The Path to High-Energy Electron-Positron Colliders: from Widerøe’S Betatron to Touschek’S Ada and to LEP
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Computer-Assisted Composition a Short Historical Review
MUMT 303 New Media Production II Charalampos Saitis Winter 2010 Computer-Assisted Composition A short historical review Computer-assisted composition is considered amongst the major musical developments that characterized the twentieth century. The quest for ‘new music’ started with Erik Satie and the early electronic instruments (Telharmonium, Theremin), explored the use of electricity, moved into the magnetic tape recording (Stockhausen, Varese, Cage), and soon arrived to the computer era. Computers, science, and technology promised new perspectives into sound, music, and composition. In this context computer-assisted composition soon became a creative challenge – if not necessity. After all, composers were the first artists to make substantive use of computers. The first traces of computer-assisted composition are found in the Bells Labs, in the U.S.A, at the late 50s. It was Max Matthews, an engineer there, who saw the possibilities of computer music while experimenting on digital transmission of telephone calls. In 1957, the first ever computer programme to create sounds was built. It was named Music I. Of course, this first attempt had many problems, e.g. it was monophonic and had no attack or decay. Max Matthews went on improving the programme, introducing a series of programmes named Music II, Music III, and so on until Music V. The idea of unit generators that could be put together to from bigger blocks was introduced in Music III. Meanwhile, Lejaren Hiller was creating the first ever computer-composed musical work: The Illiac Suit for String Quartet. This marked also a first attempt towards algorithmic composition. A binary code was processed in the Illiac Computer at the University of Illinois, producing the very first computer algorithmic composition. -
The Charm of Theoretical Physics (1958– 1993)?
Eur. Phys. J. H 42, 611{661 (2017) DOI: 10.1140/epjh/e2017-80040-9 THE EUROPEAN PHYSICAL JOURNAL H Oral history interview The Charm of Theoretical Physics (1958{ 1993)? Luciano Maiani1 and Luisa Bonolis2,a 1 Dipartimento di Fisica and INFN, Piazzale A. Moro 5, 00185 Rome, Italy 2 Max Planck Institute for the History of Science, Boltzmannstraße 22, 14195 Berlin, Germany Received 10 July 2017 / Received in final form 7 August 2017 Published online 4 December 2017 c The Author(s) 2017. This article is published with open access at Springerlink.com Abstract. Personal recollections on theoretical particle physics in the years when the Standard Theory was formed. In the background, the remarkable development of Italian theoretical physics in the second part of the last century, with great personalities like Bruno Touschek, Raoul Gatto, Nicola Cabibbo and their schools. 1 Apprenticeship L. B. How did your interest in physics arise? You enrolled in the late 1950s, when the period of post-war reconstruction of physics in Europe was coming to an end, and Italy was entering into a phase of great expansion. Those were very exciting years. It was the beginning of the space era. L. M. The beginning of the space era certainly had a strong influence on many people, absolutely. The landing on the moon in 1969 was for sure unforgettable, but at that time I was already working in Physics and about to get married. My interest in physics started well before. The real beginning was around 1955. Most important for me was astronomy. It is not surprising that astronomy marked for many people the beginning of their interest in science. -
F. Richard Moore, Dreams of Computer Music: Then And
Dreams of Computer Music: Then and Now Author(s): F. Richard Moore Source: Computer Music Journal, Vol. 20, No. 1 (Spring, 1996), pp. 25-41 Published by: The MIT Press Stable URL: http://www.jstor.org/stable/3681267 Accessed: 28/01/2010 22:31 Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=mitpress. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. The MIT Press is collaborating with JSTOR to digitize, preserve and extend access to Computer Music Journal. http://www.jstor.org F.Richard Moore of Department of Music, and Center for Research Dreams Computer in Computing and the Arts University of California, San Diego Music-Then and Now La Jolla, California 92093-0037, USA [email protected] Computer music was first created nearly 40 years observations, first published in 1514, that led him ago in universities and research laboratoriesby to suggest that the earth revolves around the sun people dreaming of magical instruments for music. -
Maurice Fleuret Une Politique Démocratique De La Musique
Annexe 3 sont les seuls à échapper à la délinquance juvénile). À l’heure où la société est légitimement sollicitée de protéger toujours mieux l’individu dans son quotidien, la création artistique reste le seul domaine où, sans mettre en péril la perpétuation et le développement de la communauté, chacun peut prendre les risques fondamentaux, nécessaires à sa conscience et à son existence. Cependant, outre l’accomplissement indi- viduel qu’entraîne le fait de s’investir dans l’acte de création, de se pro- jeter dans l’objet créé et d’y risquer beaucoup, il y a là le facteur le plus dynamique du développement de la communication, puisque chacun crée pour l’autre, et donc de formation de la conscience collective indispen- sable à l’évolution de la société ; échangeant plus et, ainsi, se connais- sant mieux, le groupe est mieux à même de choisir son destin et de mesu- rer les conséquences de sa décision. À l’heure du bilan, il écrit : « La vie musicale en France : une révolution culturelle ?* » Les Italiens chantent Verdi dans la rue, les Anglais vont au concert comme ils iraient au cinéma, les Allemands font de la pratique chorale le ciment de la société, et les Autrichiens célèbrent la musique savante comme fondement de la civilisation. Dans le concert européen des nations musicales, la France reste absente : depuis au moins Lully, il est admis que le Français n’est pas musicien, même pas mélomane, et qu’il faut, pour se consoler, s’en tenir ici à quelques grands noms qui font exception mais confirment la règle. -
Luisa Bonolis 2
LuisaM<html><head></head><body><pre Bonolis style="word-wrap:Address: Via Cavalese break-word; 13, 00135 Rome white-space: pre-wrap;"> Address: Koserstraße 23, 14195 Berlin </pre></body></html>Curriculum Vitae Email: [email protected] Email: [email protected] www: https://www.luisabonolis.it/ 12 January 2015 www: https://www.mpiwg-berlin.mpg.de/users/lbonolis Education and Qualifications 1993 Master Degree in Physics, Rome University Sapienza 1994 Post graduate specialization diploma in Physics, Sapienza University, Rome, Italy 2006 Ph.D. Scholarship, History of Sciences, Seminario di Storia della Scienza, Bari University, Italy 2009 Ph.D. in History of Science (with distinction). Title of dissertation: Bruno Rossi and Cosmic Rays: From Earth Laboratories to Physics in Space 2018 National Scientific Habilitation in History of Physics for the role of Associate Professor from the Italian Ministry of Education, University and Research Language Skills Italian: Mother tongue English: Fluent German: Working knowledge French: Proficient Spanish: Working knowledge Professional and research experience 1993–1995 Editor for book publishers Shakespeare & Company Futura, Florence. 1996–2002 Collaboration with the Society for Oral History on a project funded by the National Re- search Council regarding the realization of a series of oral history interviews to leading figures of the 20th century Italian physics to be preserved at the National State Archive. 1996–2003 Scientific Consultant and collaborator at Quadrofilm Company for the realization of a series of documentaries on the history of science, produced for RAI Italian Television (See Docufilms & Television Series). 2000–2002 Contract with the Physics Department of Rome University La Sapienza and the Ro- me branch of the National Institute for Nuclear Physics: research activities and collaboration with the National Committee and with the executive Council for the celebrations of Enrico Fermi’s birth centennial. -
La Nascita Degli Anelli Di Accumulazione Per Elettroni E Positroni
LA NASCITA DEGLI ANELLI DI ACCUMULAZIONE PER ELETTRONI E POSITRONI CARLO BERNARDINI Dipartimento di Fisica, Universita La Sapienza, Roma Nell'ormai lontano 1958, i Laboratori di Frascati stavano per mettere in funzione, sia pure in una versione più moderna e potente, quell'acceleratore di particelle che il gruppo romano di via Panisperna aveva a lungo vagheggiato1 prima di disperdersi nel mondo. In realtà, il più forte promotore dell'elettrosincrotrone da 1.100 MeV era stato l'ex fiorentino Gilberto Bernardini, successivamente chiamato a Roma che, con Edoardo Amaldi e i colleghi del neonato INFN (Antonio Rostagni, Piero Caldirola e Gleb Wataghin), appoggiandosi al CNRN di Felice Ippolito, avevano investito l'allora giovanissimo Giorgio Salvini della direzione dei laboratori; e Salvini l'aveva assunta circondandosi di neolaureati ventenni. L'INFN aveva coordinato egregiamente la preparazione degli apparati sperimentali che sarebbero andati sui fasci (di gamma di bremsstrahlung) della macchina, prevaletemente per esperienze di fotoproduzione :finalmente l’affrancamento da raggi cosmici, banco di formazione dei fisici italiani delle particelle elementari. Mentre queste attività di "ordinaria ricerca programmata" andavano avanti, la temperatura intellettuale dei laboratori veniva però mantenuta alta dal bombardamento delle novità che proveniva senza sosta da tutti i laboratori attivi, particolarmente da quelli americani: voglio ricordare l'antiprotone, la fisica dei K, il fattore di forma del protone e la non- conservazione della parità; ma anche l'invenzione del focheggiamento forte nelle macchine circolari e l'idea delle collisioni fascio-fascio. C'erano molti risultati sperimentali e molte idee relative a strumenti, mentre la fisica teorica sembrava un po' impantanata in rappresentazioni fenomenologiche non molto produttive o in rappresentazioni troppo generali per produrre risultati confrontabili con gli esperimenti. -
Bruno Touschek in Germany After the War: 1945-46
LABORATORI NAZIONALI DI FRASCATI INFN–19-17/LNF October 10, 2019 MIT-CTP/5150 Bruno Touschek in Germany after the War: 1945-46 Luisa Bonolis1, Giulia Pancheri2;† 1)Max Planck Institute for the History of Science, Boltzmannstraße 22, 14195 Berlin, Germany 2)INFN, Laboratori Nazionali di Frascati, P.O. Box 13, I-00044 Frascati, Italy Abstract Bruno Touschek was an Austrian born theoretical physicist, who proposed and built the first electron-positron collider in 1960 in the Frascati National Laboratories in Italy. In this note we reconstruct a crucial period of Bruno Touschek’s life so far scarcely explored, which runs from Summer 1945 to the end of 1946. We shall describe his university studies in Gottingen,¨ placing them in the context of the reconstruction of German science after 1945. The influence of Werner Heisenberg and other prominent German physicists will be highlighted. In parallel, we shall show how the decisions of the Allied powers, towards restructuring science and technology in the UK after the war effort, determined Touschek’s move to the University of Glasgow in 1947. Make it a story of distances and starlight Robert Penn Warren, 1905-1989, c 1985 Robert Penn Warren arXiv:1910.09075v1 [physics.hist-ph] 20 Oct 2019 e-mail: [email protected], [email protected]. Authors’ ordering in this and related works alternates to reflect that this work is part of a joint collaboration project with no principal author. †) Also at Center for Theoretical Physics, Massachusetts Institute of Technology, USA. Contents 1 Introduction2 2 Hamburg 1945: from death rays to post-war science4 3 German science and the mission of the T-force6 3.1 Operation Epsilon . -
Bruno Touschek, from Betatrons to Electron-Positron Colliders
Preprint of an invited article submitted for publication in Reviews of Accelerator Science and Technology, Vol. 8. http://www.worldscientific.com/worldscinet/rast c 2015 by World Scientific Publishing Company Bruno Touschek, from Betatrons to Electron-positron Colliders Carlo Bernardini∗ Physics Department, University of Rome Sapienza Rome, 00185, Italy Giulia Pancheriy INFN Frascati National Laboratory, Via E. Fermi 40 Frascati, I00044, Italy Claudio Pellegriniz Department of Physics and Astronomy, University of California at Los Angeles, Los Angeles, California 90095 SLAC National Accelerator Laboratory, Menlo Park, California, 94025 Bruno Touschek's life as a physicist spanned the period from World War II to the 1970s. He was a key figure in the developments of electron-positron colliders, storage rings, and gave important contributions to theoretical high energy physics. Storage rings, initially developed for high energy physics, are being widely used in many countries as synchrotron radiation sources and are a tool for research in physics, chemistry, biology environmental sciences and cultural heritage studies. We describe Touschek's life in Austria, where he was born, Germany, where he participated to the construction of a betatron during WWII, and Italy, where he proposed and led to completion the first electron-positron storage ring in 1960, in Frascati. We highlight how his central European culture influenced his life style and work, and his main contributions to physics, such as the discovery of the Touschek effect and beam instabilities in the larger storage ring ADONE. Keywords: Storage rings, colliders, electron-positron colliders, radiative corrections, electron beam instabili- ties arXiv:1510.00933v1 [physics.hist-ph] 4 Oct 2015 ∗ [email protected] y [email protected] z [email protected] 2 I. -
Arxiv:1812.11847V2 [Physics.Hist-Ph] 22 Nov 2019
LNF ISTITUTO NAZIONALE DI FISICA NUCLEARE Laboratori Nazionali di Frascati INFN-18/12/LNF December 31, 2018 Bruno Touschek with AdA in Orsay: The first direct observation of electron-positron collisions Giulia Pancheri1, Luisa Bonolis2 1)INFN, Laboratori Nazionali di Frascati, P.O. Box 13, I-00044 Frascati, Italy 2)Max Planck Institute for the History of Science, Boltzmannstraße 22, 14195 Berlin, Germany Abstract We describe how the first direct observation of electron-positron collisions took place in 1963-1964 at the Laboratoire de l’Accel´ erateur´ Lineaire´ d’Orsay, in France, with the storage ring AdA, which had been proposed and constructed in the Italian National Lab- oratories of Frascati in 1960, under the guidance of Bruno Touschek. The obstacles and successes of the two and a half years during which the feasibility of electron-positron col- liders was proved will be illustrated using archival and forgotten documents, in addition to transcripts from interviews with Carlo Bernardini, Peppino Di Giugno, Mario Fascetti, Franc¸ois Lacoste, and Jacques Ha¨ıssinski. arXiv:1812.11847v2 [physics.hist-ph] 22 Nov 2019 Drawing by Bruno Touschek (Amaldi 1981). Authors’ ordering in this and related works alternates to reflect that this work is part of a joint collaboration project with no principal author. Contents 1 Introduction1 1.1 Sources and outline . .6 2 Prequel8 2.1 Electron-positron collisions from Kiev to Rome and Frascati . 10 2.2 July 1961: a visit from Orsay . 17 3 AdA’s arrival and installation in Orsay: Summer 1962 19 3.1 First experiments: weekends and long nights or sixty hours in row . -
Computers and Music Informatique Et Musique
bulletin WEEK MONDAY 7 FEBRUARY N°6/83 SEMAINE DU LUNDI 7 FEVRIER (Photos Karl Jauch) IRCAM's 4X synthesizer, designed and developed by G. Di Giugno. Keyboard and control panel of the 4 X synthesizer. Le synthétiseur 4X de VIRC AM, conçu et mis au point par Clavier et tableau de contrôle du synthétiseur 4X. G. Di Giugno. Computers and music Informatique et musique Our Computer Seminars Service, together with the Notre service des Séminaires d'informatique, avec la col ASSPA (Association Suisse pour 1'automatisme) has laboration de l'ASSPA (Association suisse pour l'auto organized a lecture of a rather special kind which is to matisme), a prévu pour le mercredi 9 février, à 15 h dans take place on 9 February at 3 p.m. in the auditorium. The notre amphithéâtre, une conférence de caractère assez subject : a processor for real-time music synthesis. Its particulier. Sujet : un processeur pour la synthèse musi creator is Giuseppe Di Giugno, a physics professor at cale en temps réel Auteur : Giuseppe Di Giugno. Ce pro the University of Naples. He taken part in experiments at fesseur de physique à l'Université de Naples, ancien Frascati and CERN, but since 1975 has also done expérimentateur à Frascati et au CERN mais aussi cher Research at IRCAM (Institut de recherches et de coordi cheur dès 1975 à l'IRCAM (Institut de recherches et de nation acoustique et musicale, Paris) and designed and coordination acoustique et musicale, Paris), a conçu et produced the 4X synthesizer, the subject of this talk. The réalisé le synthétiseur 4X - thème de cette conférence. -
Musical Acoustics Research Library (MARL) M1711
http://oac.cdlib.org/findaid/ark:/13030/kt6h4nf6qc Online items available Guide to the records of the Musical Acoustics Research Library (MARL) M1711 Musical Acoustics Research Library (MARL) Finding aid prepared by Processed by Andrea Castillo Dept. of Special Collections & University Archives Stanford University Libraries. 557 Escondido Mall Stanford, California, 94305 Email: [email protected] August 2011 Guide to the records of the M1711 1 Musical Acoustics Research Library (MARL) M1711 Title: Musical Acoustics Research Library (MARL) Identifier/Call Number: M1711 Contributing Institution: Dept. of Special Collections & University Archives Language of Material: Multiple languages Physical Description: 59.39 Linear feet(138 manuscript boxes, 3 card boxes) Date (inclusive): 1956-2007 Abstract: The MARL collection is dedicated to the study of all aspects of musical acoustics. The collection, established in 1996, came about through the joint effort of the representatives of the Catgut Acoustical Society (CAS), founded by Carleen M. Hutchins and devoted to the study of violin making; Stanford’s Center for Computer Research in Music Acoustics (CCRMA), and Virginia Benade, the widow of the wind instrument acoustician Arthur Benade. MARL consists of the research materials from acousticians around the world who were dedicated to studying different aspects of violin making, which make up the Catgut Acoustical Society papers, and the archives of three prominent wind instrument acousticians of our time, John Backus, John W. Coltman, and especially Arthur H. Benade, which deal not only wiht wind instruments, but also room acoustics, and the interplay between acoustical physics and the mechanisms of auditory processing. The collection consists of papers, photographs, media, digital materials, wood samples, clarinet mouth pieces, and lab equipment Physical Location: Special Collections materials are stored offsite and must be paged 36 hours in advance. -
The Fourteenth Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Astrophysics
September 4, 2017 9:40 ws-procs961x669 MG-14 – Proceedings (Part D) D434 page 3378 3378 The beginning of Edoardo Amaldi’s interest in gravitation experiments and in gravitational wave detection Adele La Rana∗ TERA Foundation, Novara, Italy & Sapienza University, Rome, Italy ∗E-mail: [email protected] Luisa Bonolis Max Planck Institute for the History of Science, Berlin, Germany E-mail: [email protected] Unedited documents and letters∗ allowed to establish that Edoardo Amaldi’s first inter- ests in experiments on gravitation date back to the late 1950s, about twelve years before the beginning of the research activity in gravitational wave (GW) detection in Rome (1970). Amaldi was connected to the main protagonists of the historical phenomenon that many historians call the Renaissance of General Relativity (GR), characterised by the new attitude of the scientific world towards Einstein’s theory of gravitation, which had its start in the middle of the 1950s and which grew along the 1960s, with the birth of relativistic astrophysics†. Since the second half of the 1960s, Amaldi’s will of beginning an experimental activity for detecting gravitational radiation clearly emerges. Keywords: Gravitation; general relativity; gravitational waves; Edoardo Amaldi; Bruno Touschek; Robert Dicke; Dmitri Ivanenko; Robert Wheeler; Joseph Weber; Livio Grat- ton; Remo Ruffini. 1. Introduction: The known story In an internal note from the Institute of Physics of Rome published in 1975a, Edoardo Amaldi recounts: The idea of starting an experiment aiming to detect GW in Rome was stim- ulated by the Course on Experimental Tests of Gravitational Theories held in summer 1961 at the Scuola Internazionale E.