String Theory and Our Relationship with Nature: the Convergence of Science, Curriculum Theory, and the Environment
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Einstein's Mistakes
Einstein’s Mistakes Einstein was the greatest genius of the Twentieth Century, but his discoveries were blighted with mistakes. The Human Failing of Genius. 1 PART 1 An evaluation of the man Here, Einstein grows up, his thinking evolves, and many quotations from him are listed. Albert Einstein (1879-1955) Einstein at 14 Einstein at 26 Einstein at 42 3 Albert Einstein (1879-1955) Einstein at age 61 (1940) 4 Albert Einstein (1879-1955) Born in Ulm, Swabian region of Southern Germany. From a Jewish merchant family. Had a sister Maja. Family rejected Jewish customs. Did not inherit any mathematical talent. Inherited stubbornness, Inherited a roguish sense of humor, An inclination to mysticism, And a habit of grüblen or protracted, agonizing “brooding” over whatever was on its mind. Leading to the thought experiment. 5 Portrait in 1947 – age 68, and his habit of agonizing brooding over whatever was on its mind. He was in Princeton, NJ, USA. 6 Einstein the mystic •“Everyone who is seriously involved in pursuit of science becomes convinced that a spirit is manifest in the laws of the universe, one that is vastly superior to that of man..” •“When I assess a theory, I ask myself, if I was God, would I have arranged the universe that way?” •His roguish sense of humor was always there. •When asked what will be his reactions to observational evidence against the bending of light predicted by his general theory of relativity, he said: •”Then I would feel sorry for the Good Lord. The theory is correct anyway.” 7 Einstein: Mathematics •More quotations from Einstein: •“How it is possible that mathematics, a product of human thought that is independent of experience, fits so excellently the objects of physical reality?” •Questions asked by many people and Einstein: •“Is God a mathematician?” •His conclusion: •“ The Lord is cunning, but not malicious.” 8 Einstein the Stubborn Mystic “What interests me is whether God had any choice in the creation of the world” Some broadcasters expunged the comment from the soundtrack because they thought it was blasphemous. -
FIELDS MEDAL for Mathematical Efforts R
Recognizing the Real and the Potential: FIELDS MEDAL for Mathematical Efforts R Fields Medal recipients since inception Year Winners 1936 Lars Valerian Ahlfors (Harvard University) (April 18, 1907 – October 11, 1996) Jesse Douglas (Massachusetts Institute of Technology) (July 3, 1897 – September 7, 1965) 1950 Atle Selberg (Institute for Advanced Study, Princeton) (June 14, 1917 – August 6, 2007) 1954 Kunihiko Kodaira (Princeton University) (March 16, 1915 – July 26, 1997) 1962 John Willard Milnor (Princeton University) (born February 20, 1931) The Fields Medal 1966 Paul Joseph Cohen (Stanford University) (April 2, 1934 – March 23, 2007) Stephen Smale (University of California, Berkeley) (born July 15, 1930) is awarded 1970 Heisuke Hironaka (Harvard University) (born April 9, 1931) every four years 1974 David Bryant Mumford (Harvard University) (born June 11, 1937) 1978 Charles Louis Fefferman (Princeton University) (born April 18, 1949) on the occasion of the Daniel G. Quillen (Massachusetts Institute of Technology) (June 22, 1940 – April 30, 2011) International Congress 1982 William P. Thurston (Princeton University) (October 30, 1946 – August 21, 2012) Shing-Tung Yau (Institute for Advanced Study, Princeton) (born April 4, 1949) of Mathematicians 1986 Gerd Faltings (Princeton University) (born July 28, 1954) to recognize Michael Freedman (University of California, San Diego) (born April 21, 1951) 1990 Vaughan Jones (University of California, Berkeley) (born December 31, 1952) outstanding Edward Witten (Institute for Advanced Study, -
Black Hole Production and Graviton Emission in Models with Large Extra Dimensions
Black hole production and graviton emission in models with large extra dimensions Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften vorgelegt beim Fachbereich Physik der Johann Wolfgang Goethe-Universitat in Frankfurt am Main von Benjamin Koch aus Nordlingen Frankfurt am Main 2007 (D 30) vom Fachbereich Physik der Johann Wolfgang Goethe-Universitat als Dissertation angenommen Dekan Gutachter Datum der Disputation Zusammenfassung In dieser Arbeit wird die mogliche Produktion von mikroskopisch kleinen Schwarzen Lcchern und die Emission von Gravitationsstrahlung in Modellen mit grofien Extra-Dimensionen untersucht. Zunachst werden der theoretisch-physikalische Hintergrund und die speziel- len Modelle des behandelten Themas skizziert. Anschliefiend wird auf die durchgefuhrten Untersuchungen zur Erzeugung und zum Zerfall mikrosko pisch kleiner Schwarzer Locher in modernen Beschleunigerexperimenten ein- gegangen und die wichtigsten Ergebnisse zusammengefasst. Im Anschluss daran wird die Produktion von Gravitationsstrahlung durch Teilchenkollisio- nen diskutiert. Die daraus resultierenden analytischen Ergebnisse werden auf hochenergetische kosmische Strahlung angewandt. Die Suche nach einer einheitlichen Theorie der Naturkrafte Eines der grofien Ziele der theoretischen Physik seit Einstein ist es, eine einheitliche und moglichst einfache Theorie zu entwickeln, die alle bekannten Naturkrafte beschreibt. Als grofier Erfolg auf diesem Wege kann es angese- hen werden, dass es gelang, drei 1 der vier bekannten Krafte mittels eines einzigen Modells, des Standardmodells (SM), zu beschreiben. Das Standardmodell der Elementarteilchenphysik ist eine Quantenfeldtheo- rie. In Quantenfeldtheorien werden Invarianten unter lokalen Symmetrie- transformationen betrachtet. Die Symmetriegruppen, die man fur das Stan dardmodell gefunden hat, sind die U(1), SU(2)L und die SU(3). Die Vorher- sagen des Standardmodells wurden durch eine Vielzahl von Experimenten mit hochster Genauigkeit bestatigt. -
Albert Einstein
THE COLLECTED PAPERS OF Albert Einstein VOLUME 15 THE BERLIN YEARS: WRITINGS & CORRESPONDENCE JUNE 1925–MAY 1927 Diana Kormos Buchwald, József Illy, A. J. Kox, Dennis Lehmkuhl, Ze’ev Rosenkranz, and Jennifer Nollar James EDITORS Anthony Duncan, Marco Giovanelli, Michel Janssen, Daniel J. Kennefick, and Issachar Unna ASSOCIATE & CONTRIBUTING EDITORS Emily de Araújo, Rudy Hirschmann, Nurit Lifshitz, and Barbara Wolff ASSISTANT EDITORS Princeton University Press 2018 Copyright © 2018 by The Hebrew University of Jerusalem Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540 In the United Kingdom: Princeton University Press, 6 Oxford Street, Woodstock, Oxfordshire OX20 1TW press.princeton.edu All Rights Reserved LIBRARY OF CONGRESS CATALOGING-IN-PUBLICATION DATA (Revised for volume 15) Einstein, Albert, 1879–1955. The collected papers of Albert Einstein. German, English, and French. Includes bibliographies and indexes. Contents: v. 1. The early years, 1879–1902 / John Stachel, editor — v. 2. The Swiss years, writings, 1900–1909 — — v. 15. The Berlin years, writings and correspondence, June 1925–May 1927 / Diana Kormos Buchwald... [et al.], editors. QC16.E5A2 1987 530 86-43132 ISBN 0-691-08407-6 (v.1) ISBN 978-0-691-17881-3 (v. 15) This book has been composed in Times. The publisher would like to acknowledge the editors of this volume for providing the camera-ready copy from which this book was printed. Princeton University Press books are printed on acid-free paper and meet the guidelines for permanence and durability of the Committee on Production Guidelines for Book Longevity of the Council on Library Resources. Printed in the United States of America 13579108642 INTRODUCTION TO VOLUME 15 The present volume covers a thrilling two-year period in twentieth-century physics, for during this time matrix mechanics—developed by Werner Heisenberg, Max Born, and Pascual Jordan—and wave mechanics, developed by Erwin Schrödinger, supplanted the earlier quantum theory. -
What's Inside
Newsletter A publication of the Controlled Release Society Volume 32 • Number 1 • 2015 What’s Inside 42nd CRS Annual Meeting & Exposition pH-Responsive Fluorescence Polymer Probe for Tumor pH Targeting In Situ-Gelling Hydrogels for Ophthalmic Drug Delivery Using a Microinjection Device Interview with Paolo Colombo Patent Watch Robert Langer Awarded the Queen Elizabeth Prize for Engineering Newsletter Charles Frey Vol. 32 • No. 1 • 2015 Editor Table of Contents From the Editor .................................................................................................................. 2 From the President ............................................................................................................ 3 Interview Steven Giannos An Interview with Paolo Colombo from University of Parma .............................................. 4 Editor 42nd CRS Annual Meeting & Exposition .......................................................................... 6 What’s on Board Access the Future of Delivery Science and Technology with Key CRS Resources .............. 9 Scientifically Speaking pH-Responsive Fluorescence Polymer Probe for Tumor pH Targeting ............................. 10 Arlene McDowell Editor In Situ-Gelling Hydrogels for Ophthalmic Drug Delivery Using a Microinjection Device ........................................................................................................ 12 Patent Watch ................................................................................................................... 14 Special -
Varying Fundamental Constants and Particle Physics
Varying fundamental constants and particle physics Rikard Enberg Tanumoy Mandal Uppsala Seminar, 2017-04-06 Overview • The general idea • Old idea: Varying electromagnetic coupling • Particle physics à new scalar particles • Generalization to SU(3) × SU(2) × U(1) • Generalization to Yukawa couplings • Collider signatures All results in this talk are based on work with Ulf Danielsson, Gunnar Ingelman, Tanumoy Mandal: arXiv:1601.00624 (Nucl. Phys. B, in press) and a forthcoming paper 2 Free parameters of the SM Fundamental constant: a parameter that cannot be explained by the theory (even in principle) How many parameters are there in the Standard Model? • 19: Yukawas, gauge couplings, CKM, theta, Higgs • 26: If we include neutrino mixing and masses • 27: If we include the cosmological constant • 31–37: If we add cosmological standard model [See e.g. Tegmark et al., PRD 73 (2006) 023505] And then there are c, ħ, G, kB, etc. … Recommended reading: R.N. Cahn, Rev. Mod. Phys. 68 (1996) 951-960 M.J. Duff, arXiv:1412.2040 3 From Wikipedia, “Standard Model” Wikipedia, “Standard From 4 What are the fundamental constants and what are just units? • There’s a debate in the literature about what are the fundamental constants, and how many are there. [e.g. Duff, Okun. Veneziano, arXiv:physics/0110060] • Michael Duff in particular argues that only dimensionless constants are fundamental. Dimensionful constants are just unit conversions (Fathoms and nautical miles) speed of light = 1 lightyear/year • “Asking whether c has varied over cosmic history … is like asking whether the number of litres to the gallon has varied” [M.J. -
Coordinate Space Approach to Double Copy Michael Duff Imperial College
Coordinate space approach to double copy Michael Duff Imperial College London based on [arXiv:1301.4176 arXiv:1309.0546 arXiv:1312.6523 arXiv:1402.4649 arXiv:1408.4434 arXiv:1602.08267 arXiv:1610.07192 arXiv:1707.03234 arXiv:1711.08476 arXiv:1807.02486 A. Anastasiou, L. Borsten, M. J. Duff, M. Hughes, A. Marrani, S. Nagy and M. Zoccali] Copenhagen August 2018 Basic idea Strong nuclear, Weak nuclear and Electromagnetic forces described by Yang-Mills gauge theory (non-abelian generalisation of Maxwell). Gluons, W, Z and photons have spin 1. Gravitational force described by Einstein’s general relativity. Gravitons have spin 2. But maybe (spin 2) = (spin 1)2. If so: 1) Do global gravitational symmetries follow from flat-space Yang-Mills symmetries? 2) Do local gravitational symmetries and Bianchi identities follow from flat-space Yang-Mills symmetries? 3) What about twin supergravities with same bosonic lagrangian but different fermions? 4) Are all supergravities Yang-Mills squared? Gravity as square of Yang-Mills A recurring theme in attempts to understand the quantum theory of gravity and appears in several different forms: Closed states from products of open states and KLT relations in string theory [Kawai, Lewellen, Tye:1985, Siegel:1988], On-shell D = 10 Type IIA and IIB supergravity representations from on-shell D = 10 super Yang-Mills representations [Green, Schwarz and Witten:1987], Vector theory of gravity [Svidzinsky 2009] Supergravity scattering amplitudes from those of super Yang-Mills in various dimensions, [Bern, Carrasco, Johanson:2008, 2010; Bern, Huang, Kiermaier, 2010: Bjerrum-Bohr, Damgaard, Monteiro, O’Connell 2012,Montiero, O’Connell, White 2011, 2014, Bianchi:2008, Elvang, Huang:2012, Cachazo:2013, Dolan:2013] Ambitwistor strings [Hodges:2011, Mason:2013, Geyer:2014] See talks by [Goldberger, Montiero, O’Connell] Gravity from Yang-Mills LOCAL SYMMETRIES: general covariance, local lorentz invariance, local supersymmetry, local p-form gauge invariance [ arXiv:1408.4434, Physica Scripta 90 (2015)] [ A. -
467384274-Virtual-Salute-To-Graduates-2020.Pdf
THE CITY COLLEGE OF NEW YORK VIRTUAL SALUTE TO GRADUATES JUNE 30, 2020 THE CITY UNIVERSITY OF NEW YORK VIRTUAL SALUTE 2020 | 1 PRESIDENT’S MESSAGE Dear CCNY Graduates of the Class of 2020, There are moments in our history that impress an indelible mark upon us, when we are called to do extraordinary things under the press of an indescribable moment. Anyone graduating in the midst of the COVID19 pandemic will be marked by this extraordinary moment. But even among that national class graduating in 2020, you are different. At a time when the inequitable imprint of this scourge underscores the other inequities in our society, the City College—and those who work study and graduate from it—stand apart. You graduate from an institution established to redress inequality, an institution that each generation has the responsibility of scanning the social and Vince Boudreau political landscape, and setting its sights on rectifying that which sits most uneasily in President the light of that responsibility. It has been over fifty years since we have faced the kinds of challenges we face today to our democracy, to the fabric of our society, and to the health and security of our people. As an institution, we were made for this moment. As graduates of CCNY, you now shoulder the responsibility of giving voice to your vision of that just society, a vision we have worked to develop and instill in you all the days of your work with us. You have struggled, sometimes mightily and against long odds, to reach this day, and we beam with pride at your accomplishment. -
The Multiverse: Conjecture, Proof, and Science
The multiverse: conjecture, proof, and science George Ellis Talk at Nicolai Fest Golm 2012 Does the Multiverse Really Exist ? Scientific American: July 2011 1 The idea The idea of a multiverse -- an ensemble of universes or of universe domains – has received increasing attention in cosmology - separate places [Vilenkin, Linde, Guth] - separate times [Smolin, cyclic universes] - the Everett quantum multi-universe: other branches of the wavefunction [Deutsch] - the cosmic landscape of string theory, imbedded in a chaotic cosmology [Susskind] - totally disjoint [Sciama, Tegmark] 2 Our Cosmic Habitat Martin Rees Rees explores the notion that our universe is just a part of a vast ''multiverse,'' or ensemble of universes, in which most of the other universes are lifeless. What we call the laws of nature would then be no more than local bylaws, imposed in the aftermath of our own Big Bang. In this scenario, our cosmic habitat would be a special, possibly unique universe where the prevailing laws of physics allowed life to emerge. 3 Scientific American May 2003 issue COSMOLOGY “Parallel Universes: Not just a staple of science fiction, other universes are a direct implication of cosmological observations” By Max Tegmark 4 Brian Greene: The Hidden Reality Parallel Universes and The Deep Laws of the Cosmos 5 Varieties of Multiverse Brian Greene (The Hidden Reality) advocates nine different types of multiverse: 1. Invisible parts of our universe 2. Chaotic inflation 3. Brane worlds 4. Cyclic universes 5. Landscape of string theory 6. Branches of the Quantum mechanics wave function 7. Holographic projections 8. Computer simulations 9. All that can exist must exist – “grandest of all multiverses” They can’t all be true! – they conflict with each other. -
Some Comments on Physical Mathematics
Preprint typeset in JHEP style - HYPER VERSION Some Comments on Physical Mathematics Gregory W. Moore Abstract: These are some thoughts that accompany a talk delivered at the APS Savannah meeting, April 5, 2014. I have serious doubts about whether I deserve to be awarded the 2014 Heineman Prize. Nevertheless, I thank the APS and the selection committee for their recognition of the work I have been involved in, as well as the Heineman Foundation for its continued support of Mathematical Physics. Above all, I thank my many excellent collaborators and teachers for making possible my participation in some very rewarding scientific research. 1 I have been asked to give a talk in this prize session, and so I will use the occasion to say a few words about Mathematical Physics, and its relation to the sub-discipline of Physical Mathematics. I will also comment on how some of the work mentioned in the citation illuminates this emergent field. I will begin by framing the remarks in a much broader historical and philosophical context. I hasten to add that I am neither a historian nor a philosopher of science, as will become immediately obvious to any expert, but my impression is that if we look back to the modern era of science then major figures such as Galileo, Kepler, Leibniz, and New- ton were neither physicists nor mathematicans. Rather they were Natural Philosophers. Even around the turn of the 19th century the same could still be said of Bernoulli, Euler, Lagrange, and Hamilton. But a real divide between Mathematics and Physics began to open up in the 19th century. -
CARL ZIMMER Author & Journalist
CARL ZIMMER Author & journalist carlzimmer.com @carlzimmer BIOGRAPHY The New York Times Book Review calls Carl Zimmer "as fine a science essayist as we have." He is the author of thirteen acclaimed books and a columnist for the New York Times. Zimmer first be- gan writing about science at Discover, where he served for five years as a senior editor, and has gone on to write hundreds of features for magazines including The Atlantic, The New York Times Magazine, Time, National Geographic, and Scientific American. He has also served as a scientific editor for television documentaries, consulted on museum exhibits, and contributed his writing to major science web sites. Zimmer has earned numerous honors for his work. In 2007 he won the National Academies Communication Award, and he has won the American Association for the Advancement of Sci- ences Science Journalism Award three times. In 2015, Zimmer won the Distinguished Service Award from the National Association of Biology Teachers, and in 2016, he won the Stephen Jay Gould Prize, awarded by the Society for the Study of Evolution. In 2018, Zimmer’s book She Has Her Mother’s Laugh was named by Publisher’s Weekly one of the ten best books of the year. The Guardian named it the best science book of 2018 and The New York Times Book Review chose it as a Notable Book of the Year. It was short-listed for the Baillie-Gifford Prize for Nonfiction and a fi- nalist for the PEN/E.O. Wilson Literary Science Writing Prize. His articles have been antholo- gized in both The Best American Science and Nature Writing series and The Best American Science Writing series. -
Modern Physics 436: Course Outline
Modern Physics 436: Course Outline 1. The book that I'm going to use for most part of the course will be • Modern Physics: J. Bernstein, P. Fishbane, S. Gasiorowicz (Prentice Hall) (It will be available at the Paragraphe Bookstore) 2. The course generally assumes that you are familiar with basics of integrations, differen- tiations, classical and quantum mechanics. Your pre-requisite are Phys 446, Phys 333. In this course I plan to cover the following topics: • Single particle atom: Basic review of Phys 446 • Multi-particle atoms: Molecules, molecular bondings • Statistical mechanics: Classical and quantum aspects, Maxwell-Boltzmann distribution, Fermi-Dirac distribution, Bose-Einstein distribution, Bose-Einstein condensation • Lasers: Induced radiations, coherent and squeezed states of light • Condensed matter Physics: Band structure, semiconductors, superconductivity, BCS theory, Hall effects (classical and quantum), Laughlin function • Nuclear Physics: Nuclear structure, nuclear interactions, nuclear models • Elementary Particle Physics: Quantum field theory (QFT), virtual particles, Feynman path-integrals, Feynman diagrams, Quantum electrodynamics (QED), particle zoo, weak interactions, leptons, hadrons, Quantum chromodynamics (QCD), quarks Wish-list: • General Relativity and Cosmology: Basic GTR, cosmological inflation, big-bang nucle- osynthesis • Superstring Theory: Very basic ideas, types of string theories, supersymmetry, super- gravity 3. Although I'll try to stick with one book, you're always advised to read other books for more details. A few other important books on the above topics are: • Quantum Mechanics: You may have already been using the book by David Griffiths. Another very good book is by Claude Cohen-Tannoudji, Bernard Diu and Frank Laloe. It comes in two volumes and does everything in full details.