Reactor Modeling and Process Analysis for Partial Oxidation of Natural Gas
Total Page:16
File Type:pdf, Size:1020Kb
Reactor Modeling and Process Analysis for Partial Oxidation of Natural Gas Bogdan Albrecht This research has been supported by PiT, the Twente Research School for Process Technology and Senter, an Agency of the Dutch Ministry of Economic Affairs. Composition of the Graduation Committee: Chairman: Prof.dr.ir. H.J. Grootenboer Univ. Twente, CTW Secretary: Prof.dr.ir. H.J. Grootenboer Univ. Twente, CTW Promoter: Prof.dr.ir. Th.H. van der Meer Univ. Twente, CTW Assistant Promotor: Dr.ir. J.B.W. Kok Univ. Twente, CTW Members: Prof.dr.ir. J.A.M. Kuipers Univ. Twente, TNW Prof.dr.ir. M. Wolters Univ. Twente, CTW Prof.dr. D.J.E.M. Roekaerts TU Delft Prof.ir. J.P. van Buijtenen TU Delft Prof.dr.ir. L.P.H. de Goey TU Eindhoven Prof.dr. H.B. Levinsky RU Groningen Title: Reactor Modeling and Process Analysis for Partial Oxidation of Natural Gas Author: Bogdan Albrecht ISBN: 90-365-2100-9 Printed by Febodruk B.V., Enschede, The Netherlands, 2004 © Bogdan Albrecht, Enschede, The Netherlands, 2004 REACTOR MODELING AND PROCESS ANALYSIS FOR PARTIAL OXIDATION OF NATURAL GAS DISSERTATION to obtain the doctor’s degree at the University of Twente, on the authority of the rector magnificus, prof.dr. F.A. van Vught, on account of the decision of the graduation committee, to be publicly defended on Friday 15th of October 2004 at 15.00 by Bogdan Alexandru Albrecht born on July 3rd, 1973 in Bucharest, Romania This dissertation is approved by promoter: prof.dr.ir. Th.H. van der Meer and assistant promoter: dr.ir. J.B.W. Kok To my wife Gratiela and my daughter Ana Contents 1 Introduction 1 1.1 Background of the research .............................................................................. 1 1.2 Synthesis gas production................................................................................... 3 1.3 Scope of the thesis ............................................................................................ 6 1.4 Outline of the thesis .......................................................................................... 7 2 Partial oxidation gas turbine plant 9 2.1 Introduction....................................................................................................... 9 2.2 Operation of the partial oxidation gas turbine plant ....................................... 11 2.3 Exergy analysis of the partial oxidation gas turbine plant.............................. 12 2.3.1 Exergy analysis method....................................................................... 12 2.3.2 Case study............................................................................................ 14 2.3.3 Results.................................................................................................. 15 2.4 Conclusions..................................................................................................... 18 3 Simplified models for the partial oxidation reactor 19 3.1 Introduction..................................................................................................... 19 3.2 PREMIX simulations...................................................................................... 21 3.2.1 Methane flammability limits................................................................ 21 3.2.2 Freely propagating flames ................................................................... 22 3.3 PSR simulations .............................................................................................. 26 3.3.1 Residence time effect........................................................................... 27 3.3.2 Pressure effect...................................................................................... 29 3.4 Conclusions..................................................................................................... 32 4 A model for turbulent rich combustion applied on the partial oxidation of natural gas 35 4.1 Introduction..................................................................................................... 35 4.2 Structure of the combustion model................................................................. 36 4.3 Gas phase model ............................................................................................. 37 4.3.1 Enthalpy loss variable.......................................................................... 37 4.3.2 Reaction progress variable................................................................... 39 4.3.3 Thermo-chemical database .................................................................. 40 viii Contents 5 Soot 47 5.1 Soot formation and modeling.......................................................................... 47 5.1.1 Soot formation in flames...................................................................... 47 5.1.2 Mechanism of soot formation.............................................................. 47 5.1.3 Soot modeling ...................................................................................... 48 5.2 Soot model for the partial oxidation of natural gas ........................................ 48 5.2.1 Nucleation............................................................................................ 49 5.2.2 Surface growth..................................................................................... 50 5.2.3 Particle agglomeration ......................................................................... 51 5.2.4 Oxidation.............................................................................................. 52 5.2.5 Source terms of soot parameters transport equations .......................... 53 5.2.6 Turbulent transport equations for soot parameters .............................. 54 6 Simulations of the partial oxidation of natural gas with the turbulent rich combustion model 57 6.1 Introduction..................................................................................................... 57 6.2 Summary of transport equations ..................................................................... 57 6.3 Thermo-chemical databases............................................................................ 61 6.4 Modeling domains and boundary conditions.................................................. 62 6.5 Results............................................................................................................. 67 6.5.1 Effect of reactor diameter .................................................................... 67 6.5.2 Effect of methane and oxygen concentrations in the mixture ............. 75 6.6 Combustion regimes ....................................................................................... 79 6.7 Conclusions..................................................................................................... 83 7 Conclusions and recommendations 85 7.1 Conclusions..................................................................................................... 85 7.2 Recommendations for future research ............................................................ 87 Nomenclature 89 A Chemical exergy of hydrogen and carbon monoxide 95 B Detailed results of the exergy analysis of the partial oxidation gas turbine plant 97 C PREMIX and PSR codes 101 C.1 PREMIX code............................................................................................... 101 C.2 PSR code....................................................................................................... 102 D Mathematical description of chemically reacting flows 105 D.1 Introduction................................................................................................... 105 D.2 Governing equations for laminar reacting flows .......................................... 105 D.3 Turbulent reactive flows ............................................................................... 109 ix E Evaluation of predicted soot parameters and oxidation rates 113 References 115 Summary 119 Samenvatting 121 Curriculum Vitae 123 Acknowledgments 125 x Contents Chapter 1 Introduction Abstract In this chapter, the topic of the research - partial oxidation of natural gas - is introduced. The background of the investigation is discussed. The applications of the syngas, the product of the partial oxidation process, are reviewed. The state-of-the-art partial oxidation technology is presented. The existing syngas production methods are described and compared. The novel partial oxidation process proposed by the present work is put forward. The objectives and approach of the research are shown. The outline of the thesis is given. 1.1 Background of the research This thesis refers to the partial oxidation of natural gas for syngas production. Partial oxidation is a process in which the quantity of oxidizer is less than that stoichiometric requested for the complete combustion of a hydrocarbon fuel. The product of the partial oxidation process is called synthesis gas or syngas and consists of a gas mixture composed primarily of hydrogen and carbon monoxide. Such mixtures represent the intermediary step from hydrocarbons to bulk chemicals (methanol, DME, ammonia, acetic acid, oxo-alcohols, isocyanates) and synthetic fuels (synthetic Diesel) [13]. Methanol, CH3OH, is one of the most important chemical raw materials. In 1993 the world wide production capacity was 22.4⋅106 t. Approximately 70 % of the methanol produced is used in chemical syntheses of, in order of importance, formaldehyde, methyl tert-butyl ether (MTBE), acetic acid and other chemicals. About 15 % of the methanol produced is utilized in the fuel