Impurities in Illicit Drug Preparations: Amphetamine and Methamphetamine

Total Page:16

File Type:pdf, Size:1020Kb

Impurities in Illicit Drug Preparations: Amphetamine and Methamphetamine Impurities in Illicit Drug Preparations: Amphetamine and Methamphetamine REFERENCE: Verweij AMA: Impurities in illicit drug preparations: amphetamine and methamphetamine; Forensic Sci Rev 1:1; 1989. ABSTRACT: In this review, attention is paid to chromatographic and mass spectral properties of already identified impurities found to be present in frequently abused drug preparations ofillegal origin of amphetamine and methamphetamine. The most commonly employed methods of synthesis of drugs of this type are briefly described. Special emphasis is given to the Leuckart route, found to be the preferred method, in the illicit production of amphetamine. Furthermore, some isolation and preconcentration methods for the contaminants are discussed. The importance of identifying impurities present in amphetamine or methamphetamine cannot be overestimated. These impurities originate mostly from the improper purification in the end stage of the different syntheses used in the clandestine manufacture of the substances; it is possible to differentiate between the several kinds of illegal drug preparations, synthesized by various methods, by means of so-called "route specific" impurities. Finally, a survey is given of the impurities already known to be present in amphetamine and methylamphetamine, together with their mass spectral and some chromatographic properties. KEYWORD: Amphetamine, chromatography, contaminants, impurities, isolation, mass spectrometry, metham- phetamine. I. INTRODUCTION it is related to the Leuckart reaction as the most popular method for the production of amphetamine in both the A recurrent theme in forensic drug analysis concerns western European countries and the U.S. [8,35]. the possibilities oflocating sources of supply and manu- In this review, the syntheses commonly used in the facture of illicit drugs by means of diagnostic chemical or clandestine preparation of amphetamine and metham- physical properties [17,38], Powder formulated drugs phetamine are discussed, followed by some remarks on and their potential accompanying substances can be the isolation of impurities from reaction mixtures and examined only on the basis of their chemical properties; final preparations. Lastly some chromatographic and whereas with tablets or capsules their visual appearance mass spectrometric data of the various impurities are and the nature of bulking, binding, lubricating, diluting .given. The impurities present in amphetamine and and coloring agents can play an important role. methamphetamine are accentuated here, since the con- In contrast to genuine drugs, illegal drug preparations taminants present can give important indications about are often contaminated. Impurities in these preparations the type of synthesis used. A contribution has been made largely depend on inadequate purification procedures, in improving the information content of the "signature" and they can originate from a variety of causes such as analysis of amphetamines. Today even the presence of imperfect chemical handling, starting materials, side, and "reaction specific" impurities can be established in the subsequent reactions, intermediate products, diluents, chromatographic profiles. laboratory dirt, and from handling and packing the drugs. Due to the scarcity of data, little attention can be given It stands to reason that chromatographic patterns obtained to inorganic impurities found in clandestine ampheta- from illegally produced drugs might contain valuable mine or methamphetamine originating from hydrogenat- information about the drug and its method of synthesis, ing catalysts. even if the identity of only a limited number of the chromatographic peaks is known. In general, only pat- n. SYNTHESES OF AMPHETAMINE terns are compared and, if possible, recognized in these so-called "chemical signature" analyses [38]. In recent Over the years the Leuckart reaction has remained the years some basic work has been done [23,35] regarding most popular method for synthesizing illicit ampheta- the nature of contaminations encountered in the different mine in the U.S. [8], the U.K. [32], and The Netherlands. syntheses of amphetamine or methamphetamine. Mostly The reductive amination of benzyl methyl ketone is im- ForensicScienceReview • VolumeOne Number One • June 1989 3 portant [8,16], while in Sweden and the U.S., the nitro- propene route is incidentally used, like the phenyloxime route in the U.S. RO- ~OH [a] 0- "H. O~ h -CH.,-C-CIi:, + NH.OH -t ~ h :H~-C -CHJ --t ~-h CH,-{-CH. The following are some methods forthe production of [bl H amphetamine, in which the chemical handling is not dif- Hydroxylamine Benzyl methyl keioxime ficult and the necessary materials are easy to purchase. Many other production methods are known, but are of in which [a]: Na (amalgamated), Na (absolute ethanol), lesser importance in this context. For further information LiAlH4, or H2 and Raney Nickel, nickel, iron, nickel refer to reference [32]. plated zinc; [b]: 20-170 °C, 1-130 atm; Electrolytical reduction has also been reported. Great A. The Leuckart Rection differences have been described for the reaction condi- tions [18,27,31]. This reaction can be formulated by the following scheme: D. The Phenylnitropropene Route Condensation of benzaldehyde withnitroethane yields l-phenyl-2-nitropropene [2,9]. Hydrogenation of the double bond and subsequent reduction of the nitro group Benzyl methyl Formamidc N·Fonnylamphetamine Amphetamine gives the amphetamine: ketone in which [a]: 180-190°C; [b]: H2SO/HCI (dilute); [c]: 90- 125°C. Reaction conditions can vary [29]. A trend [15] in recent years has been to replace form amide by ammo- nium formate [48] or a mixture of ammonia and formic Benzaldehyde Nitroethane Phen ylnitropropene acid [6]. in which [a]: LiAlH4' H2 and Raney Nickel or Pd/C; [b]: B. The Reductive Amination of Benzyl Methyl Ketone 20-100°C, 1-80 atm, CH30H, C2HsOH, H20/HCOOH, C H 0H. Reaction conditions vary widely [4,10]. 2 s Benzyl methyl ketone can react with ammonia in the following way [13]: III. SYNTHESES OF METHAMPHETAMINE [al NH, F\ ~ R ~HJ-C -CH~ + N~ -> O-CH'-H~ -cu, [b] In contrast to the western European countries, in the Ammonia U.S. the illicit production of methamphetamine has pref- erence over clandestine amphetamine production. (In in which [a]: Raney Nickel, Pt,:-I2, Al powder in the The Netherlands, methamphetamine has rarely been presence ofHgC12, Nickel plated Zinc; [b]: 20-170 DC,1- produced up to the current time. Only once in the past 10 130 atm, ethanol, methanol. Reaction conditions can years has a high pressure reductive amination of benzyl differ widely [1,5,11,36]. (Only low pressure and low methyl ketone with methylamine been found [46], oper- temperature aminations have been encountered so far in ating under near-professional standards.) the Netherlands.) A. The Reductive Amination of Benzyl Methyl Ketone c. The Oxime Route Illicit methamphetamine is primarly produced in the Benzyl methyl ketone reacts with hydroxylamine to U.S. [8] by reductive amination, according to the follow- give the oxime, which can be hydrogenated to give the ing scheme: amphetamine [14]: Verweij • Impurities in Illicit Amphetamine and Metamphetamine Preparations 4 IV. ISOLATION AND PRECONCENTRA TION OF THE IMPURITIES For identification purposes, where the substances should be of a purity better than 95%, it turned out that, at Methylamine Methamphetamine best, crude reaction mixtures could be taken. A reliable extraction procedure started by diluting the reaction in which [a]: HgCl/Al, NaBH4 in slightly acid medium, mixture with water then adding enough tartaric acid to H/Pd, Na/ethanol, H , Raney Nickel; [b]: 25-160 DC, 1- 2 obtain a weakly acidic solution. Next, the solution was 200 atm, methanol, ethanol, ethyl ether. Reaction condi- extracted with diethyl ether. Then the ether layer was tions vary widely. extracted with 4N hydrochloric acid. An aliquot of the hydrochloric solution was made alkaline and extracted B. The Leuckart Reaction with chloroform to give fraction I (weak bases). A quantity of the ether layer was evaporated to give fraction In methamphetamine preparation, the following re- II (neutral substances). The tartaric acid fraction was action is of minor importance, compared with reductive made alkaline, and was extracted with chloroform to give amination. Schematically: fraction III (strong bases). With the help of repetitive preparative thin-layer Chromatography the compounds in question were iso- lated from the fractions I, II, III. The eluents hexane- acetone 50:50 or 80:20, hexane-ether 50:50 or 90: 10 were N·Methylfonnamide N-Formylamphelamine suitable, with the best results obtained with hexane-ether 50:50. in which [a]: 170-190°C; [b]: H2S04 orHel; [c]: 120-170 By combining the evidence obtained in low resolu- "C. Instead of N-methylfonnamide, a mixture of methyl- tion mass spectrometry and 'H NMR, it appears that the amine and formic acid is sometimes used [23]. identification of the substances is straightforward. Of far lesser importance are the syntheses, in which Incidentally, 13C NMR and high resolution mass spec- ephedrine is used as the starting material. Several routes trometry seemed to be necessary. using ephedrine have been reported, including: (a) hydro- For routine profiling of illicit amphetamines, off line genating ephedrine [12] in acidic solutions using Pd/ extraction methods were developed [3,25]. An on line BaS04 and H2 at elevated temperatures (100°C); (b) method is also described [26]. In the on line method, the reacting
Recommended publications
  • Journal of Organic Chemistry, 9, 5291 (1944)
    [CONTRIBUTIONFROM THE MEDICAL-RESEARCHDIVISION, SHARP AND DOHME,INC. ] STUDIES ON THE LEUCKART REACTION FRANK S. CROSSLEY AND MAURICE L. MOORE Received July 21, 194.4 In 1885, Leuckart (1) first described the conversion of certain aldehydes and ketones to the corresponding amines by heating with excess ammonium formate. Wallach (2) applied the method to a number of alicyclic and terpenoid ketones, as well as certain aldehydes, and showed its general application. Despite the excellent results reported by Wallach, the reaction had found little use by others until Ingersoll (3) and his co-workers published a review of the method and re- ported the synthesis of a series of substituted a-phenethylamines by an improved modification of the procedure. Since the appearance of this publication, other workers have been stimulated to use the reaction in the preparation of a number of amines with varying success. Although the exact mechanism has not been definitely established, the reaction has been studied by Wallach (2) and Ingersoll (4)and explained by the following steps: (a) The ammonium formate dissociates into ammonia and formic acid at the temperature of the reaction; and (b) ammonia adds to the carbonyl group or condenses to form the corresponding imine. (c) The formic acid then acts as a reducing agent to remove the hydroxyl or reduce the imino group; and (d) if in excess, may form the formyl derivative which is subsequently hydrolyzed to the free amine. HCOONH, HCOOH f NHj rR OH 7 R R \ + HCOOH + CHNHz + CO* / R’ H20 R’ R R \ \ CHNHz + HCOOH - CHNHCHO + HzO / / R R Formamide (90-9575) may be substituted for ammonium formate and prob- ably hydrolyzes in the reaction to undergo the same steps as above.
    [Show full text]
  • Aromatic and Aliphatic Amines
    Aromatic and Aliphatic Amines 1. Preparation: Amines are prepared by the alkylation of ammonia, Gabriel synthesis, reduction of amides, reduction of nitriles, reduction of nitro-compounds, and reductive amination of aldehydes and ketones. Alkylation of ammonia (Hoffmann,s method): Ethanolic solution of ammonia reacts with an alkyl halide to form primary amine which can further reacts with the alkyl halide to form a secondary amine that can further react to form a tri-substituted amine (i.e., 3o amine). Therefore a mixture of three classes of amines is obtained, alongwith some quaternary ammonium salts. The order of reactivity of halides is RI > RBr > RCl and follow the SN2 pathway. Reduction of alkylazides: A primary amine can be best prepared from alkyl azide by reduction with Na/alcohol or Zn/CH3COOH. Gabriel synthesis: In Gabriel synthesis, phthalimide is converted into its salt potassium phthalimide by the reaction of ethanolic KOH. That salt on heating with an alkyl halide Dr. Debsankar Das, Assistant Prof. P. K. College, Contai Page 1 produces N‐alkyl phthalimide. This can be hydrolyzed by aqueous acids or bases into the primary amine and phthalic acid. Reduction of nitriles: Nitriles can be reduced by lithium aluminum hydride (LiAIH4) or Na/ethanol to primary amines. Reduction of amides: Primary amines can be prepared from amides by reduction with lithium aluminum hydride, while N‐substituted and N, N‐disubstituted amides give secondary and tertiary amines, respectively. Dr. Debsankar Das, Assistant Prof. P. K. College, Contai Page 2 Reduction of nitrocompounds: Aromatic amines are normally prepared by reduction of the corresponding aromatic nitrocompounds with metal/acid or Ni/H2 or LAH.
    [Show full text]
  • Review: Synthetic Methods for Amphetamine
    Review: Synthetic Methods for Amphetamine A. Allen1 and R. Ely2 1Array BioPharma Inc., Boulder, Colorado 80503 2Drug Enforcement Administration, San Francisco, CA Abstract: This review focuses on synthesis of amphetamine. The chemistry of these methods will be discussed, referenced and precursors highlighted. This review covers the period 1985 to 2009 with emphasis on stereoselective synthesis, classical non-chiral synthesis and bio-enzymatic reactions. The review is directed to the Forensic Community and thus highlights precursors, reagents, stereochemistry, type and name reactions. The article attempts to present, as best as possible, a list of references covering amphetamine synthesis from 1900 -2009. Although this is the same fundamental ground as the recent publication by K. Norman; “Clandestine Laboratory Investigating Chemist Association” 19, 3(2009)2-39, this current review offers another perspective. Keywords: Review, Stereoselective, Amphetamine, Syntheses, references, Introduction: It has been 20 years since our last review of the synthetic literature for the manufacture of amphetamine and methamphetamine. Much has changed in the world of organic transformation in this time period. Chiral (stereoselective) synthetic reactions have moved to the forefront of organic transformations and these stereoselective reactions, as well as regio-reactions and biotransformations will be the focus of this review. Within the synthesis of amphetamine, these stereoselective transformations have taken the form of organometallic reactions, enzymatic reactions, ring openings, - aminooxylations, alkylations and amination reactions. The earlier review (J. Forensic Sci. Int. 42(1989)183-189) addressed for the most part, the ―reductive‖ synthetic methods leading to this drug of abuse. It could be said that the earlier review dealt with ―classical organic transformations,‖ roughly covering the period from 1900-1985.
    [Show full text]
  • Simple Ruthenium-Catalyzed Reductive Amination Enables the Synthesis of a Broad Range of Primary Amines
    ARTICLE DOI: 10.1038/s41467-018-06416-6 OPEN Simple ruthenium-catalyzed reductive amination enables the synthesis of a broad range of primary amines Thirusangumurugan Senthamarai1, Kathiravan Murugesan1, Jacob Schneidewind 1, Narayana V. Kalevaru1, Wolfgang Baumann1, Helfried Neumann1, Paul C.J. Kamer1, Matthias Beller 1 & Rajenahally V. Jagadeesh 1 1234567890():,; The production of primary benzylic and aliphatic amines, which represent essential feed- stocks and key intermediates for valuable chemicals, life science molecules and materials, is of central importance. Here, we report the synthesis of this class of amines starting from carbonyl compounds and ammonia by Ru-catalyzed reductive amination using H2. Key to success for this synthesis is the use of a simple RuCl2(PPh3)3 catalyst that empowers the synthesis of >90 various linear and branched benzylic, heterocyclic, and aliphatic amines under industrially viable and scalable conditions. Applying this catalyst, −NH2 moiety has been introduced in functionalized and structurally diverse compounds, steroid derivatives and pharmaceuticals. Noteworthy, the synthetic utility of this Ru-catalyzed amination protocol has been demonstrated by upscaling the reactions up to 10 gram-scale syntheses. Further- more, in situ NMR studies were performed for the identification of active catalytic species. Based on these studies a mechanism for Ru-catalyzed reductive amination is proposed. 1 Leibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Str. 29a, 18059 Rostock, Germany. Correspondence and requests for materials should be addressed to M.B. (email: [email protected]) or to R.V.J. (email: [email protected]) NATURE COMMUNICATIONS | (2018) 9:4123 | DOI: 10.1038/s41467-018-06416-6 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-06416-6 fi 25 he development of ef cient catalytic reactions for the Cl]2-BINAS catalysts were also applied .
    [Show full text]
  • WASIMP Chemical Profiling of Waste from Clandestine Synthetic Drug Production
    WASIMP Chemical Profiling of Waste from Clandestine Synthetic Drug Production. CATHOLIC UNIVERSITY OF LEUVEN LABORATORY OF TOXICOLOGY AND BROMATOLOGY The research is part of the "Research programme in support of the federal drugs policy document", commissioned and financed by the Belgian Science Policy Office 1 Introduction The large profits that can be realized by the trading of clandestine drugs have attracted the attention of organized crime and caused its proliferation in the domain. Both national and international judicial and police intelligence departments are confronted with this problem and are trying to find a fitting answer to the issue, sometimes with the assistance of science. More specific for the clandestine synthesis of so-called designer drugs, this is usually translated as the chemical profiling of confiscated drugs, synthetic precursors and chemical waste. Such analyses may assist law enforcement agencies to interconnect drugs sold on the street with manufacturing and dumping sites, and hence may result in the dismantlement of a criminal organization. Objective The WASIMP project attempted to find reliable chemical parameters that allow interconnection of chemical ditching sites, and/or permit to interlink dumping sites with underground drug laboratories. Research was focused on MDMA (XTC) and amphetamine (Speed), the two most popular clandestine designer drugs in Belgium. Most of the confiscated amphetamine has been manufactured via the Leuckart reductive amination, while MDMA is often synthesized using PtO2-catalyzed
    [Show full text]
  • Impurity Profiling Amphetamine Made from Benzyl Cyanide and Phenylacetic Acid
    School of Chemical Technology Degree Program of Chemical Technology Joel Ormala ONE MORE STEP BACK – IMPURITY PROFILING AMPHETAMINE MADE FROM BENZYL CYANIDE AND PHENYLACETIC ACID Master’s thesis for the degree of Master of Science in Technology, submitted for inspection in Espoo, 3rd of October, 2016. Supervisor Professor Ari Koskinen Instructor Dr. Pekka Joensuu Instructor M. Sc. Sami Huhtala Aalto University, P.O. BOX 11000, 00076 AALTO www.aalto.fi Abstract of master's thesis Author Joel Ormala Title of thesis ONE MORE STEP BACK – IMPURITY PROFILING AMPHETAMINE MADE FROM BENZYL CYANIDE AND PHENYLACETIC ACID Department Department of Chemistry Professorship Organic Chemistry Code of professorship Kem-4 Thesis supervisor Professor Ari Koskinen Thesis advisor(s) / Thesis examiner(s) Dr. Pekka Joensuu & M. Sc. Sami Huhtala Date 03.10.2016 Number of pages Language English 60 (+ 98) Abstract The aim of this theses was to employ a multi-disciplinary approach to chemical impurity profiling of illicitly produced amphetamine. Based on the literature on the illicit amphetamine market in Finland and Europe, the globally seized amphetamine pre- and pre-precursors, and the most commonly used illicit manufacturing methods, the synthetic routes to be studied in this research were determined. The role of chemical impurity profiling of drugs in intelligence-led policing strategies was explored, and the particular requirements of analytical methods employed in service of the forensic intelligence process were identified. Using this background knowledge, permission to conduct research on internationally controlled substances was applied and received from FIMEA. Amphetamine was synthesized from benzyl cyanide and phenylacetic acid, using the Leuckart re- action and reductive amination.
    [Show full text]
  • January March 2014 67Kb
    The Indian Police Journal The Indian Police Journal Vol LXI. No. 1 ISSN 0537-2429 Jan-March, 2014 IPJ Jan-March, 2014 Vol. LXI No. 1 EDITORIAL BOARD CONTENTS Editorial 2 Shri Rajan Gupta, IPS 1. The Commoner Goes Berserk: The Socio-Psychological DG, BPR&D Subset of a Rebel and a Terror Monger Dr. Manan Dwivedi 4 Chairman 2. “Maoist-Naxalite Problem : Threat Perception and Tackling Strategy through Responsive Governance” Dr. Krishna Kumar 19 Shri Radhakrishnan Kini, IPS 3. Terrorism and Human Rights: Critical Analysis Inderpreet Kaur 28 ADG, BPR&D 4. Human Rights-Obstacle for Police and Safety for Criminals Member Dr. Dalvir Singh Gahlawat 41 5. Intelligent Emergency Response System for Police Vehicles in India Smt. Nirmal Kaur, IPS Ishan Ganeshan 49 6. Clandestine Drug Laboratories: The Problem, IG/Director (SU) Dangers and Solution Member Ashok Juneja IPS 66 7. Digitalized Terrorism -The Technological Advancement of Crime Dr. Nidhi S & Dr. Priti Saxena 85 Shri Sunil Kapur 8. “Safe City – Surat”- Suraksha Setu DIG/DD (SU) Rakesh Asthana 103 9. Image Crisis of Indian Police Member Umesh Sharraf 121 10. Public Perception About Indian Police: An Empirical Analysis Bushara Bano & Dr. Parvaiz Talib 132 Editor 11. First Information Report and Criminal Justice Dr. Pradeep Singh 149 Gopal K.N. Chowdhary 12. Eleven Guidelines to be followed in all cases of Arrest and Detention Khush Kalra 182 13. Organisational Health, Leadership Effectiveness and Influence Tactics as Perceived by Police Personnel- Some Reflections of Vadodara Police Dhvani Patel & Urmi Nanda Biswas 192 14. Influence of Emotional Intelligence on Adjustment of Police Personnel Dr.
    [Show full text]
  • Identification of Impurities in Biological Material Remaining After Amphetamine Synthesis
    IDENTIFICATION OF IMPURITIES IN BIOLOGICAL MATERIAL REMAINING AFTER AMPHETAMINE SYNTHESIS Agnieszka SIWIÑSKA-ZIÓ£KOWSKA1, Dariusz B£ACHUT2, Emilia WIDECKA-DEPTUCH2 1Chair and Department of Forensic Medicine, Medical Academy, Warsaw 2Department of Criminalistic and Special Chemistry, Internal Security Agency, Warsaw ABSTRACT: Toxicological analysis of biological material encompasses searching for different toxic substances, amongst which drugs are a very important group. Con- firmation of the presence of compounds in the amphetamine class is based on detec- tion of particular compounds in this class, for example: amphetamine (AMF), methamphetamine (MAMF), 3,4-methylenedioxymethamphetamine (MDMA), 3,4-methylenedioxyethylamphetamine (MDEA), p-methoxyamphetamine (PMA) and p-methoxymethamphetamine (PMMA), using instrumental methods. In this paper we show the possibility of identification of contaminations originating from the syn- thesis of amphetamine using Leuckart’s method in biological materials from two au- topsies performed in the Department of Forensic Medicine in Warsaw. In the first case we detected the presence of N-formylamphetamine, N,N-di-(b-phenylisopro- pyl)amine, N,N-di-(b-phenylisopropyl)methylamine, and derivatives of phenylmethyl- pyridine in stomach and blood samples. In the second case we found the same com- pounds only in the blood sample. Despite the lack of data about toxicity of these substances, it is possible that the toxicity may be comparable to that of amphetamine and its analogues. KEY WORDS: Amphetamine; Impurities; Toxicological analysis; Leuckart’s method; Fatal intoxication. Problems of Forensic Sciences, vol. LX, 2004, 130–148 Received 7 July 2005; accepted 1 September 2005 INTRODUCTION Analysis of toxicological results obtained at the Department of Forensic Medicine in Warsaw revealed that in several recent years fatal poisonings caused by drugs of abuse have occupied second position among all poisonings.
    [Show full text]
  • Department of Chemistry, St. Paul's C. M. College
    Lecture note for CC-4-8 (Organic Chemistry-4) Series: Nitrogen Compounds Aliphatic Amines-I Synthesis of aliphatic amines: Let us consider the synthesis of the primary amine R-NH2. Forming a C-N (carbon-heteroatom) bond is easier than forming a C-C bond. So we may consider the following type of disconnections. Thus a primary amine may be obtained by the treatment with ethanolic NH3 on an alkyl halide. But the reaction does not follow the above course absolutely. Over-alkylation is a serious problem: + and so on, i.e. after alkali treatment we get a mixture of RNH2, R2NH, R3N and R4N . But we do want the primary amine RNH2 exclusively. How may we do it? o Separation of primary amine from the above mixture – Hinsberg method. Department of Chemistry, St. Paul's C. M. College 1 Page Lecture note prepared by Kaushik Basu, St. Paul’s C. M. College, Kolkata o As evident from the above scheme, here NH3, RNH2, R2NH, and R3N are in competition to react with RX. If NH3 acts as the nucleophile in preference over the other nucleophilic species, we may get the primary amine. So we have to use a large excess of NH3. Thus we have the following ways to obtain amino acids: o We have to use a masked form of ammonia in which two valences of nitrogen are satisfied by easily removable groups, i.e. Thus we have the Gabriel’s phthalimide synthesis. But phthalimide cannot act as a nucleophile as shown:Department of Chemistry, St. Paul's C.
    [Show full text]
  • For Peer Review Journal: Drug Testing and Analysis
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE Drug Testing and Analysis provided by LJMU Research Online ‘APAAN in the neck’ - A reflection on some novel impurities found in seized materials containing amphetamine in Ireland during routine forensic analysis. For Peer Review Journal: Drug Testing and Analysis Manuscript ID DTA-17-0070.R1 Wiley - Manuscript type: Perspective Date Submitted by the Author: 18-Mar-2017 Complete List of Authors: Power, John; Trinity College Dublin, Pharmacology Kavanagh, Pierce; Trinity College Dublin, Department of Pharmacology and Therapeutics, School of Medicine, Trinity Centre for Health Sciences, St. Jame’s Hospital, Jame’s Street, Dublin 8, D08W9RT, Ireland. McLaughlin, Gavin; University of Dublin Trinity College, Pharmacology & Therapeutics; Athlone Institute of Technology, Life & Physical Sciences Barry, Michael; School of Medicine, Trinity Centre for Health Sciences, St. Jame’s Hospital, Jame’s Street, Dublin 8, D08W9RT, Ireland., Department of Pharmacology and Therapeutics Dowling, Geraldine; Dublin Institute of Technology, School of Chemical and Pharmaceutical Sciences, College of Sciences and Health, Dublin Institute of Technology, Kevin Street, Dublin 8, D08NF82, Ireland. Brandt, Simon; School of Pharmacy & Biomolecular Sciences , Liverpool John Moores University Keywords: amphetamine, APAAN, synthesis, by-products, importations, adulturants Abstract: none, as this is a perspective article. http://mc.manuscriptcentral.com/dta Page 1 of 26 Drug Testing and Analysis
    [Show full text]
  • Patented July 15, 1952 Dog +H:0 "..."
    Patented July 15, 1952 2,603,661 2,603,661 LEUCKART syNTHESIS William F. Bruce, Havertown, Pa., and Wincent J. Webers, Racine, Wis., assignors to Wyeth Incorporated, Philadelphia, Pa., a corporation. of Delaware Application August 19, 1948, Serial No. 45,207 Claims. (C. 260-562) 2 The invention relates to the preparation of The reaction may be postulated by the follow formylamino and amino derivatives and more ing equations: . ". particularly involves a catalytic process for ob R R. taining formylamino compounds by the reaction of a ketOne and a formamide. 5 c=o + NERCHO Dog . The preparation of certain commercially im R77 ; : R N+HRCHIO (i) portant amines has heretofore depended to a great extent on the utilization of the Well-known R oH R oH . Leuckart reaction. This reaction, as first re Nc4 ' , , -m--> c ported in the literature, involved the use of am 10 R? YHRCHO R?. monium formate, which with benzophenone R OF formed. N-benzhydryl formamide. The latter compound when hydrolyzed formed the corre Yo +NHR-Cho - sponding amine. Subsequent to the disclosure of R?. YRCHO this reaction a great many ketones have been 5 . R. H. - - - - - - - - tried and found to proceed as with benzophe - So +NH.R+ co, none. The Leuckart reaction has therefore been R?. YRCho (3) adapted to the preparation of important physiol ogically active amines, such as the Sympatho 20 R H Hydrolysis mimetic amines, by selecting the proper ketone Dog +H:0 "..." for the reaction. As an example, if one starts R. NRCHO - With phenylacetone, the final hydrolysis of the . R E formamide product will yield the central ner Y/ " .
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,710,268 B2 Bobylev (45) Date of Patent: *Apr
    US008710268B2 (12) United States Patent (10) Patent No.: US 8,710,268 B2 Bobylev (45) Date of Patent: *Apr. 29, 2014 (54) METHOD FOR THE HYDROLYSIS OF (58) Field of Classification Search SUBSTITUTED FORMYLAMINES INTO USPC .................................................. 564/336,386 SUBSTITUTEDAMINES See application file for complete search history. (71) Applicant: Mikhail Bobylev, Minot, ND (US) (56) References Cited (72) Inventor: Mikhail Bobylev, Minot, ND (US) U.S. PATENT DOCUMENTS (*) Notice: Subject to any disclaimer, the term of this 8.329,948 B2 * 12/2012 Bobylev ........................ 564,215 patent is extended or adjusted under 35 FOREIGN PATENT DOCUMENTS U.S.C. 154(b) by 0 days. This patent is Subject to a terminal dis EP O 518414 * 12/1992 claimer. * cited by examiner (21) Appl. No.: 13/657,505 Primary Examiner — Shailendra Kumar (74) Attorney, Agent, or Firm — James K Petell (22) Filed: Oct. 22, 2012 (57) ABSTRACT (65) Prior Publication Data An improved method for the synthesis of substituted formy US 2013/OO46111A1 Feb. 21, 2013 lamines and Substituted amines via an accelerated Leuckart reaction. The Leuckart reaction is accelerated by reacting formamide or N-alkylformamide and formic acid with an Related U.S. Application Data aldehyde or aketoneata preferred molar ratio that accelerates (63) Continuation of application No. 12/182,451, filed on the reaction. The improved method is applicable to various Jul. 30, 2008, now Pat. No. 8,329,948. Substituted aldehydes and ketones, including Substituted ben Zaldehydes. An accelerated method for the hydrolysis of sub (60) Provisional application No. 60/962,739, filed on Jul. stituted formylamines into Substituted amines using acid or 31, 2007.
    [Show full text]