate on it; however, most of my re- Similar claims have been made since antiquity by many cul- marks apply to all the other proposals as well. The idea is that tures. What is new is the assertion that the multiverse is a scien- space at large is an eternally expanding void, within which tifi c theory, with all that implies about being mathematically quantum e ects continually spawn new universes like a child rigorous and experimentally testable. I am skeptical about this blowing bubbles. The concept of infl ation goes back to the claim. I do not believe the existence of those other universes has 1980s, and physicists have elaborated on it based on their most been proved—or ever could be. Proponents of the multiverse, as comprehensive theory of nature: string theory. String theory al- well as greatly enlarging our conception of physical reality, are lows bubbles to look very di erent from one another. In e ect, implicitly redefi ning what is meant by “science.” each begins life not only with a random distribution of matter but also with random types of matter. Our universe contains OVER THE HORIZON particles such as electrons and quarks interacting through forc- to a broad conception of the multiverse es such as electromagnetism; other universes may have very dif- have various proposals as to how such a proliferation of univers- ferent types of particles and forces—which is to say, di erent lo- es might arise and where they would all reside. They might be cal laws of physics. The full set of allowed local laws is known as sitting in regions of space far beyond our own, as envisaged by the landscape. In some interpretations of string theory, the land- the chaotic infl ation model of Alan H. Guth, Andrei Linde and scape is immense, ensuring a tremendous diversity of universes. others [see “The Self-Reproducing Infl ationary Universe,” by Many physicists who talk about the multiverse, especially ad- Andrei Linde; S A, November 1994]. They might vocates of the string landscape, do not care much about parallel exist at di erent epochs of time, as proposed in the cyclic uni- universes per se. For them, objections to the multiverse as a con- verse model of Paul J. Steinhardt and Neil Turok [see “The Myth cept are unimportant. Their theories live or die based on internal of the Beginning of Time,” by Gabriele Veneziano; S consistency and, one hopes, eventual laboratory testing. They as- A, May 2004]. They might exist in the same space we do sume a multiverse context for their theories without worrying but in a di erent branch of the quantum wave function, as advo- about how it comes to be—which is what concerns cosmologists. cated by David Deutsch [see “The Quantum Physics of Time For a cosmologist, the basic problem with all multiverse pro- Travel,” by David Deutsch and Michael Lockwood; S posals is the presence of a cosmic visual horizon. The horizon is A, March 1994]. They might not have a location, being the limit to how far away we can see, because signals traveling completely disconnected from our spacetime, as suggested by toward us at the speed of light (which is fi nite) have not had time 40 Scientifi c American, August 2011 Illustrations by Chad Hagen sad0811Elli3p.indd 40 6/20/11 2:08 PM Us Us Level 1 Multiverse Level 2 Multiverse since the beginning of the universe to reach us from farther out. known, is that no one can prove you wrong. How can scientists All the parallel universes lie outside our horizon and remain be- decide whether their picture of an unobservable region of space- yond our capacity to see, now or ever, no matter how technology time is a reasonable or an unreasonable extrapolation of what we evolves. In fact, they are too far away to have had any infl uence see? Might other universes have di erent initial distributions of on our universe whatsoever. That is why none of the claims made matter, or might they also have di erent values of fundamental by multiverse enthusiasts can be directly substantiated. physical constants, such as those that set the strength of nuclear The proponents are telling us we can state in broad terms forces? You could get either, depending on what you assume. what happens 1,000 times as far as our cosmic horizon, 10100 Known physics predicts other domains. Proposed unifi ed times, 101,000,000 times, an infi nity—all from data we obtain with- theories predict entities such as scalar fi elds, a hypothesized rel- in the horizon. It is an extrapolation of an extraordinary kind. ative of other space-fi lling fi elds such as the magnetic fi eld. Such Maybe the universe closes up on a very large scale, and there is fi elds should drive cosmic infl ation and create universes ad infi - no infi nity out there. Maybe all the matter in the universe ends nitum. These theories are well grounded theoretically, but the somewhere, and there is empty space forever after. Maybe nature of the hypothesized fi elds is unknown, and experimental- space and time come to an end at a singularity that bounds the ists have yet to demonstrate their existence, let alone measure universe.
Recommended publications
  • Dark Energy and Dark Matter As Inertial Effects Introduction
    Dark Energy and Dark Matter as Inertial Effects Serkan Zorba Department of Physics and Astronomy, Whittier College 13406 Philadelphia Street, Whittier, CA 90608 [email protected] ABSTRACT A disk-shaped universe (encompassing the observable universe) rotating globally with an angular speed equal to the Hubble constant is postulated. It is shown that dark energy and dark matter are cosmic inertial effects resulting from such a cosmic rotation, corresponding to centrifugal (dark energy), and a combination of centrifugal and the Coriolis forces (dark matter), respectively. The physics and the cosmological and galactic parameters obtained from the model closely match those attributed to dark energy and dark matter in the standard Λ-CDM model. 20 Oct 2012 Oct 20 ph] - PACS: 95.36.+x, 95.35.+d, 98.80.-k, 04.20.Cv [physics.gen Introduction The two most outstanding unsolved problems of modern cosmology today are the problems of dark energy and dark matter. Together these two problems imply that about a whopping 96% of the energy content of the universe is simply unaccounted for within the reigning paradigm of modern cosmology. arXiv:1210.3021 The dark energy problem has been around only for about two decades, while the dark matter problem has gone unsolved for about 90 years. Various ideas have been put forward, including some fantastic ones such as the presence of ghostly fields and particles. Some ideas even suggest the breakdown of the standard Newton-Einstein gravity for the relevant scales. Although some progress has been made, particularly in the area of dark matter with the nonstandard gravity theories, the problems still stand unresolved.
    [Show full text]
  • Fine-Tuning, Complexity, and Life in the Multiverse*
    Fine-Tuning, Complexity, and Life in the Multiverse* Mario Livio Dept. of Physics and Astronomy, University of Nevada, Las Vegas, NV 89154, USA E-mail: [email protected] and Martin J. Rees Institute of Astronomy, University of Cambridge, Cambridge CB3 0HA, UK E-mail: [email protected] Abstract The physical processes that determine the properties of our everyday world, and of the wider cosmos, are determined by some key numbers: the ‘constants’ of micro-physics and the parameters that describe the expanding universe in which we have emerged. We identify various steps in the emergence of stars, planets and life that are dependent on these fundamental numbers, and explore how these steps might have been changed — or completely prevented — if the numbers were different. We then outline some cosmological models where physical reality is vastly more extensive than the ‘universe’ that astronomers observe (perhaps even involving many ‘big bangs’) — which could perhaps encompass domains governed by different physics. Although the concept of a multiverse is still speculative, we argue that attempts to determine whether it exists constitute a genuinely scientific endeavor. If we indeed inhabit a multiverse, then we may have to accept that there can be no explanation other than anthropic reasoning for some features our world. _______________________ *Chapter for the book Consolidation of Fine Tuning 1 Introduction At their fundamental level, phenomena in our universe can be described by certain laws—the so-called “laws of nature” — and by the values of some three dozen parameters (e.g., [1]). Those parameters specify such physical quantities as the coupling constants of the weak and strong interactions in the Standard Model of particle physics, and the dark energy density, the baryon mass per photon, and the spatial curvature in cosmology.
    [Show full text]
  • Vilenkin's Cosmic Vision a Review Essay of Emmany Worlds in One
    Vilenkin's Cosmic Vision A Review Essay of emMany Worlds in One The Search for Other Universesem, by Alex Vilenkin William Lane Craig Used by permission of Philosophia Christi 11 (2009): 231-8. SUMMARY Vilenkin's recent book is a wonderful popular introduction to contemporary cosmology. It contains provocative discussions of both the beginning of the universe and of the fine-tuning of the universe for intelligent life. Vilenkin is a prominent exponent of the multiverse hypothesis, which features in the book's title. His defense of this hypothesis depends in a crucial and interesting way on conflating time and space. His claim that his theory of the quantum creation of the universe explains the origin of the universe from nothing trades on a misunderstanding of "nothing." VILENKIN'S COSMIC VISION A REVIEW ESSAY OF EMMANY WORLDS IN ONE THE SEARCH FOR OTHER UNIVERSESEM, BY ALEX VILENKIN The task of scientific popularization is a difficult one. Too many authors think that it is to be accomplished by frequent resort to explanatorily vacuous and obfuscating metaphors which leave the reader puzzling over what exactly a particular theory asserts. One of the great merits of Alexander Vilenkin's book is that he shuns this route in favor of straightforward, simple explanations of key terms and ideas. Couple that with a writing style that is marvelously lucid, and you have one of the best popularizations of current physical cosmology available from one of its foremost practitioners. Vilenkin vigorously champions the idea that we live in a multiverse, that is to say, the causally connected universe is but one domain in a much vaster cosmos which comprises an infinite number of such domains.
    [Show full text]
  • Galaxy Redshifts: from Dozens to Millions
    GALAXY REDSHIFTS: FROM DOZENS TO MILLIONS Chris Impey University of Arizona The Expanding Universe • Evolution of the scale factor from GR; metric assumes homogeneity and isotropy (~FLRW). • Cosmological redshift fundamentally differs from a Doppler shift. • Galaxies (and other objects) are used as space-time markers. Expansion History and Contents Science is Seeing The expansion history since the big bang and the formation of large scale structure are driven by dark matter and dark energy. Observing Galaxies Galaxy Observables: • Redshift (z) • Magnitude (color, SED) • Angular size (morphology) All other quantities (size, luminosity, mass) derive from knowing a distance, which relates to redshift via a cosmological model. The observables are poor distance indicators. Other astrophysical luminosity predictors are required. (Cowie) ~90% of the volume or look-back time is probed by deep field • Number of galaxies in observable universe: ~90% of the about 100 billion galaxies in the volume • Number of stars in the are counted observable universe: about 1022 Heading for 100 Million (Baldry/Eisenstein) Multiplex Advantage Cannon (1910) Gemini/GMOS (2010) Sluggish, Spacious, Reliable. Photography CCD Imaging Speedy, Cramped, Finicky. 100 Years of Measuring Galaxy Redshifts Who When # Galaxies Size Time Mag Scheiner 1899 1 (M31) 0.3m 7.5h V = 3.4 Slipher 1914 15 0.6m ~5h V ~ 8 Slipher 1917 25 0.6m ~5h V ~ 8 Hubble/Slipher 1929 46 1.5m ~6h V ~ 10 Hum/May/San 1956 800 5m ~2h V = 11.6 Photographic 1960s 1 ~4m ~2.5h V ~ 15 Image Intensifier 1970s
    [Show full text]
  • New Constraints on Cosmic Reionization
    New Constraints on Cosmic Reionization Brant Robertson UCSC Exploring the Universe with JWST ESA / ESTEC, The Netherlands October 12, 2015 1 Exploring the Universe with JWST, 10/12/2015 B. Robertson, UCSC Brief History of the Observable Universe 1100 Redshift 12 8 6 1 13.8 13.5 Billions of years ago 13.4 12.9 8 Adapted from Robertson et al. Nature, 468, 49 (2010). 2 Exploring the Universe with JWST, 10/12/2015 B. Robertson, UCSC Observational Facilities Over the Next Decade 1100 Redshift 12 8 6 1 Planck Future 21cm Current 21cm LSST Thirty Meter Telescope WFIRST ALMA Hubble Chandra Fermi James Webb Space Telescope 13.8 13.5 Billions of years ago 13.4 12.9 8 Observations with JWST, WFIRST, TMT/E-ELT, LSST, ALMA, and 21- cm will drive astronomical discoveries over the next decade. Adapted from Robertson et al. Nature, 468, 49 (2010). 3 Exploring the Universe with JWST, 10/12/2015 B. Robertson, UCSC 1100 Redshift 12 8 6 1 Planck Future 21cm Current 21cm LSST Thirty Meter Telescope WFIRST ALMA Hubble Chandra Fermi James Webb Space Telescope 13.8 13.5 Billions of years ago 13.4 12.9 8 1. What can we learn about Cosmic Dawn? Was it a dramatic event in a narrow period of time or did the birth of galaxies happen gradually? 2. Can we be sure light from early galaxies caused cosmic reionization? We have some guide on when reionization occurred from studying the thermal glow of the Big Bang (microwave background), but what were the sources of ionizing photons? 3.
    [Show full text]
  • Exploring Cosmic Strings: Observable Effects and Cosmological Constraints
    EXPLORING COSMIC STRINGS: OBSERVABLE EFFECTS AND COSMOLOGICAL CONSTRAINTS A dissertation submitted by Eray Sabancilar In partial fulfilment of the requirements for the degree of Doctor of Philosophy in Physics TUFTS UNIVERSITY May 2011 ADVISOR: Prof. Alexander Vilenkin To my parents Afife and Erdal, and to the memory of my grandmother Fadime ii Abstract Observation of cosmic (super)strings can serve as a useful hint to understand the fundamental theories of physics, such as grand unified theories (GUTs) and/or superstring theory. In this regard, I present new mechanisms to pro- duce particles from cosmic (super)strings, and discuss their cosmological and observational effects in this dissertation. The first chapter is devoted to a review of the standard cosmology, cosmic (super)strings and cosmic rays. The second chapter discusses the cosmological effects of moduli. Moduli are relatively light, weakly coupled scalar fields, predicted in supersymmetric particle theories including string theory. They can be emitted from cosmic (super)string loops in the early universe. Abundance of such moduli is con- strained by diffuse gamma ray background, dark matter, and primordial ele- ment abundances. These constraints put an upper bound on the string tension 28 as strong as Gµ . 10− for a wide range of modulus mass m. If the modulus coupling constant is stronger than gravitational strength, modulus radiation can be the dominant energy loss mechanism for the loops. Furthermore, mod- ulus lifetimes become shorter for stronger coupling. Hence, the constraints on string tension Gµ and modulus mass m are significantly relaxed for strongly coupled moduli predicted in superstring theory. Thermal production of these particles and their possible effects are also considered.
    [Show full text]
  • Estimations of Total Mass and Energy of the Observable Universe
    Physics International 5 (1): 15-20, 2014 ISSN: 1948-9803 ©2014 Science Publication doi:10.3844/pisp.2014.15.20 Published Online 5 (1) 2014 (http://www.thescipub.com/pi.toc) ESTIMATIONS OF TOTAL MASS AND ENERGY OF THE OBSERVABLE UNIVERSE Dimitar Valev Department of Stara Zagora, Space Research and Technology Institute, Bulgarian Academy of Sciences, 6000 Stara Zagora, Bulgaria Received 2014-02-05; Revised 2014-03-18; Accepted 2014-03-21 ABSTRACT The recent astronomical observations indicate that the expanding universe is homogeneous, isotropic and asymptotically flat. The Euclidean geometry of the universe enables to determine the total gravitational and kinetic energy of the universe by Newtonian gravity in a flat space. By means of dimensional analysis, we have found the mass of the observable universe close to the Hoyle-Carvalho formula M∼c3/(GH ). This value is independent from the cosmological model and infers a size (radius) of the observable universe close to Hubble distance. It has been shown that almost the entire kinetic energy of the observable universe ensues from the cosmological expansion. Both, the total gravitational and kinetic energies of the observable universe have been determined in relation to an observer at an arbitrary location. The relativistic calculations for total kinetic energy have been made and the dark energy has been excluded from calculations. The total mechanical energy of the observable universe has been found close to zero, which is a remarkable result. This result supports the conjecture that the gravitational energy of the observable universe is approximately balanced with its kinetic energy of the expansion and favours a density of dark energy ΩΛ≈ 0.78.
    [Show full text]
  • The Anthropic Principle and Multiple Universe Hypotheses Oren Kreps
    The Anthropic Principle and Multiple Universe Hypotheses Oren Kreps Contents Abstract ........................................................................................................................................... 1 Introduction ..................................................................................................................................... 1 Section 1: The Fine-Tuning Argument and the Anthropic Principle .............................................. 3 The Improbability of a Life-Sustaining Universe ....................................................................... 3 Does God Explain Fine-Tuning? ................................................................................................ 4 The Anthropic Principle .............................................................................................................. 7 The Multiverse Premise ............................................................................................................ 10 Three Classes of Coincidence ................................................................................................... 13 Can The Existence of Sapient Life Justify the Multiverse? ...................................................... 16 How unlikely is fine-tuning? .................................................................................................... 17 Section 2: Multiverse Theories ..................................................................................................... 18 Many universes or all possible
    [Show full text]
  • The Multiverse: Conjecture, Proof, and Science
    The multiverse: conjecture, proof, and science George Ellis Talk at Nicolai Fest Golm 2012 Does the Multiverse Really Exist ? Scientific American: July 2011 1 The idea The idea of a multiverse -- an ensemble of universes or of universe domains – has received increasing attention in cosmology - separate places [Vilenkin, Linde, Guth] - separate times [Smolin, cyclic universes] - the Everett quantum multi-universe: other branches of the wavefunction [Deutsch] - the cosmic landscape of string theory, imbedded in a chaotic cosmology [Susskind] - totally disjoint [Sciama, Tegmark] 2 Our Cosmic Habitat Martin Rees Rees explores the notion that our universe is just a part of a vast ''multiverse,'' or ensemble of universes, in which most of the other universes are lifeless. What we call the laws of nature would then be no more than local bylaws, imposed in the aftermath of our own Big Bang. In this scenario, our cosmic habitat would be a special, possibly unique universe where the prevailing laws of physics allowed life to emerge. 3 Scientific American May 2003 issue COSMOLOGY “Parallel Universes: Not just a staple of science fiction, other universes are a direct implication of cosmological observations” By Max Tegmark 4 Brian Greene: The Hidden Reality Parallel Universes and The Deep Laws of the Cosmos 5 Varieties of Multiverse Brian Greene (The Hidden Reality) advocates nine different types of multiverse: 1. Invisible parts of our universe 2. Chaotic inflation 3. Brane worlds 4. Cyclic universes 5. Landscape of string theory 6. Branches of the Quantum mechanics wave function 7. Holographic projections 8. Computer simulations 9. All that can exist must exist – “grandest of all multiverses” They can’t all be true! – they conflict with each other.
    [Show full text]
  • Module 2—Evidence for God from Contemporary Science (Irish Final)
    Module 2—Evidence for God from Contemporary Science (Irish Final) Intro There is a long and strong relationship between the natural sciences and the Catholic Church. At least 286 priests and clergy were involved in the development of all branches of the natural sciences,1 and the Catholic Church hosts an Academy of Sciences with 46 Nobel Prize Winners as well as thousands of University and high school science departments, astronomical observatories and scientific institutes throughout the world (see Module III Section V). This should not be surprising, because as we saw in the previous Module most of the greatest scientific minds throughout history were believers (theists), and today, 51% of scientists are declared believers, as well as 88% of physicians. This gives rise to the question, “if scientists and physicians are evidence-based people, why are the majority of scientists and physicians believers?” What is their evidence? Many scientists, such as Albert Einstein and Eugene Wigner intuited clues of a divine intelligence from the wholly unexpected pervasive mathematical ordering of the universe.2 Today, the evidence for an intelligent transphysical creator is stronger than ever before despite the proliferation of many hypothetical new models of physical reality which at first seem to suggest the non-necessity of a creator. These new models include a multiverse, universes in the higher dimensional space of string theory, and multidimensional bouncing universes. So, what is this evidence that points to an intelligent creator even of multiverses, string universes, and multi- dimensional bouncing universes? There are 3 principal areas of evidence, each of which will be discussed in this Module: 1.
    [Show full text]
  • The Reason Series: What Science Says About God
    Teacher’s Resource Manual The Reason Series: What Science Says About God By Robert J. Spitzer, S.J., Ph.D. and Claude LeBlanc, M.A. Nihil Obstat: Reverend David Leigh, S.J., Ph.D. July 6, 2012 Imprimatur: Most Reverend Tod D. Brown Bishop of Orange, California July 11, 2012 Magis Center of Reason and Faith www.magiscenter.com USCCB Approval: The USCCB Subcommittee for Catechetical Conformity gives approval only for curricula, text book series, teacher’s manuals, or student workbooks that concern a whole course of studies. Partial curricula and programs may obtain ecclesiastical approval by imprimatur from the local Bishop. Since The Reason Series is such a partial curriculum its ecclesiastical approval by the USCCB is validated by the imprimatur. Cover art by Jim Breen Photos: Photos from the Hubble Telescope: courtesy NASA, PD-US Stephen Hawking (page 19): courtesy NASA, PD-US Galileo (page 20): PD-Art Arno Penzias (page 25): courtesy Kartik J, GNU Free Documentation License Aristotle (page 41): courtesy Eric Gaba, Creative Commons Albert Einstein (page 49): PD-Art Georges Lemaitre (page 49): PD-Art Alexander Vilenkin (page 51): courtesy Lumidek, Creative Commons Alan Guth (page 51): courtesy Betsy Devine, Creative Commons Roger Penrose (page 71): PD-Art Paul Davies (page 71): courtesy Arizona State University, PD-Art Sir Arthur Eddington (page 92): courtesy Library of Congress, PD-US Revision © 2016 Magis Institute (Garden Grove, California) All Rights Reserved No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the written permission of the author.
    [Show full text]
  • String Theory and Our Relationship with Nature: the Convergence of Science, Curriculum Theory, and the Environment
    Georgia Southern University Digital Commons@Georgia Southern Electronic Theses and Dissertations Graduate Studies, Jack N. Averitt College of Fall 2010 String Theory and Our Relationship with Nature: The Convergence of Science, Curriculum Theory, and the Environment Virginia Therese Bennett Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/etd Recommended Citation Bennett, Virginia Therese, "String Theory and Our Relationship with Nature: The Convergence of Science, Curriculum Theory, and the Environment" (2010). Electronic Theses and Dissertations. 530. https://digitalcommons.georgiasouthern.edu/etd/530 This dissertation (open access) is brought to you for free and open access by the Graduate Studies, Jack N. Averitt College of at Digital Commons@Georgia Southern. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons@Georgia Southern. For more information, please contact [email protected]. STRING THEORY AND OUR RELATIONSHIP WITH NATURE: THE CONVERGENCE OF SCIENCE, CURRICULUM THEORY, AND THE ENVIRONMENT by VIRGINIA THERESE BENNETT (Under the Direction of John A. Weaver) ABSTRACT Curriculum Theory affords us the opportunity to examine education from a multitude of directions. This work takes advantage of that opportunity to explore the relationships between science, nature, and curriculum using string theory and our ideas about the environment as a backdrop. Both the energy and multiple possibilities created by strings and the rich history leading up to the theory help to illustrate the many opportunities we have to advance discussions in alternative ways of looking at science. By considering the multiple dimensions inherent in string theory as multiple pathways and interweaving metaphors from Deleuze and Guattari, Michel Serres, and Donna Haraway, our approach to environmental issues and environmental education allow us to include alternative ways of looking at the world.
    [Show full text]