DOES the MULTIVERSE REALLY EXIST? Proof of Parallel Universes Radically Di Erent from Our Own May Still Lie Beyond the Domain of Science by George F
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Dark Energy and Dark Matter As Inertial Effects Introduction
Dark Energy and Dark Matter as Inertial Effects Serkan Zorba Department of Physics and Astronomy, Whittier College 13406 Philadelphia Street, Whittier, CA 90608 [email protected] ABSTRACT A disk-shaped universe (encompassing the observable universe) rotating globally with an angular speed equal to the Hubble constant is postulated. It is shown that dark energy and dark matter are cosmic inertial effects resulting from such a cosmic rotation, corresponding to centrifugal (dark energy), and a combination of centrifugal and the Coriolis forces (dark matter), respectively. The physics and the cosmological and galactic parameters obtained from the model closely match those attributed to dark energy and dark matter in the standard Λ-CDM model. 20 Oct 2012 Oct 20 ph] - PACS: 95.36.+x, 95.35.+d, 98.80.-k, 04.20.Cv [physics.gen Introduction The two most outstanding unsolved problems of modern cosmology today are the problems of dark energy and dark matter. Together these two problems imply that about a whopping 96% of the energy content of the universe is simply unaccounted for within the reigning paradigm of modern cosmology. arXiv:1210.3021 The dark energy problem has been around only for about two decades, while the dark matter problem has gone unsolved for about 90 years. Various ideas have been put forward, including some fantastic ones such as the presence of ghostly fields and particles. Some ideas even suggest the breakdown of the standard Newton-Einstein gravity for the relevant scales. Although some progress has been made, particularly in the area of dark matter with the nonstandard gravity theories, the problems still stand unresolved. -
Fine-Tuning, Complexity, and Life in the Multiverse*
Fine-Tuning, Complexity, and Life in the Multiverse* Mario Livio Dept. of Physics and Astronomy, University of Nevada, Las Vegas, NV 89154, USA E-mail: [email protected] and Martin J. Rees Institute of Astronomy, University of Cambridge, Cambridge CB3 0HA, UK E-mail: [email protected] Abstract The physical processes that determine the properties of our everyday world, and of the wider cosmos, are determined by some key numbers: the ‘constants’ of micro-physics and the parameters that describe the expanding universe in which we have emerged. We identify various steps in the emergence of stars, planets and life that are dependent on these fundamental numbers, and explore how these steps might have been changed — or completely prevented — if the numbers were different. We then outline some cosmological models where physical reality is vastly more extensive than the ‘universe’ that astronomers observe (perhaps even involving many ‘big bangs’) — which could perhaps encompass domains governed by different physics. Although the concept of a multiverse is still speculative, we argue that attempts to determine whether it exists constitute a genuinely scientific endeavor. If we indeed inhabit a multiverse, then we may have to accept that there can be no explanation other than anthropic reasoning for some features our world. _______________________ *Chapter for the book Consolidation of Fine Tuning 1 Introduction At their fundamental level, phenomena in our universe can be described by certain laws—the so-called “laws of nature” — and by the values of some three dozen parameters (e.g., [1]). Those parameters specify such physical quantities as the coupling constants of the weak and strong interactions in the Standard Model of particle physics, and the dark energy density, the baryon mass per photon, and the spatial curvature in cosmology. -
Vilenkin's Cosmic Vision a Review Essay of Emmany Worlds in One
Vilenkin's Cosmic Vision A Review Essay of emMany Worlds in One The Search for Other Universesem, by Alex Vilenkin William Lane Craig Used by permission of Philosophia Christi 11 (2009): 231-8. SUMMARY Vilenkin's recent book is a wonderful popular introduction to contemporary cosmology. It contains provocative discussions of both the beginning of the universe and of the fine-tuning of the universe for intelligent life. Vilenkin is a prominent exponent of the multiverse hypothesis, which features in the book's title. His defense of this hypothesis depends in a crucial and interesting way on conflating time and space. His claim that his theory of the quantum creation of the universe explains the origin of the universe from nothing trades on a misunderstanding of "nothing." VILENKIN'S COSMIC VISION A REVIEW ESSAY OF EMMANY WORLDS IN ONE THE SEARCH FOR OTHER UNIVERSESEM, BY ALEX VILENKIN The task of scientific popularization is a difficult one. Too many authors think that it is to be accomplished by frequent resort to explanatorily vacuous and obfuscating metaphors which leave the reader puzzling over what exactly a particular theory asserts. One of the great merits of Alexander Vilenkin's book is that he shuns this route in favor of straightforward, simple explanations of key terms and ideas. Couple that with a writing style that is marvelously lucid, and you have one of the best popularizations of current physical cosmology available from one of its foremost practitioners. Vilenkin vigorously champions the idea that we live in a multiverse, that is to say, the causally connected universe is but one domain in a much vaster cosmos which comprises an infinite number of such domains. -
Galaxy Redshifts: from Dozens to Millions
GALAXY REDSHIFTS: FROM DOZENS TO MILLIONS Chris Impey University of Arizona The Expanding Universe • Evolution of the scale factor from GR; metric assumes homogeneity and isotropy (~FLRW). • Cosmological redshift fundamentally differs from a Doppler shift. • Galaxies (and other objects) are used as space-time markers. Expansion History and Contents Science is Seeing The expansion history since the big bang and the formation of large scale structure are driven by dark matter and dark energy. Observing Galaxies Galaxy Observables: • Redshift (z) • Magnitude (color, SED) • Angular size (morphology) All other quantities (size, luminosity, mass) derive from knowing a distance, which relates to redshift via a cosmological model. The observables are poor distance indicators. Other astrophysical luminosity predictors are required. (Cowie) ~90% of the volume or look-back time is probed by deep field • Number of galaxies in observable universe: ~90% of the about 100 billion galaxies in the volume • Number of stars in the are counted observable universe: about 1022 Heading for 100 Million (Baldry/Eisenstein) Multiplex Advantage Cannon (1910) Gemini/GMOS (2010) Sluggish, Spacious, Reliable. Photography CCD Imaging Speedy, Cramped, Finicky. 100 Years of Measuring Galaxy Redshifts Who When # Galaxies Size Time Mag Scheiner 1899 1 (M31) 0.3m 7.5h V = 3.4 Slipher 1914 15 0.6m ~5h V ~ 8 Slipher 1917 25 0.6m ~5h V ~ 8 Hubble/Slipher 1929 46 1.5m ~6h V ~ 10 Hum/May/San 1956 800 5m ~2h V = 11.6 Photographic 1960s 1 ~4m ~2.5h V ~ 15 Image Intensifier 1970s -
New Constraints on Cosmic Reionization
New Constraints on Cosmic Reionization Brant Robertson UCSC Exploring the Universe with JWST ESA / ESTEC, The Netherlands October 12, 2015 1 Exploring the Universe with JWST, 10/12/2015 B. Robertson, UCSC Brief History of the Observable Universe 1100 Redshift 12 8 6 1 13.8 13.5 Billions of years ago 13.4 12.9 8 Adapted from Robertson et al. Nature, 468, 49 (2010). 2 Exploring the Universe with JWST, 10/12/2015 B. Robertson, UCSC Observational Facilities Over the Next Decade 1100 Redshift 12 8 6 1 Planck Future 21cm Current 21cm LSST Thirty Meter Telescope WFIRST ALMA Hubble Chandra Fermi James Webb Space Telescope 13.8 13.5 Billions of years ago 13.4 12.9 8 Observations with JWST, WFIRST, TMT/E-ELT, LSST, ALMA, and 21- cm will drive astronomical discoveries over the next decade. Adapted from Robertson et al. Nature, 468, 49 (2010). 3 Exploring the Universe with JWST, 10/12/2015 B. Robertson, UCSC 1100 Redshift 12 8 6 1 Planck Future 21cm Current 21cm LSST Thirty Meter Telescope WFIRST ALMA Hubble Chandra Fermi James Webb Space Telescope 13.8 13.5 Billions of years ago 13.4 12.9 8 1. What can we learn about Cosmic Dawn? Was it a dramatic event in a narrow period of time or did the birth of galaxies happen gradually? 2. Can we be sure light from early galaxies caused cosmic reionization? We have some guide on when reionization occurred from studying the thermal glow of the Big Bang (microwave background), but what were the sources of ionizing photons? 3. -
Exploring Cosmic Strings: Observable Effects and Cosmological Constraints
EXPLORING COSMIC STRINGS: OBSERVABLE EFFECTS AND COSMOLOGICAL CONSTRAINTS A dissertation submitted by Eray Sabancilar In partial fulfilment of the requirements for the degree of Doctor of Philosophy in Physics TUFTS UNIVERSITY May 2011 ADVISOR: Prof. Alexander Vilenkin To my parents Afife and Erdal, and to the memory of my grandmother Fadime ii Abstract Observation of cosmic (super)strings can serve as a useful hint to understand the fundamental theories of physics, such as grand unified theories (GUTs) and/or superstring theory. In this regard, I present new mechanisms to pro- duce particles from cosmic (super)strings, and discuss their cosmological and observational effects in this dissertation. The first chapter is devoted to a review of the standard cosmology, cosmic (super)strings and cosmic rays. The second chapter discusses the cosmological effects of moduli. Moduli are relatively light, weakly coupled scalar fields, predicted in supersymmetric particle theories including string theory. They can be emitted from cosmic (super)string loops in the early universe. Abundance of such moduli is con- strained by diffuse gamma ray background, dark matter, and primordial ele- ment abundances. These constraints put an upper bound on the string tension 28 as strong as Gµ . 10− for a wide range of modulus mass m. If the modulus coupling constant is stronger than gravitational strength, modulus radiation can be the dominant energy loss mechanism for the loops. Furthermore, mod- ulus lifetimes become shorter for stronger coupling. Hence, the constraints on string tension Gµ and modulus mass m are significantly relaxed for strongly coupled moduli predicted in superstring theory. Thermal production of these particles and their possible effects are also considered. -
Estimations of Total Mass and Energy of the Observable Universe
Physics International 5 (1): 15-20, 2014 ISSN: 1948-9803 ©2014 Science Publication doi:10.3844/pisp.2014.15.20 Published Online 5 (1) 2014 (http://www.thescipub.com/pi.toc) ESTIMATIONS OF TOTAL MASS AND ENERGY OF THE OBSERVABLE UNIVERSE Dimitar Valev Department of Stara Zagora, Space Research and Technology Institute, Bulgarian Academy of Sciences, 6000 Stara Zagora, Bulgaria Received 2014-02-05; Revised 2014-03-18; Accepted 2014-03-21 ABSTRACT The recent astronomical observations indicate that the expanding universe is homogeneous, isotropic and asymptotically flat. The Euclidean geometry of the universe enables to determine the total gravitational and kinetic energy of the universe by Newtonian gravity in a flat space. By means of dimensional analysis, we have found the mass of the observable universe close to the Hoyle-Carvalho formula M∼c3/(GH ). This value is independent from the cosmological model and infers a size (radius) of the observable universe close to Hubble distance. It has been shown that almost the entire kinetic energy of the observable universe ensues from the cosmological expansion. Both, the total gravitational and kinetic energies of the observable universe have been determined in relation to an observer at an arbitrary location. The relativistic calculations for total kinetic energy have been made and the dark energy has been excluded from calculations. The total mechanical energy of the observable universe has been found close to zero, which is a remarkable result. This result supports the conjecture that the gravitational energy of the observable universe is approximately balanced with its kinetic energy of the expansion and favours a density of dark energy ΩΛ≈ 0.78. -
The Anthropic Principle and Multiple Universe Hypotheses Oren Kreps
The Anthropic Principle and Multiple Universe Hypotheses Oren Kreps Contents Abstract ........................................................................................................................................... 1 Introduction ..................................................................................................................................... 1 Section 1: The Fine-Tuning Argument and the Anthropic Principle .............................................. 3 The Improbability of a Life-Sustaining Universe ....................................................................... 3 Does God Explain Fine-Tuning? ................................................................................................ 4 The Anthropic Principle .............................................................................................................. 7 The Multiverse Premise ............................................................................................................ 10 Three Classes of Coincidence ................................................................................................... 13 Can The Existence of Sapient Life Justify the Multiverse? ...................................................... 16 How unlikely is fine-tuning? .................................................................................................... 17 Section 2: Multiverse Theories ..................................................................................................... 18 Many universes or all possible -
The Multiverse: Conjecture, Proof, and Science
The multiverse: conjecture, proof, and science George Ellis Talk at Nicolai Fest Golm 2012 Does the Multiverse Really Exist ? Scientific American: July 2011 1 The idea The idea of a multiverse -- an ensemble of universes or of universe domains – has received increasing attention in cosmology - separate places [Vilenkin, Linde, Guth] - separate times [Smolin, cyclic universes] - the Everett quantum multi-universe: other branches of the wavefunction [Deutsch] - the cosmic landscape of string theory, imbedded in a chaotic cosmology [Susskind] - totally disjoint [Sciama, Tegmark] 2 Our Cosmic Habitat Martin Rees Rees explores the notion that our universe is just a part of a vast ''multiverse,'' or ensemble of universes, in which most of the other universes are lifeless. What we call the laws of nature would then be no more than local bylaws, imposed in the aftermath of our own Big Bang. In this scenario, our cosmic habitat would be a special, possibly unique universe where the prevailing laws of physics allowed life to emerge. 3 Scientific American May 2003 issue COSMOLOGY “Parallel Universes: Not just a staple of science fiction, other universes are a direct implication of cosmological observations” By Max Tegmark 4 Brian Greene: The Hidden Reality Parallel Universes and The Deep Laws of the Cosmos 5 Varieties of Multiverse Brian Greene (The Hidden Reality) advocates nine different types of multiverse: 1. Invisible parts of our universe 2. Chaotic inflation 3. Brane worlds 4. Cyclic universes 5. Landscape of string theory 6. Branches of the Quantum mechanics wave function 7. Holographic projections 8. Computer simulations 9. All that can exist must exist – “grandest of all multiverses” They can’t all be true! – they conflict with each other. -
Module 2—Evidence for God from Contemporary Science (Irish Final)
Module 2—Evidence for God from Contemporary Science (Irish Final) Intro There is a long and strong relationship between the natural sciences and the Catholic Church. At least 286 priests and clergy were involved in the development of all branches of the natural sciences,1 and the Catholic Church hosts an Academy of Sciences with 46 Nobel Prize Winners as well as thousands of University and high school science departments, astronomical observatories and scientific institutes throughout the world (see Module III Section V). This should not be surprising, because as we saw in the previous Module most of the greatest scientific minds throughout history were believers (theists), and today, 51% of scientists are declared believers, as well as 88% of physicians. This gives rise to the question, “if scientists and physicians are evidence-based people, why are the majority of scientists and physicians believers?” What is their evidence? Many scientists, such as Albert Einstein and Eugene Wigner intuited clues of a divine intelligence from the wholly unexpected pervasive mathematical ordering of the universe.2 Today, the evidence for an intelligent transphysical creator is stronger than ever before despite the proliferation of many hypothetical new models of physical reality which at first seem to suggest the non-necessity of a creator. These new models include a multiverse, universes in the higher dimensional space of string theory, and multidimensional bouncing universes. So, what is this evidence that points to an intelligent creator even of multiverses, string universes, and multi- dimensional bouncing universes? There are 3 principal areas of evidence, each of which will be discussed in this Module: 1. -
The Reason Series: What Science Says About God
Teacher’s Resource Manual The Reason Series: What Science Says About God By Robert J. Spitzer, S.J., Ph.D. and Claude LeBlanc, M.A. Nihil Obstat: Reverend David Leigh, S.J., Ph.D. July 6, 2012 Imprimatur: Most Reverend Tod D. Brown Bishop of Orange, California July 11, 2012 Magis Center of Reason and Faith www.magiscenter.com USCCB Approval: The USCCB Subcommittee for Catechetical Conformity gives approval only for curricula, text book series, teacher’s manuals, or student workbooks that concern a whole course of studies. Partial curricula and programs may obtain ecclesiastical approval by imprimatur from the local Bishop. Since The Reason Series is such a partial curriculum its ecclesiastical approval by the USCCB is validated by the imprimatur. Cover art by Jim Breen Photos: Photos from the Hubble Telescope: courtesy NASA, PD-US Stephen Hawking (page 19): courtesy NASA, PD-US Galileo (page 20): PD-Art Arno Penzias (page 25): courtesy Kartik J, GNU Free Documentation License Aristotle (page 41): courtesy Eric Gaba, Creative Commons Albert Einstein (page 49): PD-Art Georges Lemaitre (page 49): PD-Art Alexander Vilenkin (page 51): courtesy Lumidek, Creative Commons Alan Guth (page 51): courtesy Betsy Devine, Creative Commons Roger Penrose (page 71): PD-Art Paul Davies (page 71): courtesy Arizona State University, PD-Art Sir Arthur Eddington (page 92): courtesy Library of Congress, PD-US Revision © 2016 Magis Institute (Garden Grove, California) All Rights Reserved No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the written permission of the author. -
String Theory and Our Relationship with Nature: the Convergence of Science, Curriculum Theory, and the Environment
Georgia Southern University Digital Commons@Georgia Southern Electronic Theses and Dissertations Graduate Studies, Jack N. Averitt College of Fall 2010 String Theory and Our Relationship with Nature: The Convergence of Science, Curriculum Theory, and the Environment Virginia Therese Bennett Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/etd Recommended Citation Bennett, Virginia Therese, "String Theory and Our Relationship with Nature: The Convergence of Science, Curriculum Theory, and the Environment" (2010). Electronic Theses and Dissertations. 530. https://digitalcommons.georgiasouthern.edu/etd/530 This dissertation (open access) is brought to you for free and open access by the Graduate Studies, Jack N. Averitt College of at Digital Commons@Georgia Southern. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons@Georgia Southern. For more information, please contact [email protected]. STRING THEORY AND OUR RELATIONSHIP WITH NATURE: THE CONVERGENCE OF SCIENCE, CURRICULUM THEORY, AND THE ENVIRONMENT by VIRGINIA THERESE BENNETT (Under the Direction of John A. Weaver) ABSTRACT Curriculum Theory affords us the opportunity to examine education from a multitude of directions. This work takes advantage of that opportunity to explore the relationships between science, nature, and curriculum using string theory and our ideas about the environment as a backdrop. Both the energy and multiple possibilities created by strings and the rich history leading up to the theory help to illustrate the many opportunities we have to advance discussions in alternative ways of looking at science. By considering the multiple dimensions inherent in string theory as multiple pathways and interweaving metaphors from Deleuze and Guattari, Michel Serres, and Donna Haraway, our approach to environmental issues and environmental education allow us to include alternative ways of looking at the world.