RESEARCH ARTICLE Structure and topology around the cleavage site regulate post-translational cleavage of the HIV-1 gp160 signal peptide Erik Lee Snapp1†, Nicholas McCaul2†, Matthias Quandte2‡, Zuzana Cabartova3, Ilja Bontjer4, Carolina Ka¨ llgren5,6, IngMarie Nilsson5,6, Aafke Land2§, Gunnar von Heijne5,6, Rogier W Sanders4, Ineke Braakman2* 1Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States; 2Cellular Protein Chemistry, Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, Utrecht, Netherlands; 3National Institute of Public Health, National Reference Laboratory for Viral Hepatitis, Prague, Czech Republic; 4Department of Medical Microbiology, Laboratory of Experimental Virology, Center for Infection and Immunity Amsterdam, Academic Medical Center, Amsterdam, Netherlands; 5Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden; 6Science for Life Laboratory, Stockholm University, Solna, Sweden *For correspondence: Abstract Like all other secretory proteins, the HIV-1 envelope glycoprotein gp160 is targeted to
[email protected] the endoplasmic reticulum (ER) by its signal peptide during synthesis. Proper gp160 folding in the †These authors contributed ER requires core glycosylation, disulfide-bond formation and proline isomerization. Signal-peptide equally to this work cleavage occurs only late after gp160 chain termination and is dependent on folding of the soluble Present address: ‡dr heinekamp subunit gp120 to a near-native conformation. We here detail the mechanism by which co- Benelux BV, Riethoven, translational signal-peptide cleavage is prevented. Conserved residues from the signal peptide and Netherlands; §Hogeschool residues downstream of the canonical cleavage site form an extended alpha-helix in the ER Utrecht, Institute of Life membrane, which covers the cleavage site, thus preventing cleavage.