Calotes Versicolor)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
(Daudin, 1802) (Sauria: Agamidae) from Iran
Archive of SID Iranian Journal of Animal Biosystematics (IJAB) Vol.14, No.1, 29-35, 2018 ISSN: 1735-434X (print); 2423-4222 (online) DOI: 10.22067/ijab.v14i1.63469 Additional records and Further Data on Indian garden lizard Calotes versicolor (Daudin, 1802) (Sauria: Agamidae) from Iran Damadi, E.1, Rastegar-Pouyani, N.2, Karamiani, R.2 and Akbarpour, M.2,3 1Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Iran 2 Iranian Plateau Herpetology Research Group (IPHRG), Razi University, Kermanshah, Iran 3Department of Biology, Faculty of Science, Razi University of Kermanshah, Iran (Received: 20 April 2018; Accepted: 12 June 2018) In this study a total of four Calotes versicolor specimens (three males, one female), collected in different localities from April 2013 to March 2014 in Southeast of Iran were examined. The study was based on morphological features including color pattern, morphometric measurements, habits, biological observations especially habitat and distribution. Habits features, habitat and new distribution localities were documented. This is the first record of Calotes versicolor from the Kalesari village is 44 km away from the last record in Nahang River. Key words: Agamidae, Calotes versicolor, Distribution, Habits, Habitats, Iran. INTRODUCTION The genus Calotes Cuvier, 1817 belongs to the family Agamidae and contains at least 26 species distributed in South and Southeast Asia (Uetz & Hosek, 2016) and only one species reported from Iran (Anderson, 1999; Rastegar-Pouyani et al., 2008; Šmíd et al., 2014). Calotes versicolor (Daudin, 1802) has a wide distribution in Afghanistan, Iran, Pakistan, Nepal, Bhutan, India, Sri Lanka, Myanmar, southern China (Yunnan, Hainan Island, Hong Kong), Laos, Thailand, Vietnam, Singapore, western Malaysia, Indonesia (Sumatra) (Ananjeva et al. -
BIB 13484.Pdf
Russian Journal of Herpetology Vol. 26, No. 5, 2019, pp. 247 – 260 DOI: 10.30906/1026-2296-2019-26-5-247-260 REAPPRAISAL OF HERPETOFAUNA RECORDED FROM JAFFNA PENINSULA IN NORTHERN SRI LANKA WITH REMARKS ON CONSERVATION, DIVERSITY, AND DISTRIBUTION Majintha Madawala,1 Thilina Surasinghe,2* Anslem De Silva,3 Dinesh Gabadage,4 Madhava Botejue,4 Indika Peabotuwage,5 Dushantha Kandambi,5 and Suranjan Karunarathna5 Submitted January 11, 2017 Jaffna peninsula is quite an unexplored area of Sri Lanka’s lowland dry zone. We constructed a species checklist for all herpetofauna of this area based on a short-term field survey, a comprehensive literature review, museum specimens, and observations made by field herpetologists. Based on 200 × 10 m belt transects, we surveyed herpetofauna both during day and night time, in 10 different types of habitats. The species checklist we compiled comprised 44 species of reptiles (including three nationally threatened, one globally threatened, and eight endemic species) and 15 species of amphibians (including one nationally threatened and three endemic species). Based on published literature, museum specimens, expert opinions, and current field survey, we documented 85 species of herpetofauna in this area. Of this entire list, we were unable to record the presence of 25 species through our field survey. Our field survey documented 18 species that were not previously reported from Jaffna Peninsula. Our study revealed that inland water bodies, cultivated lands, home gardens, and coastal beaches are of high impor- tance for native herpetofauna of Jaffna peninsula. Many human disturbances, such as habitat alterations, vengeful killing, consumption overexploitation, and road mortality are the key threats encountered by herpetofauna in Jaffna. -
An Annotated Type Catalogue of the Dragon Lizards (Reptilia: Squamata: Agamidae) in the Collection of the Western Australian Museum Ryan J
RECORDS OF THE WESTERN AUSTRALIAN MUSEUM 34 115–132 (2019) DOI: 10.18195/issn.0312-3162.34(2).2019.115-132 An annotated type catalogue of the dragon lizards (Reptilia: Squamata: Agamidae) in the collection of the Western Australian Museum Ryan J. Ellis Department of Terrestrial Zoology, Western Australian Museum, Locked Bag 49, Welshpool DC, Western Australia 6986, Australia. Biologic Environmental Survey, 24–26 Wickham St, East Perth, Western Australia 6004, Australia. Email: [email protected] ABSTRACT – The Western Australian Museum holds a vast collection of specimens representing a large portion of the 106 currently recognised taxa of dragon lizards (family Agamidae) known to occur across Australia. While the museum’s collection is dominated by Western Australian species, it also contains a selection of specimens from localities in other Australian states and a small selection from outside of Australia. Currently the museum’s collection contains 18,914 agamid specimens representing 89 of the 106 currently recognised taxa from across Australia and 27 from outside of Australia. This includes 824 type specimens representing 45 currently recognised taxa and three synonymised taxa, comprising 43 holotypes, three syntypes and 779 paratypes. Of the paratypes, a total of 43 specimens have been gifted to other collections, disposed or could not be located and are considered lost. An annotated catalogue is provided for all agamid type material currently and previously maintained in the herpetological collection of the Western Australian Museum. KEYWORDS: type specimens, holotype, syntype, paratype, dragon lizard, nomenclature. INTRODUCTION Australia was named by John Edward Gray in 1825, The Agamidae, commonly referred to as dragon Clamydosaurus kingii Gray, 1825 [now Chlamydosaurus lizards, comprises over 480 taxa worldwide, occurring kingii (Gray, 1825)]. -
Cop18 Prop. 23
Original language: English CoP18 Prop. 23 CONVENTION ON INTERNATIONAL TRADE IN ENDANGERED SPECIES OF WILD FAUNA AND FLORA ____________________ Eighteenth meeting of the Conference of the Parties Colombo (Sri Lanka), 23 May – 3 June 2019 CONSIDERATION OF PROPOSALS FOR AMENDMENT OF APPENDICES I AND II A. Proposal To include Calotes nigrilabris and Calotes pethiyagodai, in Appendix I in accordance with Res. Conf. 9.24 (Rev CoP17): I. Calotes nigrilabris meets Annex 1, criterion A (i), (v) as well as criterion B (i), (iii), (iv) and C (i), as a range-restricted species with small populations, which are highly fragmented; an observed decline in both habitat and number of individuals as well as their vulnerability to intrinsic and extrinsic factors are documented. II. Calotes pethiyagodai meets Annex 1, criterion A (i), (v) and criterion B (iii), (iv): it has small populations, is limited to an area of occupancy of less than 25 km2, is seriously affected by habitat loss and highly vulnerable to intrinsic and extrinsic factors. B. Proponent Sri Lanka*: C. Supporting statement 1. Taxonomy 1.1 Class: Reptilia 1.2 Order: Squamata 1.3 Family: Agamidae Calotes nigrilabris (Peters 1860) Calotes pethiyagodai (Amarasinghe et al. 2014) 1.4 Genus, species or subspecies, including author and year: 1.5 Scientific synonyms: C. nigrilabris: Calotes (Bronchocele) nigrilabris (Peters 1860) C. nigrilabris: Calotes rouxii BLYTH (Smith 1935) 1.6 Common names: English: * The geographical designations employed in this document do not imply the expression of any opinion whatsoever on the part of the CITES Secretariat (or the United Nations Environment Programme) concerning the legal status of any country, territory, or area, or concerning the delimitation of its frontiers or boundaries. -
Environment-Dependent Variation in Gut Microbiota of an Oviparous Lizard (Calotes Versicolor)
animals Article Environment-Dependent Variation in Gut Microbiota of an Oviparous Lizard (Calotes versicolor) Lin Zhang 1,2,*,† , Fang Yang 3,†, Ning Li 4 and Buddhi Dayananda 5 1 School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China 2 State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China 3 School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China; [email protected] 4 College of Food Science, Nanjing Xiaozhuang University, Nanjing 211171, China; [email protected] 5 School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD 4072, Australia; [email protected] * Correspondence: [email protected] † These authors contributed equally to this work. Simple Summary: The different gut sections potentially provide different habitats for gut microbiota. We found that Bacteroidetes, Firmicutes, and Proteobacteria were the three primary phyla in gut micro- biota of C. versicolor. The relative abundance of dominant phyla Bacteroidetes and Firmicutes exhibited an increasing trend from the small intestine to the large intestine, and there was a higher abun- dance of genus Bacteroides (Class: Bacteroidia), Coprobacillus and Eubacterium (Class: Erysipelotrichia), Parabacteroides (Family: Porphyromonadaceae) and Ruminococcus (Family: Lachnospiraceae), and Family Odoribacteraceae and Rikenellaceae in the hindgut, and some metabolic pathways were higher in the hindgut. Our results reveal the variations of gut microbiota composition and metabolic pathways in Citation: Zhang, L.; Yang, F.; Li, N.; different parts of the lizards’ intestine. Dayananda, B. Environment- Dependent Variation in Gut Abstract: Vertebrates maintain complex symbiotic relationships with microbiota living within their Microbiota of an Oviparous Lizard gastrointestinal tracts which reflects the ecological and evolutionary relationship between hosts and (Calotes versicolor). -
The Herpetofauna of the Cubango, Cuito, and Lower Cuando River Catchments of South-Eastern Angola
Official journal website: Amphibian & Reptile Conservation amphibian-reptile-conservation.org 10(2) [Special Section]: 6–36 (e126). The herpetofauna of the Cubango, Cuito, and lower Cuando river catchments of south-eastern Angola 1,2,*Werner Conradie, 2Roger Bills, and 1,3William R. Branch 1Port Elizabeth Museum (Bayworld), P.O. Box 13147, Humewood 6013, SOUTH AFRICA 2South African Institute for Aquatic Bio- diversity, P/Bag 1015, Grahamstown 6140, SOUTH AFRICA 3Research Associate, Department of Zoology, P O Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth 6031, SOUTH AFRICA Abstract.—Angola’s herpetofauna has been neglected for many years, but recent surveys have revealed unknown diversity and a consequent increase in the number of species recorded for the country. Most historical Angola surveys focused on the north-eastern and south-western parts of the country, with the south-east, now comprising the Kuando-Kubango Province, neglected. To address this gap a series of rapid biodiversity surveys of the upper Cubango-Okavango basin were conducted from 2012‒2015. This report presents the results of these surveys, together with a herpetological checklist of current and historical records for the Angolan drainage of the Cubango, Cuito, and Cuando Rivers. In summary 111 species are known from the region, comprising 38 snakes, 32 lizards, five chelonians, a single crocodile and 34 amphibians. The Cubango is the most western catchment and has the greatest herpetofaunal diversity (54 species). This is a reflection of both its easier access, and thus greatest number of historical records, and also the greater habitat and topographical diversity associated with the rocky headwaters. -
Sri Lanka: January 2015
Tropical Birding Trip Report Sri Lanka: January 2015 A Tropical Birding CUSTOM tour SRI LANKA: Ceylon Sojourn 9th- 23rd January 2015 Tour Leaders: Sam Woods & Chaminda Dilruk SRI LANKA JUNGLEFOWL is Sri Lanka’s colorful national bird, which was ranked among the top five birds of the tour by the group. All photos in this report were taken by Sam Woods. 1 www.tropicalbirding.com +1-409-515-0514 [email protected] Page Tropical Birding Trip Report Sri Lanka: January 2015 INTRODUCTION In many ways Sri Lanka covers it all; for the serious birder, even those with experience from elsewhere in the Indian subcontinent, it offers up a healthy batch of at least 32 endemic bird species (this list continues to grow, though, so could increase further yet); for those without any previous experience of the subcontinent it offers these but, being an island of limited diversity, not the overwhelming numbers of birds, which can be intimidating for the first timer; and for those with a natural history slant that extends beyond the avian, there is plentiful other wildlife besides, to keep all happy, such as endemic monkeys, strange reptiles only found on this teardrop-shaped island, and a bounty of butterflies, which feature day-in, day-out. It should also be made clear that while it appears like a chunk of India which has dropped of the main subcontinent, to frame it, as merely an extension of India, would be a grave injustice, as Sri Lanka feels, looks, and even tastes very different. There are some cultural quirks that make India itself, sometimes challenging to visit for the westerner. -
SACON News Vol 18 1
SACON News Vol. 18 (1) January – March 2021 Institutional Events Popular Articles New Director in charge, SACON 1 Studying a Wetland: Challenges 5 and Concerns Webinar on Wetlands 1 By Mythreyi Devarajan Webinar talk at Central 2 University of Kerala on the Beginnings to Big innings 9 occasion of National Science By Gourav Sonawane Day, 2021 Birds and invasives: An 11 Webinar talk at the 3 observation on Plum-headed International Symposium Parakeet Psittacula cyanocephala “Conservation of Life Below feeding on Parthenium Water” (COLIBA-2021) By Gayathri V, Thanikodi M organized by University of Kerala Talk at an online training 3 Researchers’ Corner— programme organized by Indian Art & Conservation Institute of Soil and water conservation Freezing a few moments with my 12 gregarious mates World Water Day 2021 4 By Priyanka Bansode Research Aptitude 4 An Illustration of Agamids and 13 Development Scheme (RADS) other lizards of Kerala digitally launched at Payyannur By Ashish A P college, Kerala Cover Page Photograph Credits Front: Indian Robin Feature Article Image ©Shantanu Nagpure ©Priyanka Bansode Back: Eurasian Collared Dove ©Deepak D. SACON News Vol 18(1), 2021 From the Director’s Desk It is my pleasure to invite the readers to this issue of SACON News. While we all hoped the New Year to have given us relief from Covid-19, unfortunately it has bounced back, perhaps with vengeance restricting our regular activities. Nevertheless, we got accustomed to an extent with many ‘new normals’, and continued with our tasks, nonetheless adhering to Covid-Appropriate norms. This issue of SACON News covers major activities of the institute and interesting articles from our research scholars. -
Literature Cited in Lizards Natural History Database
Literature Cited in Lizards Natural History database Abdala, C. S., A. S. Quinteros, and R. E. Espinoza. 2008. Two new species of Liolaemus (Iguania: Liolaemidae) from the puna of northwestern Argentina. Herpetologica 64:458-471. Abdala, C. S., D. Baldo, R. A. Juárez, and R. E. Espinoza. 2016. The first parthenogenetic pleurodont Iguanian: a new all-female Liolaemus (Squamata: Liolaemidae) from western Argentina. Copeia 104:487-497. Abdala, C. S., J. C. Acosta, M. R. Cabrera, H. J. Villaviciencio, and J. Marinero. 2009. A new Andean Liolaemus of the L. montanus series (Squamata: Iguania: Liolaemidae) from western Argentina. South American Journal of Herpetology 4:91-102. Abdala, C. S., J. L. Acosta, J. C. Acosta, B. B. Alvarez, F. Arias, L. J. Avila, . S. M. Zalba. 2012. Categorización del estado de conservación de las lagartijas y anfisbenas de la República Argentina. Cuadernos de Herpetologia 26 (Suppl. 1):215-248. Abell, A. J. 1999. Male-female spacing patterns in the lizard, Sceloporus virgatus. Amphibia-Reptilia 20:185-194. Abts, M. L. 1987. Environment and variation in life history traits of the Chuckwalla, Sauromalus obesus. Ecological Monographs 57:215-232. Achaval, F., and A. Olmos. 2003. Anfibios y reptiles del Uruguay. Montevideo, Uruguay: Facultad de Ciencias. Achaval, F., and A. Olmos. 2007. Anfibio y reptiles del Uruguay, 3rd edn. Montevideo, Uruguay: Serie Fauna 1. Ackermann, T. 2006. Schreibers Glatkopfleguan Leiocephalus schreibersii. Munich, Germany: Natur und Tier. Ackley, J. W., P. J. Muelleman, R. E. Carter, R. W. Henderson, and R. Powell. 2009. A rapid assessment of herpetofaunal diversity in variously altered habitats on Dominica. -
Download Download
HAMADRYAD Vol. 27. No. 2. August, 2003 Date of issue: 31 August, 2003 ISSN 0972-205X CONTENTS T. -M. LEONG,L.L.GRISMER &MUMPUNI. Preliminary checklists of the herpetofauna of the Anambas and Natuna Islands (South China Sea) ..................................................165–174 T.-M. LEONG & C-F. LIM. The tadpole of Rana miopus Boulenger, 1918 from Peninsular Malaysia ...............175–178 N. D. RATHNAYAKE,N.D.HERATH,K.K.HEWAMATHES &S.JAYALATH. The thermal behaviour, diurnal activity pattern and body temperature of Varanus salvator in central Sri Lanka .........................179–184 B. TRIPATHY,B.PANDAV &R.C.PANIGRAHY. Hatching success and orientation in Lepidochelys olivacea (Eschscholtz, 1829) at Rushikulya Rookery, Orissa, India ......................................185–192 L. QUYET &T.ZIEGLER. First record of the Chinese crocodile lizard from outside of China: report on a population of Shinisaurus crocodilurus Ahl, 1930 from north-eastern Vietnam ..................193–199 O. S. G. PAUWELS,V.MAMONEKENE,P.DUMONT,W.R.BRANCH,M.BURGER &S.LAVOUÉ. Diet records for Crocodylus cataphractus (Reptilia: Crocodylidae) at Lake Divangui, Ogooué-Maritime Province, south-western Gabon......................................................200–204 A. M. BAUER. On the status of the name Oligodon taeniolatus (Jerdon, 1853) and its long-ignored senior synonym and secondary homonym, Oligodon taeniolatus (Daudin, 1803) ........................205–213 W. P. MCCORD,O.S.G.PAUWELS,R.BOUR,F.CHÉROT,J.IVERSON,P.C.H.PRITCHARD,K.THIRAKHUPT, W. KITIMASAK &T.BUNDHITWONGRUT. Chitra burmanica sensu Jaruthanin, 2002 (Testudines: Trionychidae): an unavailable name ............................................................214–216 V. GIRI,A.M.BAUER &N.CHATURVEDI. Notes on the distribution, natural history and variation of Hemidactylus giganteus Stoliczka, 1871 ................................................217–221 V. WALLACH. -
Zoology ABSTRACT
Research Paper Volume : 3 | Issue : 9 | September 2014 • ISSN No 2277 - 8179 New record of Roux’s Forest Lizard Calotes Zoology rouxii (Duméril & Bibron, 1837) (Reptilia: KEYWORDS : Calotes rouxii, range exten- Squamata: Agamidae) from Sandur and sion, distribution update, Karnataka Gulbarga, Karnataka, India with a note on its known distribution Biodiversity Research and Conservation Society, 303 Orchid, Sri Sai Nagar Colony, Aditya Srinivasulu Kanajiguda, Secunderabad, Telangana 500 015, India. Natural History Museum and Wildlife Biology and Taxonomy Lab, Department of Zoology, * C. Srinivasulu University College of Science, Osmania University, Hyderabad, Telangana 500 007, India. *Corresponding Author ABSTRACT Roux’s Forest Lizard Calotes rouxii (Duméril & Bibron, 1837) is chiefly a forest-dwelling draconine agamid that is widely distributed in the Western Ghats and occasionally reported from the Eastern Ghats and other localities in the central peninsular India. We report the presence of this species for the first time from Sandur forests in Bellary district, Karnataka based on a voucher specimen and from Gulbarga township based on sighting record. A detailed distribution map showing localities from where the species is known is also provided. The genus Calotes Daudin, 1802, belonging to the draconian fam- ized by the presence of a dewlap in males, two slender spines on ily Agamidae (Reptilia) is native to South Asia, South-East Asia either side of the head and a dark groove before the shoulder. and Southern China. It is represented -
Molecular Phylogenetics and Evolution 55 (2010) 153–167
Molecular Phylogenetics and Evolution 55 (2010) 153–167 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Conservation phylogenetics of helodermatid lizards using multiple molecular markers and a supertree approach Michael E. Douglas a,*, Marlis R. Douglas a, Gordon W. Schuett b, Daniel D. Beck c, Brian K. Sullivan d a Illinois Natural History Survey, Institute for Natural Resource Sustainability, University of Illinois, Champaign, IL 61820, USA b Department of Biology and Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30303-3088, USA c Department of Biological Sciences, Central Washington University, Ellensburg, WA 98926, USA d Division of Mathematics & Natural Sciences, Arizona State University, Phoenix, AZ 85069, USA article info abstract Article history: We analyzed both mitochondrial (MT-) and nuclear (N) DNAs in a conservation phylogenetic framework to Received 30 June 2009 examine deep and shallow histories of the Beaded Lizard (Heloderma horridum) and Gila Monster (H. Revised 6 December 2009 suspectum) throughout their geographic ranges in North and Central America. Both MTDNA and intron Accepted 7 December 2009 markers clearly partitioned each species. One intron and MTDNA further subdivided H. horridum into its Available online 16 December 2009 four recognized subspecies (H. n. alvarezi, charlesbogerti, exasperatum, and horridum). However, the two subspecies of H. suspectum (H. s. suspectum and H. s. cinctum) were undefined. A supertree approach sus- Keywords: tained these relationships. Overall, the Helodermatidae is reaffirmed as an ancient and conserved group. Anguimorpha Its most recent common ancestor (MRCA) was Lower Eocene [35.4 million years ago (mya)], with a 25 ATPase Enolase my period of stasis before the MRCA of H.