Wo 2012/050748 A2

Total Page:16

File Type:pdf, Size:1020Kb

Wo 2012/050748 A2 (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date _ . _ , _ . 19 April 2012 (19.04.2012) WO 2012/050748 A2 (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C07C 2/66 (2006.01) C07C 15/04 (2006.01) kind of national protection available): AE, AG, AL, AM, C07C 6/12 (2006.01) B01J 29/48 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, C07C 15/08 (2006.01) CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (21) International Application Number: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, PCT/US201 1/052234 KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, (22) International Filing Date: ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, 20 September 201 1 (20.09.201 1) NO, NZ, OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, (25) Filing Language: English TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, (26) Publication Language: English ZM, ZW. (30) Priority Data: (84) Designated States (unless otherwise indicated, for every 12/894,204 30 September 2010 (30.09.2010) U S kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, (71) Applicant (for all designated States except US): UOP ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, LLC [US/US]; 25 East Algonquin Road, P. O . Box 5017, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, Des Plaines, Illinois 60017-5017 (US). EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, (72) Inventors; and SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, (75) Inventors/ Applicants (for US only): BOLDINGH, Ed¬ GW, ML, MR, NE, SN, TD, TG). win P. [NL/US]; UOP LLC, 25 East Algonquin Road, P. O . Box 5017, Des Plaines, Illinois 60017-5017 (US). NE- Published: GIZ, Antoine [US/US]; UOP LLC, 25 East Algonquin — without international search report and to be republished Road, P. O . Box 501 7, Des Plaines, Illinois 60017-5017 upon receipt of that report (Rule 48.2(g)) (US). (74) Agent: WILLIS, Mark R.; UOP LLC, 25 East Algo nquin Road, P. O . Box 5017, Des Plaines, Illinois 6001 7-5017 (US). < o © o- (54) Title: PROCESSES FOR TRANSALKYLATING AROMATIC HYDROCARBONS (57) Abstract: A process for transalkylating aromatic hydrocarbon compounds, the process comprising introducing an aromatic hydrocarbon feed stream and a water source to a transalkylation zone. The feed stream contacts a catalyst in the transalkylation ¾ zone in the presence of water, and produces a reaction product stream comprising benzene and xylene. The invention includes S methods to control the transalkylation process. H0021 14 PROCESSES FOR TRANSALKYLATING AROMATIC HYDROCARBONS STATEMENT OF PRIORITY [0001] This application claims priority to U.S. Application No. 12/894,204 which was filed on September 30, 2010. FIELD OF THE INVENTION [0002] The present invention generally relates to improved processes for transalkylating aromatic hydrocarbon compounds. More particularly the invention relates to aromatic transalkylation processes producing xylenes and benzene. FIELD OF THE INVENTION [0003] The present invention generally relates to improved processes for transalkylating aromatic hydrocarbon compounds. More particularly the invention relates to aromatic transalkylation processes producing xylenes and benzene. DESCRIPTION OF RELATED ART [0004] Xylene isomers ("xylenes") and benzene are produced in large volumes from petroleum by the reforming of naphtha. However, neither the xylenes nor benzene are produced in sufficient volume to meet demand. Consequently, other hydrocarbons are necessarily converted to increase the yield of the xylenes and benzene via processes such as transalkylation, disproportionation, isomerization, and dealkylation. For example, toluene commonly is dealkylated to produce benzene. Alternatively, or additionally, toluene can be disproportionated to yield benzene and C8 aromatics from which the individual xylene isomers are recovered. [0005] More recently, development has been directed at selectively transalkylating heavier aromatics, such as C9+ aromatics, with toluene and/or benzene to increase the yield of xylenes and benzene from aromatics complexes. In this regard, a variety of catalysts have been developed for these processes. For example, a wide range of zeolites, including mordenite, have been disclosed as effective transalkylation catalysts. Shaped catalysts, multiple zeolites, metal H0021 14 modifiers, and treatments such as steam calcination have been described as increasing the effectiveness of the catalysts. [0006] Known catalysts are effective for producing xylenes and benzene. Specifically, catalysts having a sufficient metal function are suitable to convert heavier aromatics, such as C9+ aromatics to xylenes and benzene and provide improved catalyst stability in a transalkylation process. However, in transalkylation processes employing such catalysts, aromatic rings may become saturated or even cleaved resulting in naphthene and acyclic paraffin (non-aromatics) co-production, which can result in a loss of valuable aromatics. Also, because some of the non-aromatics have similar boiling points to benzene (benzene co-boilers), they are not readily removed to achieve a benzene product having a desired purity for commercial applications. Although the benzene co-boilers can be fractionated or extracted with a solvent, such processes are expensive and typically require additional equipment. [0007] Accordingly, it is desirable to provide a transalkylation process that produces a high purity benzene product. In another aspect, it is desirable to provide a transalkylation process to that produces less benzene co-boilers. Other desirable features and characteristics of the present invention will become apparent from the subsequent detailed description of the invention and the appended claims. SUMMARY OF THE INVENTION [0008] It has been discovered that introducing water into a transalkylation zone reduces the production of benzene co-boilers and/or improves the purity of the benzene fraction of the transalkylation reaction product stream. In another aspect, the invention enables control of the purity of a benzene product stream and/or control of the amount of benzene co-boilers relative to benzene in the reaction product stream or fraction thereof. [0009] In an embodiment, the invention is a process for transalkylating aromatic hydrocarbon compounds comprising introducing a water source and the aromatic hydrocarbon compounds to the transalkylation zone. The feed stream is contacted with a catalyst in the transalkylation zone under transalkylation conditions including the presence of water. A reaction product stream comprising benzene and xylene is produced. In an exemplary embodiment, the catalyst comprises an aluminosilicate zeolite component having an MOR framework type, an H00 14 MFI molecular sieve component having a Si/Al2 molar ratio of less than 80, an inorganic oxide binder, and a metal component comprising a metal selected from the group consisting of rhenium, nickel, cobalt, molybdenum, tungsten, tin, germanium, lead, indium, platinum, palladium, and combinations thereof. [0010] In another embodiment, the invention is a method for controlling an aromatic transalkylation process comprising introducing aromatic hydrocarbon compounds and a water source to a transalkylation zone. Contacting the feed stream with a catalyst in the transalkylation zone under transalkylation conditions including the presence of water. Producing a benzene product stream, determining a purity of the benzene product stream, and controlling the introduction of the water source in response to the purity of the benzene product stream. DETAILED DESCRIPTION [0011] The aromatic hydrocarbons to be transalkylated by processes of the invention include alkylaromatic hydrocarbons of the general formula C H R , where n is an integer from 0 to 5 and R is CH3, C2H5, C3H7, or C4H9, in any combination. Non-limiting examples include: benzene, toluene, ethylbenzene, ethyltoluenes, propylbenzenes, tetramethylbenzenes, ethyl- dimethylbenzenes, diethylbenzenes, methylethylbenzenes, methylpropylbenzenes, ethylpropylbenzenes, triethylbenzenes, trimethylbenzenes, di-isopropylbenzenes, and mixtures thereof. The feed stream may comprise lower levels of ortho-xylene, meta-xylene, and para- xylene that are desired products of the process. [0012] As used herein, the term "transalkylation" encompasses transalkylation between and among alkyl aromatics, between benzene and alkyl aromatics, and it includes dealkylation and disproportionation, e.g., of toluene to benzene and xylene. The aromatic hydrocarbons also may comprise naphthalene and other Cio and C aromatics. Herein, hydrocarbon molecules may be abbreviated Cl, C2, C3, ... Cn , where "n" represents the number of carbon atoms in the hydrocarbon molecule. Such abbreviations followed by a "+" is used to denote that number of carbon atoms or more per molecule, and a "-" is used to denote that number of carbon atoms or less per molecule. [0013] Polycyclic aromatics having from 2 to 4 rings are permitted in the feed stream of the present invention. Non-limiting examples include: indanes, naphthalenes, tetralins, decalins, H002 7 4 biphenyls, diphenyls and fluorenes. Indane is meant to define
Recommended publications
  • Measuring and Predicting Sooting Tendencies of Oxygenates, Alkanes, Alkenes, Cycloalkanes, and Aromatics on a Unified Scale
    Measuring and Predicting Sooting Tendencies of Oxygenates, Alkanes, Alkenes, Cycloalkanes, and Aromatics on a Unified Scale Dhrubajyoti D. Dasa,1, Peter St. Johnb,1, Charles S. McEnallya,∗, Seonah Kimb, Lisa D. Pfefferlea aYale University, Department of Chemical and Environmental Engineering, New Haven CT 06520 bNational Renewable Energy Laboratory, Golden CO 80401 Abstract Soot from internal combustion engines negatively affects health and climate. Soot emissions might be reduced through the expanded usage of appropriate biomass-derived fuels. Databases of sooting indices, based on measuring some aspect of sooting behavior in a standardized combustion environment, are useful in providing information on the comparative sooting tendencies of different fuels or pure compounds. However, newer biofuels have varied chemical structures including both aromatic and oxygenated functional groups, making an accurate measurement or prediction of their sooting tendency difficult. In this work, we propose a unified sooting tendency database for pure compounds, including both regular and oxygenated hydrocarbons, which is based on combining two disparate databases of yield-based sooting tendency measurements in the literature. Unification of the different databases was made possible by leveraging the greater dynamic range of the color ratio pyrometry soot diagnostic. This unified database contains a substantial number of pure compounds (≥ 400 total) from multiple categories of hydrocarbons important in modern fuels and establishes the sooting tendencies of aromatic and oxygenated hydrocarbons on the same numeric scale for the first time. Using this unified sooting tendency database, we have developed a predictive model for sooting behavior applicable to a broad range of hydrocarbons and oxygenated hydrocarbons. The model decomposes each compound into single-carbon fragments and assigns a sooting tendency contribution to each fragment based on regression against the unified database.
    [Show full text]
  • Disproportionation and Transalkylation of Alkylbenzenes Over Zeolite Catalysts
    Applied Catalysis A: General 181 (1999) 355±398 Disproportionation and transalkylation of alkylbenzenes over zeolite catalysts Tseng-Chang Tsaia, Shang-Bin Liub, Ikai Wangc,* aRe®ning and Manufacturing Research Center, Chinese Petroleum Corporation, Chiayi 600, Taiwan bInstitute of Atomic and Molecular Sciences, Academia Sinica, PO Box 23-166, Taipei 106, Taiwan cDepartment of Chemical Engineering, National Tsing-Hua University, Hsinchu 300, Taiwan Received 13 June 1998; received in revised form 3 October 1998; accepted 5 November 1998 Abstract Disproportionation and transalkylation are important processes for the interconversion of mono-, di-, and tri-alkylbenzenes. In this review, we discuss the recent advances in process technology with special focus on improvements of para-isomer selectivity and catalyst stability. Extensive patent search and discussion on technology development are presented. The key criteria for process development are identi®ed. The working principles of para-isomer selectivity improvements involve the reduction of diffusivity and the inactivation of external surface. In conjunction with the fundamental research, various practical modi®cation aspects particularly the pre-coking and the silica deposition techniques, are extensively reviewed. The impact of para-isomer selective technology on process economics and product recovery strategy is discussed. Furthermore, perspective trends in related research and development are provided. # 1999 Elsevier Science B.V. All rights reserved. Keywords: Disproportionation; Transalkylation;
    [Show full text]
  • Chapter 21 Practice Problems 1
    Chapter 21 Practice Problems 1. Name the following: A) isopropane B) methylpentane C) methylbutane D) n-pentane E) dodecane 2. Name the following: A) n-heptane B) 2-methyl-2-ethylbutane C) 3,3-dimethylpentane D) 2,2-diethylpropane 3. Name the following: A) 2,4-diethylpentane B) 3,5-dimethylheptane C) secondary ethylpentane D) 2,3-dimethyl-2,3-diethylpropane E) none of these 4. In lecture, a professor named a molecule 2-ethyl-4-tert-butylpentane. A student pointed out that the name was incorrect. What is the correct systematic name for the molecule? A) 2-t-butyl-5-methylhexane B) 2-ethyl-4,5,5-trimethylhexane C) 3,5,6,6-tetramethylheptane D) 2,2,3,5-tetramethylheptane E) undecane 5. Structural isomers have A) different molecular formulas and different structures. B) different molecular formulas but the same structure. C) the same molecular formula and the same structure. D) the same molecular formula but different structures. E) none of these 6. How many structural isomers does propane have? A) 3 B) 2 C) 1 D) 5 E) 4 7. The product of ethane undergoing dehydrogenation is called A) propene. B) methene. C) ethene. D) propane. E) none of these 8. Which of the following, upon reacting with oxygen, would form the greatest amount of carbon dioxide? A) n-pentane B) isopentane C) neopentane D) Two of these would form equal amounts. E) All of these would form equal amounts. 9. Which of the following has the lowest boiling point? A) methane B) butane C) ethane D) propane E) All of these have the same boiling point.
    [Show full text]
  • Δ13c of Aromatic Compounds in Sediments, Oils And
    1 δ13C of aromatic compounds in sediments, oils and 2 atmospheric emissions: a review 3 Alex I. Holman a, Kliti Grice a* 4 5 a Western Australia Organic and Isotope Geochemistry Centre, The Institute for 6 Geoscience Research, School of Earth and Planetary Sciences, Curtin University, 7 GPO Box U1987, Perth, WA 6845, Australia 8 9 * Corresponding author 10 Alex Holman: Tel.: +61(0) 8 9266 9723. E-mail address: [email protected] 11 Kliti Grice: Tel.: +61(0) 8 9266 2474. E-mail address: [email protected] 12 13 14 15 16 17 18 19 Abstract 20 This review discusses major applications of stable carbon isotopic 21 measurements of aromatic compounds, along with some specific technical aspects 22 including purification of aromatic fractions for baseline separation. δ13C 23 measurements of organic matter (OM) in sediments and oils are routine in all 24 fields of organic geochemistry, but they are predominantly done on saturated 25 compounds. Aromatic compounds are important contributors to sedimentary 26 organic matter, and provide indication of diagenetic processes, OM source, and 27 thermal maturity. Studies have found evidence for a small 13C-enrichment during 28 diagenetic aromatisation of approximately 1 to 2 ‰, but the formation of polycyclic 29 aromatic hydrocarbons (PAHs) from combustion and hydrothermal processes 30 seems to produce no effect. Likewise, maturation and biodegradation also produce 31 only small isotopic effects. An early application of δ13C of aromatic compounds was 32 in the classification of oil families by source. Bulk measurements have had some 33 success in differentiating marine and terrigenous oils, but were not accurate in all 34 settings.
    [Show full text]
  • Effects of Sulfide Minerals on Aromatic Maturity Parameters
    Organic Geochemistry 76 (2014) 270–277 Contents lists available at ScienceDirect Organic Geochemistry journal homepage: www.elsevier.com/locate/orggeochem Effects of sulfide minerals on aromatic maturity parameters: Laboratory investigation using micro-scale sealed vessel pyrolysis ⇑ ⇑ Alex I. Holman a, , Paul F. Greenwood a,b,c, Jochen J. Brocks d, Kliti Grice a, a Western Australia Organic and Isotope Geochemistry Centre, Department of Chemistry, The Institute for Geoscience Research, Curtin University, GPO Box U1987, Perth, WA 6845, Australia b Centre for Exploration Targeting, University of Western Australia, Crawley, WA 6009, Australia c WA Biogeochemistry Centre, University of Western Australia, Crawley, WA 6009, Australia d Research School of Earth Sciences, The Australian National University, Canberra, ACT 0200, Australia article info abstract Article history: Sedimentary organic matter from the Here’s Your Chance (HYC) Pb–Zn–Ag deposit (McArthur Basin, Received 19 December 2013 Northern Territory, Australia) displays increased thermal maturity compared to nearby non-mineralised Received in revised form 28 August 2014 sediments. Micro-scale sealed vessel pyrolysis (MSSVpy) of an immature, organic rich sediment from the Accepted 2 September 2014 host Barney Creek Formation (BCF) was used to simulate the thermal maturation of OM from the HYC Available online 16 September 2014 deposit, and to assess the effect of sulfide minerals on organic maturation processes. MSSVpy at increas- ing temperatures (300, 330 and 360 °C) resulted in increased methylphenanthrene maturity ratios which Keywords: were within the range reported for bitumen extracted from HYC sediments. The methylphenanthrene Micro-scale sealed vessel pyrolysis index ratio from MSSVpy of the BCF sample was lower than in HYC, due to a reduced proportion of meth- Polycyclic aromatic hydrocarbon Thermal maturity ylated phenanthrenes.
    [Show full text]
  • Alkyne Metathesis Catalysts: Scope and Future André Mortreux, Olivier Coutelier
    Alkyne Metathesis Catalysts: Scope And Future André Mortreux, Olivier Coutelier To cite this version: André Mortreux, Olivier Coutelier. Alkyne Metathesis Catalysts: Scope And Future. Journal of Molecular Catalysis A: Chemical, Elsevier, 2006, 254, pp.96-104. 10.1016/j.molcata.2006.03.054. hal-00107451 HAL Id: hal-00107451 https://hal.archives-ouvertes.fr/hal-00107451 Submitted on 18 Oct 2006 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ALKYNE METATHESIS CATALYSTS: SCOPE AND FUTURE. André Mortreux*, Olivier Coutelier Laboratoire de Catalyse de Lille UMR 8010 CNRS USTL-ENSCL, BP 90108, 59652 Villeneuve d’Ascq Cedex France Corresponding author.Tel +33320434993 ;Fax+33320434486 E-mail adress: [email protected] ABSTRACT This paper presents the evolution of alkyne metathesis since the early discoveries, essentially from the catalyst point of view. It is shown that although well defined carbynes may be useful for this reaction, further work has been made, aimed at the synthesis of new catalysts or catalytic systems, based on molybdenum precursors , associated or not with phenolic co- catalysts. The major objectives have been to obtain more functional groups tolerants catalysts, for their application in organic synthesis, including RCM for further stereoselective hydrogenation of the triple bond in the cycle, as well as for polymerization of aromatic diynes.
    [Show full text]
  • Gas Phase Alkylation-Liquid Phase Transalkylation Process
    ~™ IIINMNNIIMIIIINIIINNII (19) J European Patent Office Office europeen des brevets (11) EP 0 879 809 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) |nt. CI.6: C07C 15/073, C07C 2/66 25.11.1998 Bulletin 1998/48 //B01J29/035 (21) Application number: 98109045.9 (22) Date of filing: 19.05.1998 (84) Designated Contracting States: • Merrill, James T. AT BE CH CY DE DK ES Fl FR GB GR IE IT LI LU Katy, Texas 77449 (US) MCNLPTSE • Butler, James R. Designated Extension States: Houston, Texas 77059 (US) AL LT LV MK RO SI (74) Representative: (30) Priority: 21.05.1997 US 861206 Leyder, Francis et al c/o Fina Research S.A. (71) Applicant: FINA TECHNOLOGY, INC. Dept. Brevets Dallas, Texas 75206 (US) Zone Industrielle C 7181 Seneffe (Feluy) (BE) (72) Inventors: • Ghosh, Ashim Kumar Houston, Texas 77059 (US) (54) Gas phase alkylation-liquid phase transalkylation process (57) Process for the production of ethylbenzene by aromatic fraction is subject to disproportionation to pro- alkylation over a silicalite alkylation catalyst with the vide a reduced diethylbenzene content and an subsequent transalkylation of diethylbenzene with the enhanced ethylbenzene content. A specific monoclinic alkylation catalyst and conditions selected to retard silicalite alkylation catalyst has a silica/alumina ratio of xylene production and also heavies production. A feed- at least 300 and has a crystal size of less than one stock containing benzene and ethylene is applied to a micron. multi-stage alkylation reaction zone having a plurality of series-connected catalyst beds containing a pentasil molecular sieve alkylation catalyst which is silicalite of a predominantly monoclinic symmetry having a silica/alu- mina ratio of at least 275.
    [Show full text]
  • Monitoring the Structure–Reactivity Relationship in Epoxidized Perilla and Safflower Oil Thermosetting Resins
    Monitoring the structure–reactivity relationship in epoxidized perilla and safflower oil thermosetting resins Thi-Nguyet Tran, Chiara Di Mauro, Alain Graillot, Alice Mija To cite this version: Thi-Nguyet Tran, Chiara Di Mauro, Alain Graillot, Alice Mija. Monitoring the structure–reactivity relationship in epoxidized perilla and safflower oil thermosetting resins. Polymer Chemistry, Royal Society of Chemistry - RSC, 2020, 11 (31), pp.5088-5097. 10.1039/D0PY00688B. hal-02902528v2 HAL Id: hal-02902528 https://hal.archives-ouvertes.fr/hal-02902528v2 Submitted on 27 Jan 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Polymer Chemistry PAPER Monitoring the structure–reactivity relationship in epoxidized perilla and safflower oil thermosetting Cite this: Polym. Chem., 2020, 11, 5088 resins† Thi-Nguyet Tran,a Chiara Di Mauro,a Alain Graillot b and Alice Mija *a For the first time, the effect of reactant structure, stoichiometry and heating rate on the reactivity of epox- idized perilla oil (EPLO) and epoxidized safflower oil (ESFO) with dicarboxylic acids (DCAs) was studied using in situ FT-IR. The epoxy content in the monomer structure was found to affect the copolymeriza- tion system’s reactivity, with epoxidized linseed oil (ELO) considered as a reference.
    [Show full text]
  • 1,2,4-Trimethylbenzene Transformation Reaction Compared with Its Transalkylation Reaction with Toluene Over USY-Zeolite Catalyst
    1,2,4-Trimethylbenzene Transformation Reaction Compared with its Transalkylation Reaction with Toluene over USY-Zeolite Catalyst Sulaiman Al-Khattaf*, Nasir M. Tukur, and Adnan Al-Amer Chemical Engineering Department, King Fahd University of Petroleum & Minerals Dhahran 31261, Saudi Arabia Abstract 1,2,4-Trimethyl benzene (TMB) transalkylation with toluene has been studied over USY-zeolite type catalyst using a riser simulator that mimics the operation of a fluidized-bed reactor. 50:50 wt% reaction mixtures of TMB and toluene were used for the transalkylation reaction. The range of temperature investigated was 400-500 oC and time on stream ranging from 3 to 15 seconds. The effect of reaction conditions on the variation of p-xylene to o-xylene products ratio (P/O), distribution of trimethylbenzene (TMB) isomers (1,3,5-to-1,2,3-) and values of xylene/tetramethylbenzenes (X/TeMB) ratios are reported. Comparisons are made between the results of the transalkylation reaction with the results of pure 1,2,4-TMB and toluene reactions earlier reported. Toluene that was found almost inactive, became reactive upon blending with 1,2,4-TMB. This shows that toluene would rather accept a methyl group to transform to xylene than to loose a methyl group to form benzene under the present experimental condition with pressures around ambient. The experimental results were modeled using quasi-steady state approximation. Kinetic parameters for the 1,2,4-TMB disappearance during the transalkylation reaction, and in its conversion into isomerization and disproportionation products were calculated using the catalyst activity decay function based on time on stream (TOS).
    [Show full text]
  • United States Patent [19] [11] Patent Number: 6,147,270 Pazzucconi Et Al
    US006147270A United States Patent [19] [11] Patent Number: 6,147,270 Pazzucconi et al. [45] Date of Patent: Nov. 14, 2000 [54] PROCESS FOR THE PREPARATION OF 5,670,704 9/1997 Hagen et al. ......................... .. 585/471 2,6-DIMETHYLNAPHTHALENE USING A 5,672,799 9/1997 Perego et al. ......................... .. 585/467 MTW ZEOLITIC CATALYST FOREIGN PATENT DOCUMENTS [75] Inventors: Giannino Pazzucconi, Broni; Carlo 2 246 788 2/1992 United Kingdom . Perego, Carnate; Roberto Millini, WO 90/03960 4/1990 WIPO. Cerro al Lambro; Francesco Frigerio, OTHER PUBLICATIONS Torre d’lsola; Riccardo Mansani, Sassari; Daniele Rancati, Porto Torres, “MTW”; internet search record, Dec. 1999. all of Italy Primary Examiner—Marian C. Knode [73] Assignee: Enichem S.p.A., S. Donato Milanese, Assistant Examiner—Thuan D. Dang Italy Attorney, Agent, or Firm—Oblon, Spivak, McClelland, Maier & Neustadt, PC. [21] Appl. No.: 09/281,961 [57] ABSTRACT [22] Filed: Mar. 31, 1999 A highly selective process is described for preparing 2,6 dimethylnaphthalene Which comprises reacting a naphtha [30] Foreign Application Priority Data lene hydrocarbon selected from naphthalene, Apr. 17, 1998 [IT] Italy ............................... .. MI98A0809 methylnaphthalenes, dimethylnaphthalenes, trimethylnaphthalenes, polymethylnaphthalenes or their [51] Int. Cl.7 ................................................... .. C07C 15/12 mixtures With one or more benzene hydrocarbons selected [52] US. Cl. ........................................... .. 585/475; 585/471 from benzene, toluene, Xylenes, trimethylbenZenes, [58] Field of Search ................................... .. 585/475, 471, tetramethylbenZenes, pentamethylbenZene and/or 585/470 heXamethylbenZene, under at least partially liquid phase conditions, in the presence of a Zeolite belonging to the [56] References Cited structural type MTW and optionally in the presence of a U.S.
    [Show full text]
  • Disproportionation of 1,2,4-Trimethylbenzene Over Zeolite NU-87
    Korean J. Chem. Eng., 17(2), 198-204 (2000) Disproportionation of 1,2,4-Trimethylbenzene over Zeolite NU-87 Se-Ho Park, Jong-Hyung Lee and Hyun-Ku Rhee† School of Chemical Engineering and Institute of Chemical Processes, Seoul National University, Kwanak-ku, Seoul 151-742, Korea (Received 27 September 1999 • accepted 30 December 1999) Abstract−The catalytic properties of zeolite NU-87 were investigated with respect to the disproportionation of 1, 2,4-trimethylbenzene and the results were compared to those obtained over H-beta and H-mordenite with 12-mem- bered ring channel system. In the conversion of 1,2,4-trimethylbenzene, the disproportionation to xylene and tetra- methylbenzene is preferred to the isomerization into 1,2,3- and 1,3,5-isomers over all the three zeolites, but this trend is much more pronounced over HNU-87 owing to its peculiar pore structure. Disproportionation reaction is found to proceed within the micropores of HNU-87, whereas isomerization occurs mainly on the external surface. The high selectivity to disproportionation gives more xylenes and tetramethylbenzenes over HNU-87. The detailed descrip- tions for the product distribution are also reported. Key words: NU-87, 1,2,4-Trimethylbenzene, Disproportionation, Isomerization INTRODUCTION EXPERIMENTAL Disproportionation of trimethylbenzene (TMB) to xylene and 1. Catalysts Preparation = tetramethylbenzene (TeMB) is an important process for the indus- H-mordenite (Engelhard, SiO2/Al2O3 45) and H-beta (PQ Corp., = try, mainly due to the increasing demand for p-xylene to be used SiO2/Al2O3 22) used in this study were taken from commercial for the production of polyester resins.
    [Show full text]
  • Journal of Catalysis 281 (2011) 21–29
    Journal of Catalysis 281 (2011) 21–29 Contents lists available at ScienceDirect Journal of Catalysis journal homepage: www.elsevier.com/locate/jcat Bifunctional transalkylation and hydrodeoxygenation of anisole over a Pt/HBeta catalyst ⇑ Xinli Zhu, Lance L. Lobban, Richard G. Mallinson, Daniel E. Resasco Center for Biomass Refining, School of Chemical, Biological, and Materials Engineering, The University of Oklahoma, Norman, OK 73019, USA article info abstract Article history: The catalytic conversion of anisole (methoxybenzene), a phenolic model compound representing a ther- Received 1 December 2010 mal conversion product of biomass lignin, to gasoline-range molecules has been investigated over a Revised 20 March 2011 bifunctional Pt/HBeta catalyst at 400 °C and atmospheric pressure. The product distribution obtained Accepted 30 March 2011 on the bifunctional catalyst was compared with those obtained on monofunctional catalysts (HBeta Available online 19 May 2011 and Pt/SiO2). This comparison indicates that the acidic function (HBeta) catalyzes the methyl transfer reaction (transalkylation) from methoxyl to the phenolic ring, yielding phenol, cresols, and xylenols as Keywords: the major products. The metal function catalyzes demethylation, hydrodeoxygenation, and hydrogena- Bifunctional hydrodeoxygenation tion in sequence, resulting in phenol, benzene, and cyclohexane. On the bifunctional catalyst, both methyl Phenolic compound Pt/HBeta transfer and hydrodeoxygenation are achieved at significantly higher rates than over the monofunctional Anisole catalysts, leading to the formation of benzene, toluene, and xylenes with lower hydrogen consumption Lignin and a significant reduction in carbon losses, in comparison with the metal function alone. In addition, Hydrogenation on the bifunctional Pt/HBeta, the rate of deactivation and coke deposition are moderately reduced.
    [Show full text]