Back Matter (PDF)

Total Page:16

File Type:pdf, Size:1020Kb

Back Matter (PDF) Index Page numbers in italic denote figures. Page numbers in bold denote tables. Acastidae, 305 Asteroids, 178–179 Acastidae Delo, 304–305 Asterozoans, 177–179 acritarchs, 365 Asteroids, 178–179 cluster analysis, 387 Ophiuroids, 178 Acrocephalitidae, 325 palaeobiogeography of Ordovician echinoderms, 177–179 actinocerids, 433, 437, 440 Somasteroids, 177–178 adaptive radiation of vertebrates in Ordovician, 451–452 Astropolichnus hispanicus (Crimes, Legg, Marcos and Arboleya), 45 biogeography of Ordovician vertebrates, 451–452 Atdabanian Stage, palaeogeographical distribution, 61 climatic context of Ordovician vertebrates, 452 Aulacopleurida, 311 palaeobiogeography of Early Palaeozoic vertebrates, 451–452 Aulacopleurida Adrain, 312–317 Aeronian cluster and ordination tests, 209 Family Aulacopleuridae Angelin, 312–313 Aeronian-Telychian, 209–210 Family Bathyuridae Walcott, 313–314 Afghanistan palaeogeographical units, 279 Family Brachymetopidae Prantl & Prˇibyl, 314 Afghanodesmatids Ordovician distributions, 224 Family Dimeropygidae Hupe, 314 agnathans, 449, 455 Family Holotrachelidae Warburg, 314–315 Alai terrane Family Hystricuridae Hupe, 315 fossils, 279 Family Rorringtoniidae Owens in Owens & Hamann, 315–316 trilobite, 283–284 Family Scharysiidae Osmo´lska, 316 Alaskan areas, 213–214 Family Telephinidae Marek, 316–317 Alsataspididae, 320 synopsis of Ordovician trilobite distribution and diversity, 312–317 Alsataspididae Turner, 319–320 Aulacopleuridae Altai-Sayan area, palaeogeographical units, 276 global taxonomic richness, 313 Ambonychids, Ordovician distributions, 225 Aulacopleuridae Angelin, 312–313 Anatolepis, 451 Australia Annamia, palaeogeographical reconstructions, 8–9 bryozoan faunas, 147 Anomalodesmatans, 223 genera, 203 Antarctica, palaeogeographical units, 281 GMM [Gastropods, monoplacophorans and mimospirids], 215 Anti-Atlas Mountains trilobites, 285 mid-Ordovician faunas, 226 Antipleuridae, 231 palaeogeographical units, 281 Archaeocyatha, 59–64 supercontinent breakup, 281 bioconstruction distribution, 61 Avalonia, 277 biostratigraphy, 59 blastozoans, 181 Cambrian biostratigraphy and biogeography, 59–64 cephalopods, 433 cluster analysis, 62 palaeogeographical reconstructions, 10 database and website, 63–64 Silurian, 232–234 global palaeogeographical distribution, 61 Trilobites, Cambrian Epoch 3, 286 palaeoecology, 60–62 West Gondwana, 282 palaeogeography, 62–63 axonophorans, 424 radiocyathan genera, 62 systematic studies history, 59 Baltica, 268, 351 archaeocyaths v. trilobites, 60 biogeographical analysis of trilobites, 287 archipelagos, 26 bryozoan, 146 Arctic Alaska-Chukotka Microcontinent, 7 cephalopods, 433–435 palaeogeographical reconstructions, 9 echinoderm assemblage, 191 Arenig Stage bivalves, 223 GMM [Gastropods, monoplacophorans and mimospirids], 214–215 Argentina Heteroconchs Lyrodesma poststriatum, 229 eocrinoids, 180 Ordovician, 369 Famatina System, 277 Ordovician echinoderm assemblages, 174 Argentinean Precordillera, 216 Ordovician echinoderms, 186 Arhouriella, 222 palaeogeographical province, 186 Armorican Terrane Assemblage, 12 palaeogeographical reconstructions, 8 palaeogeographical reconstructions, 9–10 palaeogeographical units, 274 Arthropod genera, 38 Silurian, 232–234 Asaphidae, 317 Baltica-Siberia Subrealm, 452 Asaphida Salter, 317–321 Baltoscandia, 337 Family Alsataspididae Turner, 319–320 Ordovician facies zones, 338 Family Ceratopygidae Linnarsson, 318 basslerocerids, 435 Family Dionididae Gurich, 320 Bathmoceras, 432 Family Nileidae Angelin, 319 Bathycheilidae, 309 Family Raphiophoridae Angelin, 320 Bathycheilidae Prˇibyl, 309 Family Trinucleidae Hawle & Corda, 320–321 bathypelagic species, 362 Superfamily Asaphoidea Burmeister, 317–318 Bathyuridae, 313 Superfamily Cyclopygoidea Raymond, 318–319 Bathyuridae Walcott, 313–314 Superfamily Trinucleoidea Hawle & Corda, 319–321 Batostoma, 148 synopsis of Ordovician trilobite distribution and diversity, Bavarillidae, 310 317–321 Bavarillidae Sdzuy, 309 Asaphoidea Burmeister, 317–318 bellerophontoid gastropods, 200 Ashgill units within Continental Margin Area bellerophontoid Peelerophon, 200 coral genera, 102 Benbolt Formation, 180 478 INDEX benthic faunas, 16 Llandovery, 150–151, 150 benthic species Lludlovian, 152 stratigraphical distribution, 357 Ludlow, 152–154 testing Silurian palaeogeography, 362–363 Ordovician, 145–146 benthic trilobites, 46 Prˇ´ıdolı´, 153, 154 Beothuka terranova, 411 Sandbian, 146, 147 Beyrichia admixta, 358 Silurian, 149–150 bilaterians, 40 Tremadocian, 146 binodicopes, 356 Wenlock, 151–152, 151 biodiversity Ordovician, 127–142 Builth Inlier, 85 biofacies, 376 Burgess Shale, 40 biogeographers, 26–27 deposits, 35–40 biogeographical patterns faunas, 81 Early Palaeozoic Rostroconchia, 243–260 Ordovician ostracods, 337–351 Calcareans, 91 biogeographical provinces, 25 Calymenidae, 310 biogeographical regions, 26 Calymenidae Swinnerton, 309–310 ranks, 31 Calymenina Swinnerton, 309–310 biogeography Cambrian bryozoans, Early Palaeozoic, 145–154 and archaeocyathan distribution, 61 Early Late Ordovician, 350 Archaeocyatha role, 59–64 early to mid Palaeozoic marine phytoplankton, 365–389 biostratigraphy and biogeography, 59–64 Ordovician, 127–142 Bivalvia, 221–222 Ordovician and Silurian, 199–217 Botomian, 64 Ordovician and Silurian GMM [Gastropods, monoplacophorans and Burgess Shale-type faunas, 81 mimospirids], 199–217 data cluster analysis, 371 Ordovician and Silurian Stromatoporoidea, 67–78 echinoderms, 160, 161 Ordovician distribution, 67–73 global chronostratigraphical series and stages, 159 Ordovician linguliform and craniiform brachiopods, lichakephalids, 301 117–124 Major Early Palaeozoic events, 14–16 Silurian distribution, 73–77 non-stromatoporoid Porifera, 81–93, 86–91 Bioherms, 109 palaeobiogeographical units, 282 biosedimentology reefs, 62 palaeogeographical positions, 37 biostratigraphy of Archaeocyatha, 59 palaeogeographical reconstruction, 275 biostromes, 107 Paleodictyon occurrences, 49–50 biozones of trilobites and archaeocyaths, 60 phytoplankton, 366–367 biserial diversification, 423 radiation, 39 bivalves, 221–236 sponge palaeobiogeography, 83–84 Arenig Stage, 223 sponge distributions, 84 Cambrian, 221–222 tectonostratigraphic units, 280 Lower Palaeozoic palaeobiogeography, 221–236 terranes or microcontinents, biogeographical concepts, 282 Ordovician, 222–230 Cambrian clades Ordovician diversification, 222 analyses, 36 Silurian, 230–235 clade dynamics at genus level, 37–39 blastozoans clade dynamics at species level, 36–37 Avalonian Province, 181 database, 35 Furongian, 162 geographical ranges of genera, 37–38 Ordovician echinoderms palaeobiogeography, 179–184 geographical ranges of species, 37 Sandbian-Katian interval, 181 groups studied, 36 Boda event, 72 regions occupied v. temporal boundaries, 39 Bohemia palaeogeographical units, 278 spatio-temporal bias, 36 Bolivia eocrinoids, 180 temporal persistence of genera, 38–39 Botomian Stage temporal persistence of species, 37 Cambrian genera, 64 Cambrian echinoderms, 157–167 global palaeogeographical distribution, 61 Cincta, 162–163 brachiopod diversification, 130 Ctenocystoidea, 163 phylogeography during Ordovician, 136–142 diversity, 159–164, 166 brachiopods, 117–124 Edrioasteroidea, 159–161 biogeography of Ordovician, 117–124 Eocrinoids, 161–162 craniiform, 121–122 Helicoplacoidea, 159 Laurentia, 134 palaeobiogeographical patterns, 165–167 linguliform, 117–121 palaeobiogeography, 157–167, 159–164 Brachymetopidae, 314 palaeogeographical distribution, 159–164 Brachymetopidae Prantl & Prˇibyl, 314 palaeogeographical distribution of Cambrian echinoderms, Brevilamnulella, 135 159–164 Britain Heteroconchs Lyrodesma poststriatum, 229–230 palaeogeographical units and chronostratigraphical nomenclature, Bruno–Silesia palaeogeographical reconstructions, 12–13 158–159 bryozoan, 145–154 record of disarticulated echinoderm ossicles, 164–165 Baltic Province, 146 Rhombifera, 162 Dapingian, 146 Soluta, 163 Dariwillian, 147 Stylophora, 163–164 Darriwilian, 146 Cambrian Epoch and geo-dispersal analysis, 285 Early Palaeozoic biogeography, 145–154 Cambrian Epoch 2 Floian, 146 Furongian trilobite genera, 288 Hirnantian, 149, 149 trilobite, 285–286 Katian, 146–149, 148 trilobite biogeography, 284 INDEX 479 Cambrian Epoch 3 Ordovician palaeogeographical regions, 432–438 Avalonian trilobites, 286 palaeogeography and diversity, 429–444 Furongian trilobite genera, 288 Siberia and Far Russian East, 437 PAE [Parsimony Analysis of Endemicity] analysis, 289 South China platform, 437–438 Cambrian Explosion, 1 Tarim, 438 Cambrian faunas, 166 Western Gondwana and Precordillera, 438 Cambrian Ordovician cephalopod palaeogeography and diversity, Ceratopygidae, 318 429–444 Ceratopygidae Linnarsson, 318 changing endemicity and beta-diversity, 438–439 Chazyan, 68 changing palaeogeographical pattern, 439–440 Cheiruridae, 308 diversity trends interpretation, 441–443 Cheiruridae Hawle & Corda, 306 general pattern, 438–441 Cheirurina Harrington & Leanza, 306–309 Late Ordovician, 443 Chinese tectonostratigraphic units, 283 Mid Ordovician, 442–443 chitinozoans zooplankton maps, 400–401 palaeogeographical regions, 432–438 Chlorophyta, 37 regional diversity trends, 440 Cincinnatian, 99 widespread genera, 440–441 biogeographical divisions of Laurentia, 99 Cambrian Series 2 Continental Margin Area, 102 formations and species, 167 coral genera, 97–112, 99, 102 Cambrian Series 3, 160 Cinctans Eocrinoid faunas, 162 Cambrian echinoderms, 162–163 Cambrian Series 5 evolution, 163 formations and species, 167
Recommended publications
  • Climate Change and the Selective Signature of the Late Ordovician Mass Extinction
    Climate change and the selective signature of the Late Ordovician mass extinction Seth Finnegana,b,1, Noel A. Heimc, Shanan E. Petersc, and Woodward W. Fischera aDivision of Geological and Planetary Sciences, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125; bDepartment of Integrative Biology, University of California, 1005 Valley Life Sciences Bldg #3140, Berkeley, CA 94720; and cDepartment of Geoscience, University of Wisconsin-Madison, 1215 West Dayton Street, Madison, WI 53706 Edited by Richard K. Bambach, Smithsonian Institution, National Museum of Natural History, Washington, D.C., and accepted by the Editorial Board March 6, 2012 (received for review October 14, 2011) Selectivity patterns provide insights into the causes of ancient ex- sedimentary record (common cause hypothesis) (14). For the tinction events. The Late Ordovician mass extinction was related LOME, it is useful to split common cause into two hypotheses. to Gondwanan glaciation; however, it is still unclear whether ele- The eustatic common cause hypothesis postulates that Gondwa- vated extinction rates were attributable to record failure, habitat nan glaciation drove the extinction by lowering eustatic sea level, loss, or climatic cooling. We examined Middle Ordovician-Early thereby reducing the overall area of shallow marine habitats, Silurian North American fossil occurrences within a spatiotempo- reorganizing habitat mosaics, and disrupting larval dispersal cor- rally explicit stratigraphic framework that allowed us to quantify ridors (16–18). The climatic common cause hypothesis postulates rock record effects on a per-taxon basis and assay the interplay of that climate cooling, in addition to being ultimately responsible macrostratigraphic and macroecological variables in determining for sea-level drawdown and attendant habitat losses, had a direct extinction risk.
    [Show full text]
  • Diversity Partitioning During the Cambrian Radiation
    Diversity partitioning during the Cambrian radiation Lin Naa,1 and Wolfgang Kiesslinga,b aGeoZentrum Nordbayern, Paleobiology and Paleoenvironments, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; and bMuseum für Naturkunde, Leibniz Institute for Research on Evolution and Biodiversity at the Humboldt University Berlin, 10115 Berlin, Germany Edited by Douglas H. Erwin, Smithsonian National Museum of Natural History, Washington, DC, and accepted by the Editorial Board March 10, 2015 (received for review January 2, 2015) The fossil record offers unique insights into the environmental and Results geographic partitioning of biodiversity during global diversifica- Raw gamma diversity exhibits a strong increase in the first three tions. We explored biodiversity patterns during the Cambrian Cambrian stages (informally referred to as early Cambrian in this radiation, the most dramatic radiation in Earth history. We as- work) (Fig. 1A). Gamma diversity dropped in Stage 4 and de- sessed how the overall increase in global diversity was partitioned clined further through the rest of the Cambrian. The pattern is between within-community (alpha) and between-community (beta) robust to sampling standardization (Fig. 1B) and insensitive to components and how beta diversity was partitioned among environ- including or excluding the archaeocyath sponges, which are po- ments and geographic regions. Changes in gamma diversity in the tentially oversplit (16). Alpha and beta diversity increased from Cambrian were chiefly driven by changes in beta diversity. The the Fortunian to Stage 3, and fluctuated erratically through the combined trajectories of alpha and beta diversity during the initial following stages (Fig. 2). Our estimate of alpha (and indirectly diversification suggest low competition and high predation within beta) diversity is based on the number of genera in published communities.
    [Show full text]
  • Sandbian) K-Bentonites in Oslo, Norway T ⁎ Eirik G
    Palaeogeography, Palaeoclimatology, Palaeoecology 520 (2019) 203–213 Contents lists available at ScienceDirect Palaeogeography, Palaeoclimatology, Palaeoecology journal homepage: www.elsevier.com/locate/palaeo A new age model for the Ordovician (Sandbian) K-bentonites in Oslo, Norway T ⁎ Eirik G. Balloa, , Lars Eivind Auglanda, Øyvind Hammerb, Henrik H. Svensena a Centre for Earth Evolution and Dynamics (CEED), University of Oslo, Pb. 1028, 0316 Oslo, Norway b Natural History Museum, University of Oslo, Pb. 1172, 0318 Oslo, Norway ARTICLE INFO ABSTRACT Keywords: During the Late Ordovician, large explosive volcanic eruptions deposited worldwide K-bentonites, including the Chronostratigraphy Millbrig and Deicke K-bentonites in North America and the Kinnekulle K-bentonite in Scandinavia. We have Sandbian-Katian boundary studied a classical locality in Oslo containing one of the most complete sections of K-bentonites in Europe. U-Pb dating In a 53 m section of Sandbian age, we discovered 33 individual K-bentonite beds, the most notable beds being Milankovitch the Kinnekulle and the upper Grimstorp K-bentonite. Magnetic susceptibility (MS) measurements on two in- Age model tervals show significant periodicity peaks interpreted as Milankovitch cycles and thus astronomically forced Kinnekulle changes in sediment supply and composition. These cycles fit remarkably well with both the expected Milankovitch periodicities for the Ordovician as well as the radiometric ages presented in this study and may represent one of the most convincing demonstrations of Milankovitch cycles from the lower Paleozoic so far. Five of the K-bentonites have been dated by high-precision chemical abrasion-thermal ionization mass spectrometry (CA-TIMS) U-Pb zircon geochronology, where the Kinnekulle K-bentonite gives an age of 454.06 ± 0.43 Ma.
    [Show full text]
  • Available Generic Names for Trilobites
    AVAILABLE GENERIC NAMES FOR TRILOBITES P.A. JELL AND J.M. ADRAIN Jell, P.A. & Adrain, J.M. 30 8 2002: Available generic names for trilobites. Memoirs of the Queensland Museum 48(2): 331-553. Brisbane. ISSN0079-8835. Aconsolidated list of available generic names introduced since the beginning of the binomial nomenclature system for trilobites is presented for the first time. Each entry is accompanied by the author and date of availability, by the name of the type species, by a lithostratigraphic or biostratigraphic and geographic reference for the type species, by a family assignment and by an age indication of the type species at the Period level (e.g. MCAM, LDEV). A second listing of these names is taxonomically arranged in families with the families listed alphabetically, higher level classification being outside the scope of this work. We also provide a list of names that have apparently been applied to trilobites but which remain nomina nuda within the ICZN definition. Peter A. Jell, Queensland Museum, PO Box 3300, South Brisbane, Queensland 4101, Australia; Jonathan M. Adrain, Department of Geoscience, 121 Trowbridge Hall, Univ- ersity of Iowa, Iowa City, Iowa 52242, USA; 1 August 2002. p Trilobites, generic names, checklist. Trilobite fossils attracted the attention of could find. This list was copied on an early spirit humans in different parts of the world from the stencil machine to some 20 or more trilobite very beginning, probably even prehistoric times. workers around the world, principally those who In the 1700s various European natural historians would author the 1959 Treatise edition. Weller began systematic study of living and fossil also drew on this compilation for his Presidential organisms including trilobites.
    [Show full text]
  • 001-012 Primeras Páginas
    PUBLICACIONES DEL INSTITUTO GEOLÓGICO Y MINERO DE ESPAÑA Serie: CUADERNOS DEL MUSEO GEOMINERO. Nº 9 ADVANCES IN TRILOBITE RESEARCH ADVANCES IN TRILOBITE RESEARCH IN ADVANCES ADVANCES IN TRILOBITE RESEARCH IN ADVANCES planeta tierra Editors: I. Rábano, R. Gozalo and Ciencias de la Tierra para la Sociedad D. García-Bellido 9 788478 407590 MINISTERIO MINISTERIO DE CIENCIA DE CIENCIA E INNOVACIÓN E INNOVACIÓN ADVANCES IN TRILOBITE RESEARCH Editors: I. Rábano, R. Gozalo and D. García-Bellido Instituto Geológico y Minero de España Madrid, 2008 Serie: CUADERNOS DEL MUSEO GEOMINERO, Nº 9 INTERNATIONAL TRILOBITE CONFERENCE (4. 2008. Toledo) Advances in trilobite research: Fourth International Trilobite Conference, Toledo, June,16-24, 2008 / I. Rábano, R. Gozalo and D. García-Bellido, eds.- Madrid: Instituto Geológico y Minero de España, 2008. 448 pgs; ils; 24 cm .- (Cuadernos del Museo Geominero; 9) ISBN 978-84-7840-759-0 1. Fauna trilobites. 2. Congreso. I. Instituto Geológico y Minero de España, ed. II. Rábano,I., ed. III Gozalo, R., ed. IV. García-Bellido, D., ed. 562 All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system now known or to be invented, without permission in writing from the publisher. References to this volume: It is suggested that either of the following alternatives should be used for future bibliographic references to the whole or part of this volume: Rábano, I., Gozalo, R. and García-Bellido, D. (eds.) 2008. Advances in trilobite research. Cuadernos del Museo Geominero, 9.
    [Show full text]
  • Polar Front Shift and Atmospheric CO During the Glacial Maximum of the Early Paleozoic Icehouse
    Polar front shift and atmospheric CO2 during the glacial maximum of the Early Paleozoic Icehouse Thijs R. A. Vandenbrouckea,b,c,1,2, Howard A. Armstronga,1, Mark Williamsd,e,1, Florentin Parisf, Jan A. Zalasiewiczd, Koen Sabbeg, Jaak Nõlvakh, Thomas J. Challandsa,i, Jacques Verniersb, and Thomas Servaisc aPalaeoClimate Group, Department of Earth Sciences, Durham University, Science Labs, Durham, DH1 3LE, United Kingdom; bResearch Unit Palaeontology, Department of Geology, Ghent University, Krijgslaan 281-S8, 9000 Ghent, Belgium; cGéosystèmes, Université Lille 1, Formation de Recherche en Evolution 3298 du Centre National de la Recherche Scientifique, Avenue Paul Langevin, bâtiment SN5, 59655 Villeneuve d’Ascq Cedex, France; dDepartment of Geology, University of Leicester, University Road, Leicester, LE1 7RH, United Kingdom; eBritish Geological Survey, Kingsley Dunham Centre, Keyworth, NG12 5GG, United Kingdom; fGéosciences, Université de Rennes I, Unité Mixte de Recherche 6118 du Centre National de la Recherche Scientifique, Campus de Beaulieu, 35042 Rennes-cedex, France; gProtistology and Aquatic Ecology, Department of Biology, Ghent University, Krijgslaan 281-S8, 9000 Ghent, Belgium; hInstitute of Geology, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia; and iTotal E&P UK Limited, Geoscience Research Centre, Crawpeel Road, Aberdeen AB12 3FG, United Kingdom Edited by Jeffrey Kiehl, National Center for Atmospheric Research, Boulder, CO, and accepted by the Editorial Board July 1, 2010 (received for review March 16, 2010) Our new data address the paradox of Late Ordovician glaciation PAL (5). A GCM experiment parameterized with the same p × under supposedly high CO2 (8 to 22 PAL: preindustrial atmo- pCO2 value, high relative sea level, and a modern equator-to-pole spheric level).
    [Show full text]
  • University of Alberta
    University of Alberta Select Devonian Proetid Trilobites of southern Morocco by Darrin Molinaro A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Master of Science Department of Earth and Atmospheric Sciences © Darrin Molinaro Spring 2012 Edmonton, Alberta Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is converted to, or otherwise made available in digital form, the University of Alberta will advise potential users of the thesis of these terms. The author reserves all other publication and other rights in association with the copyright in the thesis and, except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or otherwise reproduced in any material form whatsoever without the author's prior written permission. Library and Archives Bibliotheque et Canada Archives Canada Published Heritage Direction du Branch Patrimoine de I'edition 395 Wellington Street 395, rue Wellington Ottawa ON K1A0N4 Ottawa ON K1A 0N4 Canada Canada Your file Votre reference ISBN: 978-0-494-87864-4 Our file Notre reference ISBN: 978-0-494-87864-4 NOTICE: AVIS: The author has granted a non­ L'auteur a accorde une licence non exclusive exclusive license allowing Library and permettant a la Bibliotheque et Archives Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par I'lnternet, preter, telecommunication or on the Internet, distribuer et vendre des theses partout dans le loan, distrbute and sell theses monde, a des fins commerciales ou autres, sur worldwide, for commercial or non­ support microforme, papier, electronique et/ou commercial purposes, in microform, autres formats.
    [Show full text]
  • International Stratigraphic Chart
    INTERNATIONAL STRATIGRAPHIC CHART ICS International Commission on Stratigraphy Ma Ma Ma Ma Era Era Era Era Age Age Age Age Age Eon Eon Age Eon Age Eon Stage Stage Stage GSSP GSSP GSSA GSSP GSSP Series Epoch Series Epoch Series Epoch Period Period Period Period System System System System Erathem Erathem Erathem Erathem Eonothem Eonothem Eonothem 145.5 ±4.0 Eonothem 359.2 ±2.5 542 Holocene Tithonian Famennian Ediacaran 0.0117 150.8 ±4.0 Upper 374.5 ±2.6 Neo- ~635 Upper Upper Kimmeridgian Frasnian Cryogenian 0.126 ~ 155.6 385.3 ±2.6 proterozoic 850 “Ionian” Oxfordian Givetian Tonian Pleistocene 0.781 161.2 ±4.0 Middle 391.8 ±2.7 1000 Calabrian Callovian Eifelian Stenian Quaternary 1.806 164.7 ±4.0 397.5 ±2.7 Meso- 1200 Gelasian Bathonian Emsian Ectasian proterozoic 2.588 Middle 167.7 ±3.5 Devonian 407.0 ±2.8 1400 Piacenzian Bajocian Lower Pragian Calymmian Pliocene 3.600 171.6 ±3.0 411.2 ±2.8 1600 Zanclean Aalenian Lochkovian Statherian Jurassic 5.332 175.6 ±2.0 416.0 ±2.8 Proterozoic 1800 Messinian Toarcian Pridoli Paleo- Orosirian 7.246 183.0 ±1.5 418.7 ±2.7 2050 Tortonian Pliensbachian Ludfordian proterozoic Rhyacian 11.608 Lower 189.6 ±1.5 Ludlow 421.3 ±2.6 2300 Serravallian Sinemurian Gorstian Siderian Miocene 13.82 196.5 ±1.0 422.9 ±2.5 2500 Neogene Langhian Hettangian Homerian 15.97 199.6 ±0.6 Wenlock 426.2 ±2.4 Neoarchean Burdigalian M e s o z i c Rhaetian Sheinwoodian 20.43 203.6 ±1.5 428.2 ±2.3 2800 Aquitanian Upper Norian Silurian Telychian 23.03 216.5 ±2.0 436.0 ±1.9 P r e c a m b i n P Mesoarchean C e n o z i c Chattian Carnian
    [Show full text]
  • The Ordovician Succession Adjacent to Hinlopenstretet, Ny Friesland, Spitsbergen
    1 2 The Ordovician succession adjacent to Hinlopenstretet, Ny Friesland, Spitsbergen 3 4 Björn Kröger1, Seth Finnegan2, Franziska Franeck3, Melanie J. Hopkins4 5 6 Abstract: The Ordovician sections along the western shore of the Hinlopen Strait, Ny 7 Friesland, were discovered in the late 1960s and since then prompted numerous 8 paleontological publications; several of them are now classical for the paleontology of 9 Ordovician trilobites, and Ordovician paleogeography and stratigraphy. Our 2016 expedition 10 aimed in a major recollection and reappraisal of the classical sites. Here we provide a first 11 high-resolution lithological description of the Kirtonryggen and Valhallfonna formations 12 (Tremadocian –Darriwilian), which together comprise a thickness of 843 m, a revised bio-, 13 and lithostratigraphy, and an interpretation of the depositional sequences. We find that the 14 sedimentary succession is very similar to successions of eastern Laurentia; its Tremadocian 15 and early Floian part is composed of predominantly peritidal dolostones and limestones 16 characterized by ribbon carbonates, intraclastic conglomerates, microbial laminites, and 17 stromatolites, and its late Floian to Darriwilian part is composed of fossil-rich, bioturbated, 18 cherty mud-wackestone, skeletal grainstone and shale, with local siltstone and glauconitic 19 horizons. The succession can be subdivided into five third-order depositional sequences, 20 which are interpreted as representing the SAUK IIIB Supersequence known from elsewhere 21 on the Laurentian
    [Show full text]
  • Two Unique Middle Ordovician Trilobites from the Prague Basin, Czech Republic
    Journal of the National Museum (Prague), Natural History Series Vol. 179 (8): 95-104; published on 10 September 2010 ISSN 1802-6842 (print), 1802-6850 (electronic) Copyright © Národní muzeum, Praha, 2010 Two unique Middle Ordovician trilobites from the Prague Basin, Czech Republic Petr Budil1, Oldřich Fatka2, Michael Zwanzig3 & Štěpán Rak2 1Czech Geological Survey, Klárov 3, Praha 1, CZ-118 21, Czech Republic; e-mail: [email protected] 2Institute of Geology and Palaeontology, Charles University, Albertov 6, CZ-128 43 Praha 2, Czech Republic; e-mails: [email protected], [email protected] 3Scheiblerstrasse 26, D-124 37 Berlin, Germany; e-mail: [email protected] ABSTR A CT . Two specimens of rare trilobites from the Middle Ordovician Šárka Formation (= Darriwilian, Oretanian), both coming from Osek near Rokycany locality, are shortly described. An excellently preserved entire proetide specimen substantially differs from all other Middle Ordovician representatives of this order known from the Prague Basin. We place it tentatively in the genus Mezzaluna as a new species Mezzaluna? xeelee sp. n. Malformed exoskeleton of the rare cheirurid Areiaspis barrandei shows atypically developed left 9th pleural tip. Possible mechanisms of this malformation are shortly discussed and unpublished observations on the morphology of the species are added. KEYWORDS . Middle Ordovician, Prague Basin, Mezzaluna? xeelee sp. n., Areiaspis barrandei, Trilobita INTRODUCTION Trilobites known from the Darriwilian Šárka Formation constitute one of the most divers­ ified associations in the peri-Gondwanan Middle Ordovician. As noted by Budil et al. (2007), Mergl et al. (2008) and Fatka & Mergl (2009), more than 60 trilobite species have been identified from different localities in the Šárka Formation.
    [Show full text]
  • GEOLOGIC TIME SCALE V
    GSA GEOLOGIC TIME SCALE v. 4.0 CENOZOIC MESOZOIC PALEOZOIC PRECAMBRIAN MAGNETIC MAGNETIC BDY. AGE POLARITY PICKS AGE POLARITY PICKS AGE PICKS AGE . N PERIOD EPOCH AGE PERIOD EPOCH AGE PERIOD EPOCH AGE EON ERA PERIOD AGES (Ma) (Ma) (Ma) (Ma) (Ma) (Ma) (Ma) HIST HIST. ANOM. (Ma) ANOM. CHRON. CHRO HOLOCENE 1 C1 QUATER- 0.01 30 C30 66.0 541 CALABRIAN NARY PLEISTOCENE* 1.8 31 C31 MAASTRICHTIAN 252 2 C2 GELASIAN 70 CHANGHSINGIAN EDIACARAN 2.6 Lopin- 254 32 C32 72.1 635 2A C2A PIACENZIAN WUCHIAPINGIAN PLIOCENE 3.6 gian 33 260 260 3 ZANCLEAN CAPITANIAN NEOPRO- 5 C3 CAMPANIAN Guada- 265 750 CRYOGENIAN 5.3 80 C33 WORDIAN TEROZOIC 3A MESSINIAN LATE lupian 269 C3A 83.6 ROADIAN 272 850 7.2 SANTONIAN 4 KUNGURIAN C4 86.3 279 TONIAN CONIACIAN 280 4A Cisura- C4A TORTONIAN 90 89.8 1000 1000 PERMIAN ARTINSKIAN 10 5 TURONIAN lian C5 93.9 290 SAKMARIAN STENIAN 11.6 CENOMANIAN 296 SERRAVALLIAN 34 C34 ASSELIAN 299 5A 100 100 300 GZHELIAN 1200 C5A 13.8 LATE 304 KASIMOVIAN 307 1250 MESOPRO- 15 LANGHIAN ECTASIAN 5B C5B ALBIAN MIDDLE MOSCOVIAN 16.0 TEROZOIC 5C C5C 110 VANIAN 315 PENNSYL- 1400 EARLY 5D C5D MIOCENE 113 320 BASHKIRIAN 323 5E C5E NEOGENE BURDIGALIAN SERPUKHOVIAN 1500 CALYMMIAN 6 C6 APTIAN LATE 20 120 331 6A C6A 20.4 EARLY 1600 M0r 126 6B C6B AQUITANIAN M1 340 MIDDLE VISEAN MISSIS- M3 BARREMIAN SIPPIAN STATHERIAN C6C 23.0 6C 130 M5 CRETACEOUS 131 347 1750 HAUTERIVIAN 7 C7 CARBONIFEROUS EARLY TOURNAISIAN 1800 M10 134 25 7A C7A 359 8 C8 CHATTIAN VALANGINIAN M12 360 140 M14 139 FAMENNIAN OROSIRIAN 9 C9 M16 28.1 M18 BERRIASIAN 2000 PROTEROZOIC 10 C10 LATE
    [Show full text]
  • (Floian) Conodont Fauna from the Eastern Cordillera of Peru (Central Andean Basin) Geologica Acta: an International Earth Science Journal, Vol
    Geologica Acta: an international earth science journal ISSN: 1695-6133 [email protected] Universitat de Barcelona España GUTIÉRREZ-MARCO, J.C.; ALBANESI, G.L.; SARMIENTO, G.N.; CARLOTTO, V. An Early Ordovician (Floian) Conodont Fauna from the Eastern Cordillera of Peru (Central Andean Basin) Geologica Acta: an international earth science journal, vol. 6, núm. 2, junio, 2008, pp. 147-160 Universitat de Barcelona Barcelona, España Available in: http://www.redalyc.org/articulo.oa?id=50513115004 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Geologica Acta, Vol.6, Nº 2, June 2008, 147-160 DOI: 10.1344/105.000000248 Available online at www.geologica-acta.com An Early Ordovician (Floian) Conodont Fauna from the Eastern Cordillera of Peru (Central Andean Basin) 1 2 1 3,4 J.C. GUTIÉRREZ-MARCO G.L. ALBANESI G.N. SARMIENTO and V. CARLOTTO 1 Instituto de Geología Económica (CSIC-UCM). Facultad de Ciencias Geológicas 28040 Madrid, Spain. Gutiérrez-Marco E-mail: [email protected] Sarmiento E-mail: [email protected] 2 CONICET-CICTERRA, Museo de Paleontología Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba Casilla de Correo 1598, 5000 Córdoba, Argentina. E-mail: [email protected] 3 INGEMMET Avenida Canadá 1740, San Borja, Lima, Peru. E-mail: [email protected] 4 Departamento de Geología, Universidad Nacional San Antonio Abad del Cusco Avda. de la Cultura 733, Cuzco, Perú ABSTRACT Late Floian conodonts are recorded from a thin limestone lens intercalated in the lower part of the San José For- mation at the Carcel Puncco section (Inambari River), Eastern Cordillera of Peru.
    [Show full text]