Chemical Toolbox for AIS Management in Hawaii 2010

Total Page:16

File Type:pdf, Size:1020Kb

Chemical Toolbox for AIS Management in Hawaii 2010 2009 Chemical Toolbox for AIS Management in Hawaii: A Review of Substances and Methods Prepared by Joana F. Tavares-Reager AIS Research Specialist Division of Aquatic Resources Department of Lands and Natural Resources State of Hawai’i A project of the Hawai’i Aquatic Invasive Species LAS, funded by the 2006/2007 NOAA Coral Reef Management Grant Chemical Toolbox for AIS Management in Hawaii: A Review of Substances and Methods Contents Acknowledgements ........................................................................................... vi Executive Summary .......................................................................................... vii Disclaimer ............................................................................................................... x List of Acronyms and Abbreviations ............................................................ xi Chapter I: Introduction...................................................................................... 1 Overview of the Aquatic Invasive Species Problem ................................................. 1 AIS in Hawai’i ............................................................................................................... 3 Managing AIS and Choosing Management Strategies ............................................. 4 Chemical Methods’ Advantages and Hazards ......................................................... 10 Pesticide Application and Containment Methods ................................................... 13 Regulatory and Legal Considerations ..................................................................... 17 Chapter II: Piscicides ........................................................................................ 34 USEPA-registered Piscicides ..................................................................... 35 Antimycin A ................................................................................................................ 36 Rotenone .................................................................................................................... 40 Selected Non-registered Piscicides ............................................................ 45 Ammonium compounds and derivatives ................................................................. 45 Chlorination ................................................................................................................ 48 Copper compounds and derivatives ........................................................................ 53 Lime compounds and derivatives ............................................................................ 56 Neem 61 Saponins ..................................................................................................................... 63 Fish Anesthetics (TMS and Clove oil derivatives) .................................................. 66 Comparative Analysis ................................................................................. 69 Chapter III: Aquatic Molluscicides/ Anti­fouling Pesticides ............... 75 USEPA-registered Aquatic Molluscicides ................................................... 76 Copper compounds and derivatives ........................................................................ 76 Niclosamide ................................................................................................................ 80 Selected Non-registered Aquatic Molluscicides/ Anti-fouling Pesticides .... 83 Acetic Acid (Vinegar) ................................................................................................. 83 Ammonium compounds and derivatives ................................................................. 88 Chlorination ................................................................................................................ 89 Iron phosphate ........................................................................................................... 91 ii Lime compounds and derivatives ............................................................................ 92 Neem and papaya extracts ........................................................................................ 94 Potassium permanganate ......................................................................................... 94 Saponins ..................................................................................................................... 95 Comparative Analysis ................................................................................. 99 Chapter IV: Aquatic Herbicides, Algaecides, Bactericides and Viruscides ......................................................................................................... 103 USEPA-registered Aquatic Herbicides and Algaecides ........................... 104 2,4-D (2,4-dichlorophenoxyacetic acid) ................................................................. 104 Carfentrazone-ethyl ................................................................................................. 108 Copper compounds and derivatives ...................................................................... 110 Diquat 111 Endothall ................................................................................................................... 114 Erioglaucine/ tartrazine (AquashadeTM) ................................................................. 115 Fluridone ................................................................................................................... 117 Glyphosate ............................................................................................................... 120 Imazapyr ................................................................................................................... 125 Penoxsulan ............................................................................................................... 129 Triclopyr salt (TEA) .................................................................................................. 131 USEPA-registered Aquatic Algaecides, Bactericides and Viruscides ...... 134 Algaestats (Hydrogen peroxide) ............................................................................. 134 Selected Non-registered Aquatic Herbicides, Algaecides, Bactericides and Viruscides ................................................................................................. 137 Acetic Acid (Vinegar) ............................................................................................... 137 Acrolein ..................................................................................................................... 138 Ammonium compounds and derivatives ............................................................... 141 Barley Straw ............................................................................................................. 142 Chlorination .............................................................................................................. 143 Diuron 147 Glutaraldehyde ......................................................................................................... 148 Menadione (SeaKleen®) ........................................................................................... 150 Peracetic acid (Peraclean®) ..................................................................................... 153 Metsulfuron-methyl .................................................................................................. 155 Lime compounds and derivatives .......................................................................... 157 Phosphorus inactivation products ......................................................................... 158 Comparative analysis ............................................................................... 159 Chapter V: Other products that have been tested for AIS control . 166 Atrazine ..................................................................................................................... 166 Tavares-Reager, J.F. (2009) iii Chemical Toolbox for AIS Management in Hawaii: A Review of Substances and Methods Azinphos-methyl ...................................................................................................... 166 Benzene compounds ............................................................................................... 167 Carbaryl- organocarbamate pesticides.................................................................. 167 Carbon dioxide ......................................................................................................... 169 Chlordane ................................................................................................................. 169 Chlorothalonil ........................................................................................................... 170 Chlorpyrifos .............................................................................................................. 171 Croton seed powder ................................................................................................ 172 Dalapon ..................................................................................................................... 173 DDT (Dichloro-diphenyl-trichloroethane) .............................................................. 173 Dichlobenil ................................................................................................................ 174 Dieldrin/ Aldrin ........................................................................................................
Recommended publications
  • 2,4-Dichlorophenoxyacetic Acid
    2,4-Dichlorophenoxyacetic acid 2,4-Dichlorophenoxyacetic acid IUPAC (2,4-dichlorophenoxy)acetic acid name 2,4-D Other hedonal names trinoxol Identifiers CAS [94-75-7] number SMILES OC(COC1=CC=C(Cl)C=C1Cl)=O ChemSpider 1441 ID Properties Molecular C H Cl O formula 8 6 2 3 Molar mass 221.04 g mol−1 Appearance white to yellow powder Melting point 140.5 °C (413.5 K) Boiling 160 °C (0.4 mm Hg) point Solubility in 900 mg/L (25 °C) water Related compounds Related 2,4,5-T, Dichlorprop compounds Except where noted otherwise, data are given for materials in their standard state (at 25 °C, 100 kPa) 2,4-Dichlorophenoxyacetic acid (2,4-D) is a common systemic herbicide used in the control of broadleaf weeds. It is the most widely used herbicide in the world, and the third most commonly used in North America.[1] 2,4-D is also an important synthetic auxin, often used in laboratories for plant research and as a supplement in plant cell culture media such as MS medium. History 2,4-D was developed during World War II by a British team at Rothamsted Experimental Station, under the leadership of Judah Hirsch Quastel, aiming to increase crop yields for a nation at war.[citation needed] When it was commercially released in 1946, it became the first successful selective herbicide and allowed for greatly enhanced weed control in wheat, maize (corn), rice, and similar cereal grass crop, because it only kills dicots, leaving behind monocots. Mechanism of herbicide action 2,4-D is a synthetic auxin, which is a class of plant growth regulators.
    [Show full text]
  • Diversity of Echinostomes (Digenea: Echinostomatidae) in Their Snail Hosts at High Latitudes
    Parasite 28, 59 (2021) Ó C. Pantoja et al., published by EDP Sciences, 2021 https://doi.org/10.1051/parasite/2021054 urn:lsid:zoobank.org:pub:9816A6C3-D479-4E1D-9880-2A7E1DBD2097 Available online at: www.parasite-journal.org RESEARCH ARTICLE OPEN ACCESS Diversity of echinostomes (Digenea: Echinostomatidae) in their snail hosts at high latitudes Camila Pantoja1,2, Anna Faltýnková1,* , Katie O’Dwyer3, Damien Jouet4, Karl Skírnisson5, and Olena Kudlai1,2 1 Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05 České Budějovice, Czech Republic 2 Institute of Ecology, Nature Research Centre, Akademijos 2, 08412 Vilnius, Lithuania 3 Marine and Freshwater Research Centre, Galway-Mayo Institute of Technology, H91 T8NW, Galway, Ireland 4 BioSpecT EA7506, Faculty of Pharmacy, University of Reims Champagne-Ardenne, 51 rue Cognacq-Jay, 51096 Reims Cedex, France 5 Laboratory of Parasitology, Institute for Experimental Pathology, Keldur, University of Iceland, IS-112 Reykjavík, Iceland Received 26 April 2021, Accepted 24 June 2021, Published online 28 July 2021 Abstract – The biodiversity of freshwater ecosystems globally still leaves much to be discovered, not least in the trematode parasite fauna they support. Echinostome trematode parasites have complex, multiple-host life-cycles, often involving migratory bird definitive hosts, thus leading to widespread distributions. Here, we examined the echinostome diversity in freshwater ecosystems at high latitude locations in Iceland, Finland, Ireland and Alaska (USA). We report 14 echinostome species identified morphologically and molecularly from analyses of nad1 and 28S rDNA sequence data. We found echinostomes parasitising snails of 11 species from the families Lymnaeidae, Planorbidae, Physidae and Valvatidae.
    [Show full text]
  • Biomphalaria Havanensis Identified As a Potential Intermediate Host For
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln USDA National Wildlife Research Center - Staff U.S. Department of Agriculture: Animal and Publications Plant Health Inspection Service 2009 Biomphalaria havanensis Identified as a otentialP Intermediate Host for the Digenetic Trematode Bolbophoms damnificus Marlena Yost Mississippi State Universiry Linda Pote Mississippi State Universiry David J. Wise Mississippi Agricultural and Foresq Extension Service, Thad Cochran National Warmwater Aquaculture Research Center, Post Ofice Box 197, Stoneville, Mississippi Brian Dorr USDA-APHIS-Wildlife Services, [email protected] Terry Richardson University of North Alabama, Department of Biology Follow this and additional works at: https://digitalcommons.unl.edu/icwdm_usdanwrc Part of the Environmental Sciences Commons Yost, Marlena; Pote, Linda; Wise, David J.; Dorr, Brian; and Richardson, Terry, "Biomphalaria havanensis Identified as a otentialP Intermediate Host for the Digenetic Trematode Bolbophoms damnificus" (2009). USDA National Wildlife Research Center - Staff Publications. 906. https://digitalcommons.unl.edu/icwdm_usdanwrc/906 This Article is brought to you for free and open access by the U.S. Department of Agriculture: Animal and Plant Health Inspection Service at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in USDA National Wildlife Research Center - Staff Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Nonh Amcrican Journal ofAquocuhure 71:lO-15, 2009 [Communication] 0 Copyright by the American Fisheries Soddy 2009 WI: 10.15nIAO7-030.1 BiomphaEaria havanensis Identified as a Potential Intermediate Host for the Digenetic Trematode Bolbophoms damni@us MARLENA C. YOSTAND LINDAM. POTE* College of Veterinary Medicine. Mississippi State Universiry, Mississippi State, Mississippi 39762, USA DAVIDJ.
    [Show full text]
  • Toxicity of Glyphosate on Physalaemus Albonotatus (Steindachner, 1864) from Western Brazil
    Ecotoxicol. Environ. Contam., v. 8, n. 1, 2013, 55-58 doi: 10.5132/eec.2013.01.008 Toxicity of Glyphosate on Physalaemus albonotatus (Steindachner, 1864) from Western Brazil F. SIMIONI 1, D.F.N. D A SILVA 2 & T. MO tt 3 1 Laboratório de Herpetologia, Instituto de Biociências, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso, Brazil. 2 Programa de Pós-Graduação em Ecologia e Conservação da Biodiversidade, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso, Brazil. 3 Setor de Biodiversidade e Ecologia, Universidade Federal de Alagoas, Av. Lourival Melo Mota, s/n, Maceió, Alagoas, CEP 57072-970, Brazil. (Received April 12, 2012; Accept April 05, 2013) Abstract Amphibian declines have been reported worldwide and pesticides can negatively impact this taxonomic group. Brazil is the world’s largest consumer of pesticides, and Mato Grosso is the leader in pesticide consumption among Brazilian states. However, the effects of these chemicals on the biota are still poorly explored. The main goals of this study were to determine the acute toxicity (CL50) of the herbicide glyphosate on Physalaemus albonotatus, and to assess survivorship rates when tadpoles are kept under sub-lethal concentrations. Three egg masses of P. albonotatus were collected in Cuiabá, Mato Grosso, Brazil. Tadpoles were exposed for 96 h to varying concentrations of glyphosate to determine the CL50 and survivorship. The -1 CL50 was 5.38 mg L and there were statistically significant differences in mortality rates and the number of days that P. albonotatus tadpoles survived when exposed in different sub-lethal concentrations of glyphosate. Different sensibilities among amphibian species may be related with their historical contact with pesticides and/or specific tolerances.
    [Show full text]
  • The Decomposition Kinetics of Peracetic Acid and Hydrogen Peroxide in Municipal Wastewaters
    Disinfection Forum No 10, October 2015 The Decomposition Kinetics of Peracetic Acid and Hydrogen Peroxide in Municipal Wastewaters INTRODUCTION Efficient control of microbial populations in municipal wastewater using peracetic acid (PAA) requires an understanding of the PAA decomposition kinetics. This knowledge is critical to ensure the proper dosing of PAA needed to achieve an adequate concentration within the contact time of the disinfection chamber. In addition, the impact of PAA on the environment, post-discharge into the receiving water body, also is dependent upon the longevity of the PAA in the environment, before decomposing to acetic acid, oxygen and water. As a result, the decomposition kinetics of PAA may have a significant impact on aquatic and environmental toxicity. PAA is not manufactured as a pure compound. The solution exists as an equilibrium mixture of PAA, hydrogen peroxide, acetic acid, and water: ↔ + + Acetic Acid Hydrogen Peroxide Peracetic Acid Water PeroxyChem’s VigorOx® WWT II Wastewater Disinfection Technology contains 15% peracetic acid by weight and 23% hydrogen peroxide as delivered. Although hydrogen peroxide is present in the formulation, peracetic acid is considered to be the active component for disinfection1 in wastewater. There have been several published studies investigating the decomposition kinetics of PAA in different water matrices, including municipal wastewater2-7. Yuan7 states that PAA may be consumed in the following three competitive reactions: 1. Spontaneous decomposition 2 CH3CO3H à 2 CH3CO2H + O2 Eq (1) 2. Hydrolysis CH3CO3H + H2O à CH3CO2H + H2O2 Eq (2) 3. Transition metal catalyzed decomposition + CH3CO3H + M à CH3CO2H + O2 + other products Eq (3) At neutral pH’s, both peracetic acid and hydrogen peroxide can be rapidly consumed by these reactions7 (hydrogen peroxide will decompose to water and oxygen via 2H2O2 à 2H2O + O2).
    [Show full text]
  • Peracetic Acid Processing
    Peracetic Acid Processing Identification Chemical Name(s): CAS Number: peroxyacetic acid, ethaneperoxic acid 79-21-0 Other Names: Other Codes: per acid, periacetic acid, PAA NIOSH Registry Number: SD8750000 TRI Chemical ID: 000079210 UN/ID Number: UN3105 Summary Recommendation Synthetic / Allowed or Suggested Non-Synthetic: Prohibited: Annotation: Synthetic Allowed (consensus) Allowed only for direct food contact for use in wash water. Allowed as a (consensus) sanitizer on surfaces in contact with organic food. (consensus) From hydrogen peroxide and fermented acetic acid sources only. (Not discussed by processing reviewers--see discussion of source under Crops PAA TAP review.) Characterization Composition: C2H4O3. Peracetic acid is a mixture of acetic acid (CH3COOH) and hydrogen peroxide (H2O2) in an aqueous solution. Acetic acid is the principle component of vinegar. Hydrogen peroxide has been previously recommended by the NOSB for the National List in processing (synthetic, allowed at Austin, 1995). Properties: It is a very strong oxidizing agent and has stronger oxidation potential than chlorine or chlorine dioxide. Liquid, clear, and colorless with no foaming capability. It has a strong pungent acetic acid odor, and the pH is acid (2.8). Specific gravity is 1.114 and weighs 9.28 pounds per gallon. Stable upon transport. How Made: Peracetic acid (PAA) is produced by reacting acetic acid and hydrogen peroxide. The reaction is allowed to continue for up to ten days in order to achieve high yields of product according to the following equation. O O || || CH3-C-OH + H2O2 CH3C-O-OH + H2O acetic acid hydrogen peroxyacetic peroxide acid Due to reaction limitations, PAA generation can be up to 15% with residual levels of hydrogen peroxide (up to 25%) and acetic acid (up to 35%) with water up to 25%.
    [Show full text]
  • Acute Toxicity of Atrazine, Endosulfan Sulphate and Chlorpyrifos
    Bull Environ Contam Toxicol (2008) 81:485–489 DOI 10.1007/s00128-008-9517-3 Acute Toxicity of Atrazine, Endosulfan Sulphate and Chlorpyrifos to Vibrio fischeri, Thamnocephalus platyurus and Daphnia magna, Relative to Their Concentrations in Surface Waters from the Alentejo Region of Portugal P. Palma Æ V. L. Palma Æ R. M. Fernandes Æ A. M. V. M. Soares Æ I. R. Barbosa Received: 28 September 2007 / Accepted: 20 August 2008 / Published online: 8 September 2008 Ó Springer Science+Business Media, LLC 2008 Abstract Ecotoxicological effects of the herbicide atra- the herbicide atrazine are three of the pesticides most fre- zine and the insecticides endosulfan sulphate and chlor- quently used in Alentejo region crops. These compounds pyrifos were evaluated using a test battery comprising were chosen taking in account their concentration in the aquatic organisms from different trophic levels. According surface water of Alentejo region, mainly in Guadiana River, to the categories established in the EU legislation, atrazine and their environmental significance. The herbicide atrazine can be considered non-harmful for the species tested, while may reach values above maximum admissible concentration the insecticides can be considered very toxic for the crus- (MAC) allowed by Portuguese Legislation for surface taceans. The results of acute toxicity tests showed that the waters (Decreto-Lei n8236/98 1998). Despite that, atrazine sensitivity of organisms were as follows: Thamnocephalus did not pose a significant threat to the aquatic environment. platyurus [ Daphnia magna [ Vibrio fischeri. Chlorpyri- However, Solomon et al. (1996) cautioned that, when atra- fos may act as a toxic compound in the aquatic environment zine is retained in small, standing-water reservoirs or has of Guadiana River, as it may be detected in water at levels repeated inputs to a reservoir, damage can occur in the that promote toxic effects.
    [Show full text]
  • MS Tesis Lic Gutiérrez Gregoric, Diego E
    Naturalis Repositorio Institucional Universidad Nacional de La Plata http://naturalis.fcnym.unlp.edu.ar Facultad de Ciencias Naturales y Museo Estudios morfoanatómicos y tendencias poblacionales en especies de la familia Chilinidae Dall, 1870 [Mollusca: Gastropoda] en la Cuenca del Plata Gutiérrez Gregoric, Diego Eduardo Doctor en Ciencias Naturales Dirección: Rumi Macchi Zubiaurre, Alejandra Facultad de Ciencias Naturales y Museo 2008 Acceso en: http://naturalis.fcnym.unlp.edu.ar/id/20120126000908 Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional Powered by TCPDF (www.tcpdf.org) Universidad Nacional de La Plata Facultad de Ciencias Naturales y Museo Trabajo de Tesis de Doctorado Estudios morfoanatómicos y tendencias poblacionales en especies de la familia Chilinidae Dall, 1870 (Mollusca: Gastropoda) en la Cuenca del Plata. Autor: Lic. Diego Eduardo GUTIÉRREZ GREGORIC Directora: Dra. Alejandra RUMI MACCHI ZUBIAURRE División Zoología Invertebrados Museo de La Plata, FCNyM-UNLP 2008 Trabajo de Tesis Doctoral FCNyM-UNLP, Lic. Diego Eduardo Gutiérrez Gregoric, 2008 La presentación de esta tesis no constituye una publicación en el sentido del artículo 8 del Código Internacional de Nomenclatura Zoológica (CINZ, 2000) y, por lo tanto, los actos nomenclaturales incluidos en ella carecen de disponibilidad hasta que sean publicados según los criterios del capítulo 4 del Código. 2 Trabajo de Tesis Doctoral FCNyM-UNLP, Lic. Diego Eduardo Gutiérrez Gregoric, 2008 CONTENIDO RESUMEN 5 Abstract 9 INTRODUCCIÓN GENERAL 13 HIPÓTESIS y OBJETIVOS 16 CAPÍTULO I: Estudios morfoanatómicos en especies del noreste argentino 17 Introducción 18 Material y métodos 20 Descripción de especies Chilina iguazuensis 25 Chilina fluminea 35 Chilina rushii 48 Chilina megastoma 58 Chilina gallardoi 66 Análisis de componentes principales entre las especies.
    [Show full text]
  • Peracetic Acid
    Regulation (EU) No 528/2012 concerning the making available on the market and use of biocidal products Evaluation of active substances Assessment Report Peracetic acid Product-types 11 and 12 (Preservatives for liquid cooling and processing systems) (Slimicides) August 2016 Finland Peracetic acid Product-types 11 and 12 August 2016 CONTENTS 1. STATEMENT OF SUBJECT MATTER AND PURPOSE ........................................................ 2 1.1. Procedure followed ............................................................................................. 2 1.2. Purpose of the assessment report ....................................................................... 2 2. OVERALL SUMMARY AND CONCLUSIONS ..................................................................... 4 2.1. Presentation of the Active Substance .................................................................. 4 2.1.1. Identity, Physico-Chemical Properties & Methods of Analysis ................. 4 2.1.2. Intended Uses and Efficacy ..................................................................... 7 2.1.3. Classification and Labelling ..................................................................... 8 2.2. Summary of the Risk Assessment ....................................................................... 9 2.2.1. Human Health Risk Assessment .............................................................. 9 2.2.1.1. Hazard identification ................................................................................... 9 2.2.1.2. Effects assessment ...................................................................................
    [Show full text]
  • The Effects of Estrogen in Atrazine-Mediated Foxp3 Induction and Inhibition of Cd4+ T Effector Cells
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 2014 THE EFFECTS OF ESTROGEN IN ATRAZINE-MEDIATED FOXP3 INDUCTION AND INHIBITION OF CD4+ T EFFECTOR CELLS Tiffany Emmons The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Emmons, Tiffany, "THE EFFECTS OF ESTROGEN IN ATRAZINE-MEDIATED FOXP3 INDUCTION AND INHIBITION OF CD4+ T EFFECTOR CELLS" (2014). Graduate Student Theses, Dissertations, & Professional Papers. 4350. https://scholarworks.umt.edu/etd/4350 This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. THE EFFECTS OF ESTROGEN IN ATRAZINE-MEDIATED FOXP3 INDUCTION AND INHIBITION OF CD4+ T EFFECTOR CELLS By TIFFANY ROSE EMMONS B.S. Biology, University of California, Merced, Merced, California, 2012 Thesis presented in partial fulfillment of the requirements for the degree of Master of Science in Cellular, Molecular and Microbial Biology Option: Immunology The University of Montana Missoula, MT Official Graduation Date: July 2014 Approved by: J. B. Alexander Ross, Dean of The Graduate School Graduate School Dr. Scott Wetzel, Chair Division of Biological Sciences Dr. Stephen Lodmell Division of Biological Sciences Dr. David Shepherd Department of Biomedical and Pharmaceutical Sciences Emmons, Tiffany, M.S. Summer 2014 Biology The Effects of Estrogen in Atrazine-mediated Foxp3 Induction and Inhibition of CD4+ T effector Cells Atrazine (ATR) is a chlorotriazine herbicide that is heavily used in agricultural areas.
    [Show full text]
  • What's the Deal with Andropause?
    What’sF.A.Q. the Deal Troches and Bio-Identical With HormonesAndropause? Compounding Without WrittenWritten and Edited ByBy CompromiseCompounding Since Without 1962 LisaLisa Everett Everett Andersen, Andersen, B.Sc B.Sc Pharm, Pharm, CCN, CCN, FACA, FACA FIACP Compromise Since 1962 and Shana Curtis Webb, Pharm Tech In the beginning, it can be difficult to recognize and easily and Dobs of Johns Hopkins University recommend that dismissed. It might start with lowered immune function, elderly men with symptoms of hypogonadism and a total Whatmaybe aIs little a Troche irritability? and unexplainable fatigue, or perhaps testosteroneOther Dosage level of Forms 300ng/dl or less should start hormone difficulty sleeping. Slowly, the symptoms can increase and A troche is a French dosage form that dissolves between the replacement.Besides troches, But dosagewhat about forms young for hormones men with include those sameoral others appear, including hair loss, depression, the typical levels? They are also being told by their physicians that upper cheek and gum, allowing the medication to absorb tablets and capsules, sublingual lozenges, topical creams and actions of a “mid-life crisis,” and erectile dysfunction. This their lab values are in range and therefore just fine. After directly into the blood stream. Born out of the need to address ointments, suppositories, pessaries, injections, implanted cascade of events is often due to andropause (AKA the “male all, testosterone is now a controlled substance and some the problems associated with other dosage forms, troches pellets, and patches. menopause” or hypogonadism). It is the decline of androgens, practitioners don’t want to go there unless they have to.
    [Show full text]
  • Impact of Atrazine on Organophosphate Insecticide Toxicity
    Environmental Toxicology and Chemistry, Vol. 19, No. 9, pp. 2266±2274, 2000 q 2000 SETAC Printed in the USA 0730-7268/00 $9.00 1 .00 IMPACT OF ATRAZINE ON ORGANOPHOSPHATE INSECTICIDE TOXICITY JASON B. BELDEN and MICHAEL J. LYDY* Department of Biological Sciences, 1845 N Fairmount, Wichita State University, Wichita, Kansas 67260-0026, USA (Received 9 August 1999; Accepted 24 January 2000) AbstractÐAcute toxicity of selected organophosphorus insecticides (OPs; chlorpyrifos, methyl parathion, diazinon, and malathion) was determined for individual OPs and binary combinations of the OPs with atrazine to larvae of the midge Chironomus tentans. Atrazine individually was not acutely toxic even at high concentrations (10,000 mg/L); however, the presence of atrazine at much lower concentrations (40±200 mg/L) increased the toxicity of chlorpyrifos, methyl parathion, and diazinon. Atrazine did not increase the toxicity of malathion. Possible mechanisms for the synergistic toxicity found between atrazine and chlorpyrifos were investigated, including increased uptake rate and increased biotransformation into a more toxic metabolite. Although the uptake rate was increased by more than 40%, the resulting increase in toxicity would be minimal as compared to the 400% decrease estimated to occur in EC50 values for the same atrazine exposure (200 mg/L). Body residue analysis of midges exposed in vivo to atrazine and chlorpyrifos mixtures for 96 h indicated that a larger amount of metabolites was generated in atrazine treatments as compared to controls. Additionally, in vitro assays of microsomal proteins obtained from treated and control midges indicated that an increase in toxic metabolite (chlorpyrifos-O-analog) was generated in atrazine-treated midges.
    [Show full text]