Fungal Planet Description Sheets: 154–213
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Rostaniha 18(1): 104–106 (2017) - Short Article
رﺳﺘﻨﯿﻬﺎ 18(1): 106–104 (1396) - ﻣﻘﺎﻟﻪ ﮐﻮﺗﺎه Rostaniha 18(1): 104–106 (2017) - Short Article Harzia acremonioides، ﮔﻮﻧﻪ ﺟﺪﯾﺪي ﺑﺮاي ﻗﺎرچﻫﺎي اﯾﺮان درﯾﺎﻓﺖ: 17/03/1396 / ﭘﺬﯾﺮش: 1396/05/31 ﻋﻠﯿﺮﺿﺎ ﭘﻮرﺻﻔﺮ: داﻧﺶآﻣﻮﺧﺘﻪ ﮐﺎرﺷﻨﺎﺳﯽ ارﺷﺪ ﺑﯿﻤﺎريﺷﻨﺎﺳﯽ ﮔﯿﺎﻫﯽ، ﮔﺮوه ﮔﯿﺎهﭘﺰﺷﮑﯽ، ﭘﺮدﯾﺲ ﮐﺸﺎورزي و ﻣﻨﺎﺑﻊ ﻃﺒﯿﻌﯽ، داﻧﺸﮕﺎه ﺗﻬﺮان، ﮐﺮج، اﯾﺮان ﯾﻮﺑﺮت ﻗﻮﺳﺘﺎ: داﻧﺸﯿﺎر ﺑﯿﻤﺎريﺷﻨﺎﺳﯽ ﮔﯿﺎﻫﯽ، داﻧﺸﮑﺪه ﮐﺸﺎورزي داﻧﺸﮕﺎه اروﻣﯿﻪ، اروﻣﯿﻪ، اﯾﺮان ﻣﺤﻤﺪ ﺟﻮان ﻧﯿﮑﺨﻮاه: اﺳﺘﺎد ﻗﺎرچﺷﻨﺎﺳﯽ و ﺑﯿﻤﺎريﺷﻨﺎﺳﯽ ﮔﯿﺎﻫﯽ، ﮔﺮوه ﮔﯿﺎهﭘﺰﺷﮑﯽ، ﭘﺮدﯾﺲ ﮐﺸﺎورزي و ﻣﻨﺎﺑﻊ ﻃﺒﯿﻌﯽ، داﻧﺸﮕﺎه ﺗﻬﺮان، ﮐﺮج 77871- 31587، اﯾﺮان ([email protected]) در اداﻣﻪ ﻣﻄﺎﻟﻌﻪ ﻋﻮاﻣﻞ ﻗﺎرﭼﯽ ﻣﺮﺗﺒﻂ ﺑﺎ ﻋﻼﯾﻢ ﮐﭙﮏ ﺳﯿﺎه (دودهاي) ﺧﻮﺷﻪﻫﺎي ﮔﻨﺪم و ﺟﻮ در ﻣﻨﺎﻃﻖ ﻣﺨﺘﻠﻒ اﺳﺘﺎنﻫﺎي ﮔﻠﺴﺘﺎن، اﻟﺒﺮز و ﻗﺰوﯾﻦ ﻃﯽ ﻓﺼﻞﻫﺎي زراﻋﯽ ﺳﺎلﻫﺎي 1393 و 1394، ﺟﺪاﯾﻪﻫﺎي ﻣﺘﻌﺪدي ﺑﺎ وﯾﮋﮔﯽﻫﺎي ﺟﻨﺲ Harzia Costantin ﺟﻤﻊآوري ﮔﺮدﯾﺪ. ﺑﺮاﺳﺎس ﺻﻔﺎت رﯾﺨﺖﺷﻨﺎﺧﺘﯽ، ﺗﻤﺎﻣﯽ ﺟﺪاﯾﻪﻫﺎي ﺑﻪ دﺳﺖ آﻣﺪه ﺗﺤﺖ ﮔﻮﻧﻪ H. acremonioides (Harz) Costantin ﺷﻨﺎﺳﺎﯾﯽ ﺷﺪﻧﺪ. ﺑﺮاﺳﺎس اﻃﻼﻋﺎت ﻣﻮﺟﻮد، اﯾﻦ ﻧﺨﺴﺘﯿﻦ ﮔﺰارش از وﺟﻮد اﯾﻦ ﮔﻮﻧﻪ ﺑﺮاي ﻣﺠﻤﻮﻋﻪ ﻗﺎرچﻫﺎي اﯾﺮان ﺑﻮده و در اﯾﻦ ﻣﻄﺎﻟﻌﻪ ﺗﻮﺻﯿﻒ ﻣﯽﺷﻮد: ﭘﺮﮔﻨﻪ در ﺟﺪاﯾﻪﻫﺎي اﯾﻦ ﮔﻮﻧﻪ روي ﻣﺤﯿﻂ ﻏﺬاﯾﯽ ﻋﺼﺎره ﻣﺎﻟﺖ- آﮔﺎر (MEA)، ﺳﺮﯾﻊاﻟﺮﺷﺪ ﺑﻮده و ﻗﻄﺮ آنﻫﺎ ﺑﻌﺪ از ﮔﺬﺷﺖ ﻫﻔﺖ روز در دﻣﺎي 25-23 درﺟﻪ ﺳﻠﺴﯿﻮس و ﺗﺤﺖ ﺗﺎرﯾﮑﯽ ﻣﺪاوم ﺑﺮاﺑﺮ ﺑﺎ ﻫﻔﺖ ﺳﺎﻧﺘﯽﻣﺘﺮ اﺳﺖ. ﭘﺮﮔﻨﻪ در اﺑﺘﺪا ﺑﯽرﻧﮓ، ﺳﭙﺲ ﺑﻪ رﻧﮓ ﻗﻬﻮهاي روﺷﻦ ﺗﺎ ﻗﻬﻮهاي دارﭼﯿﻨﯽ ﺗﻐﯿﯿﺮ ﻣﯽﯾﺎﺑﺪ، ﭘﺮﮔﻨﻪ ﻣﺴﻄﺢ و ﭘﻨﺒﻪاي اﺳﺖ. ﻫﺎگزاﯾﯽ ﻓﺮاوان، اﻏﻠﺐ از رﯾﺴﻪﻫﺎي ﻣﻮﺟﻮد در ﺳﻄﺢ ﻣﺤﯿﻂ ﮐﺸﺖ و ﺑﻪ ﻣﯿﺰان ﮐﻢﺗﺮ از رﯾﺴﻪﻫﺎي ﻫﻮاﯾﯽ اﻧﺠﺎم ﻣﯽﺷﻮد (ﺷﮑﻞ A -1 و B). رﯾﺴﻪﻫﺎ ﺑﯽرﻧﮓ، ﺑﻨﺪ ﺑﻨﺪ، ﻣﻨﺸﻌﺐ و ﺑﻪ ﻗﻄﺮ 7-5 ﻣﯿﮑﺮوﻣﺘﺮ ﻣﯽﺑﺎﺷﻨﺪ. ﻫﺎگﺑﺮﻫﺎ ﺑﯽرﻧﮓ، ﺑﺎرﯾﮏ و ﮐﺸﯿﺪه، راﺳﺖ ﺗﺎ ﻗﺪري ﺧﻤﯿﺪه، اﻏﻠﺐ ﺑﺎ 2- 1 ﺑﻨﺪ ﻋﺮﺿﯽ و ﺑﺎ اﻧﺸﻌﺎﺑﺎت ﻫﻢﭘﺎﯾﻪ ﮐﻪ ﺑﻪ ﺳﻤﺖ اﻧﺘﻬﺎ ﺑﺎرﯾﮏ و ﻧﻮك ﺗﯿﺰ ﻣﯽﺷﻮﻧﺪ. -
Amplicon-Based Sequencing of Soil Fungi from Wood Preservative Test Sites
ORIGINAL RESEARCH published: 18 October 2017 doi: 10.3389/fmicb.2017.01997 Amplicon-Based Sequencing of Soil Fungi from Wood Preservative Test Sites Grant T. Kirker 1*, Amy B. Bishell 1, Michelle A. Jusino 2, Jonathan M. Palmer 2, William J. Hickey 3 and Daniel L. Lindner 2 1 FPL, United States Department of Agriculture-Forest Service (USDA-FS), Durability and Wood Protection, Madison, WI, United States, 2 NRS, United States Department of Agriculture-Forest Service (USDA-FS), Center for Forest Mycology Research, Madison, WI, United States, 3 Department of Soil Science, University of Wisconsin-Madison, Madison, WI, United States Soil samples were collected from field sites in two AWPA (American Wood Protection Association) wood decay hazard zones in North America. Two field plots at each site were exposed to differing preservative chemistries via in-ground installations of treated wood stakes for approximately 50 years. The purpose of this study is to characterize soil fungal species and to determine if long term exposure to various wood preservatives impacts soil fungal community composition. Soil fungal communities were compared using amplicon-based DNA sequencing of the internal transcribed spacer 1 (ITS1) region of the rDNA array. Data show that soil fungal community composition differs significantly Edited by: Florence Abram, between the two sites and that long-term exposure to different preservative chemistries National University of Ireland Galway, is correlated with different species composition of soil fungi. However, chemical analyses Ireland using ICP-OES found levels of select residual preservative actives (copper, chromium and Reviewed by: Seung Gu Shin, arsenic) to be similar to naturally occurring levels in unexposed areas. -
A New Poroid Species of Resupinatus from Puerto Rico, with a Reassessment of the Cyphelloid Genus Stigmatolemma
Mycologia, 97(5), 2005, pp. 000–000. # 2005 by The Mycological Society of America, Lawrence, KS 66044-8897 A new poroid species of Resupinatus from Puerto Rico, with a reassessment of the cyphelloid genus Stigmatolemma R. Greg Thorn1 their place in the cyphellaceous genus Stigmatolemma…’’ Department of Biology, University of Western Ontario, (Donk 1966) London, Ontario, N6A 5B7 Canada Jean-Marc Moncalvo INTRODUCTION Centre for Biodiversity and Conservation Biology, Royal Ontario Museum and Department of Botany, University Resupinatus S.F. Gray is a small genus of euagarics of Toronto, Toronto, Ontario, M5S 2C6 Canada (Hibbett and Thorn 2001) with 49 specific and Scott A. Redhead varietal epithets as of Apr 2005, excluding autonyms Systematic Mycology and Botany Section, Eastern Cereal and invalid names (www.indexfungorum.org). Fruit- and Oilseed Research, Agriculture and Agri-Food ing bodies of Resupinatus are small—a few mm to Canada, Ottawa, Ontario, K1A 0C6 Canada 2 cm in breadth—and generally pendent or resupi- D. Jean Lodge nate on the undersides of rotting logs and other Center for Forest Mycology Research, USDA Forest woody materials or herbaceous debris. Historically, Service-FPL, P.O. Box 1377, Luquillo, Puerto Rico, members of Resupinatus were treated within the USA 00773-1377 broad concept of Pleurotus (Fr.) P. Kumm. (e.g. Pila´t 1935, Coker, 1944). In modern times, the genus has Marı´a P. Martı´n been characterized by a gelatinous zone in the pileus, Real Jardı´n Bota´nico, CSIC, Plaza de Murillo 2, 28014 Madrid, Spain hyaline inamyloid spores and the absence of metuloid cystidia. The genus Hohenbuehelia Schulzer shares the gelatinized layer and inamyloid spores, but has Abstract: A fungus with gelatinous poroid fruiting metuloid cystidia (Singer 1986, Thorn and Barron bodies was found in Puerto Rico and determined by 1986). -
Alphabetical Index and Substrate Index to Fungal Taxa Mentioned in Mycotheca Graecensis 17-44
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Fritschiana Jahr/Year: 2015 Band/Volume: 79 Autor(en)/Author(s): Scheuer Christian Artikel/Article: Alphabetical index and substrate index to fungal taxa mentioned in Mycotheca Graecensis 17-44 Alphabetical index and substrate index to fungal taxa mentioned in Mycotheca Graecensis Christian SCHEUER* SCHEUER Christian 2015: Alphabetical index and substrate index to fungal taxa mentioned in Mycotheca Graecensis. - Fritschiana (Graz) 79: 17–44. - ISSN 1024-0306. *University of Graz, Institute of Plant Sciences, NAWI Graz, Holteigasse 6, 8010 Graz, Austria E-mail: [email protected] Bibliographical references to Mycotheca Graecensis SCHEUER Christian & POELT Josef 1995: Mycotheca Graecensis, Fasc. 1 (Nr. 1–20). - Frit- schiana 2: 1–9. SCHEUER Christian & POELT Josef(†) 1995: Mycotheca Graecensis, Fasc. 2 (Nr. 21–40). - Fritschiana 4: 1–10. SCHEUER Christian & POELT Josef(†) 1997: Mycotheca Graecensis, Fasc. 3 – 7 (Nr. 41–140). – Fritschiana 9: 1–37. SCHEUER Christian 1998: Mycotheca Graecensis, Fasc. 8 – 10 (Nr. 141–200). - Fritschiana 15: 1–21. SCHEUER Christian 1999: Mycotheca Graecensis, Fasc. 11 (Nr. 201–220). - Fritschiana 20: 1–12. SCHEUER Christian 2001: Mycotheca Graecensis, Fasc. 12 (Nr. 221–240). - Fritschiana 24: 1–10. SCHEUER Christian 2003: Mycotheca Graecensis, Fasc. 13 – 18 (Nr. 241–360). - Fritschiana 37: 1–47. SCHEUER Christian 2004: Mycotheca Graecensis, Fasc. 19 & 20 (Nr. 361–400) und alpha- betisches Gesamtverzeichnis. - Fritschiana (Graz) 46: 1–24. SCHEUER Christian 2006: Mycotheca Graecensis, Fasc. 21 (Nos 401–420). - Fritschiana (Graz) 54: 1–9. SCHEUER Christian 2008: Mycotheca Graecensis, Fasc. 22 (Nos 421–440). -
Multigene Phylogeny and Secondary ITS Structure
Persoonia 35, 2015: 21–38 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE http://dx.doi.org/10.3767/003158515X687434 Molecular systematics of Barbatosphaeria (Sordariomycetes): multigene phylogeny and secondary ITS structure M. Réblová1, K. Réblová2, V. Štěpánek3 Key words Abstract Thirteen morphologically similar strains of barbatosphaeria- and tectonidula-like fungi were studied based on the comparison of cultural and morphological features of sexual and asexual morphs and phylogenetic analyses phylogenetics of five nuclear loci, i.e. internal transcribed spacer rDNA operon (ITS), large and small subunit nuclear ribosomal Ramichloridium DNA, β-tubulin, and second largest subunit of RNA polymerase II. Phylogenetic results were supported by in-depth sequence analysis comparative analyses of common core secondary structure of ITS1 and ITS2 in all strains and the identification spacer regions of non-conserved, co-evolving nucleotides that maintain base pairing in the RNA transcript. Barbatosphaeria is Sporothrix defined as a well-supported monophyletic clade comprising several lineages and is placed in the Sordariomycetes Tectonidula incertae sedis. The genus is expanded to encompass nine species with both septate and non-septate ascospores in clavate, stipitate asci with a non-amyloid apical annulus and non-stromatic ascomata with a long decumbent neck and carbonised wall often covered by pubescence. The asexual morphs are dematiaceous hyphomycetes with holoblastic conidiogenesis belonging to Ramichloridium and Sporothrix types. The morphologically similar Tectonidula, represented by the type species T. hippocrepida, grouped with members of Barbatosphaeria and is transferred to that genus. Four new species are introduced and three new combinations in Barbatosphaeria are proposed. A dichotomous key to species accepted in the genus is provided. -
Bryn Tjader Mason Dentinger
BRYN T. M. DENTINGER [email protected] [email protected] dentingerlab.org dikaryon.wordpress.com @NHMUMycology Curator of Mycology Associate Professor Natural History Museum of Utah School of Biological Sciences 301 Wakara Way University of Utah Salt Lake City, UT 84108 257 South 1400 East, Rm. 201 Office: 801-585-1506 Salt Lake City, UT 84112 Lab: 801-587-5729 Office: LS207 Tel: 801-213-3695 Languages: English (native, preferred), Spanish (competent) ACADEMIC APPOINTMENTS 2016-current Associate Professor & Curator of Mycology, School of Biological Sciences & Natural History Museum of Utah, University of Utah (Salt Lake City, UT) 2014-2016 Senior Research Leader, Comparative Fungal Biology, Royal Botanic Gardens, Kew (London, UK) (managed three full-time junior and senior research staff) 2012-2014 Head of Mycology, Royal Botanic Gardens, Kew (London, UK) (managed eight full-time junior and senior research and curatorial staff) 2010-2012 Senior Researcher in Mycology, Royal Botanic Gardens, Kew (London, UK) 2011-2016 Honorary Lecturer, Institute of Biology, Environment and Rural Sciences, Aberystwyth University (Aberystwyth, Wales, UK) ACADEMIC TRAINING 2009-2010 Postdoctoral Research Associate, Center for Ecology and Evolutionary Biology, University of Oregon (Eugene, OR) 2007-2009 Postdoctoral Research Associate, Department of Natural History & Department of Ecology and Evolutionary Biology, Royal Ontario Museum, University of Toronto (Toronto, ON) 2007 Research Assistant, Minnesota County Biological Survey EDUCATION 2007 -
Mycoportal: Taxonomic Thesaurus
Mycoportal: Taxonomic Thesaurus Scott Thomas Bates, PhD Purdue University North Central Campus Eukaryota, Opisthokonta, Fungi chitinous cell wall absorptive nutrition apical growth-hyphae Eukaryota, Opisthokonta, Fungi Macrobe chitinous cell wall absorptive nutrition apical growth-hyphae Eukaryota, Opisthokonta, Fungi Macrobe Microbe chitinous cell wall absorptive nutrition apical growth-hyphae Primary decomposers in terrestrial systems Essential symbiotic partners of plants and animals Penicillium chrysogenum Saccharomyces cerevisiae Geomyces destructans Magnaporthe oryzae Pseudogymnoascus destructans “In 2013, an analysis of the phylogenetic relationship indicated that this fungus was more closely related to the genus Pseudogymnoascus than to the genus Geomyces changing its latin binomial to Pseudogymnoascus destructans.” Magnaporthe oryzae Pseudogymnoascus destructans Magnaporthe oryzae Pseudogymnoascus destructans Magnaporthe oryzae “The International Botanical Congress in Melbourne in July 2011 made a change in the International Code of Nomenclature for algae, fungi, and plants and adopted the principle "one fungus, one name.” Pseudogymnoascus destructans Magnaporthe oryzae Pseudogymnoascus destructans Pyricularia oryzae Pseudogymnoascus destructans Magnaporthe oryzae Pseudogymnoascus destructans (Blehert & Gargas) Minnis & D.L. Lindner Magnaporthe oryzae B.C. Couch Pseudogymnoascus destructans (Blehert & Gargas) Minnis & D.L. Lindner Fungi, Ascomycota, Ascomycetes, Myxotrichaceae, Pseudogymnoascus Magnaporthe oryzae B.C. Couch Fungi, Ascomycota, Pezizomycotina, Sordariomycetes, Sordariomycetidae, Magnaporthaceae, Magnaporthe Symbiota Taxonomic Thesaurus Pyricularia oryzae How can we keep taxonomic information up-to-date in the portal? Application Programming Interface (API) MiCC Team New Taxa/Updates Other workers Mycobank DB Page Views Mycoportal DB Mycobank API Monitoring for changes regular expression: /.*aceae THANKS!. -
Notes, Outline and Divergence Times of Basidiomycota
Fungal Diversity (2019) 99:105–367 https://doi.org/10.1007/s13225-019-00435-4 (0123456789().,-volV)(0123456789().,- volV) Notes, outline and divergence times of Basidiomycota 1,2,3 1,4 3 5 5 Mao-Qiang He • Rui-Lin Zhao • Kevin D. Hyde • Dominik Begerow • Martin Kemler • 6 7 8,9 10 11 Andrey Yurkov • Eric H. C. McKenzie • Olivier Raspe´ • Makoto Kakishima • Santiago Sa´nchez-Ramı´rez • 12 13 14 15 16 Else C. Vellinga • Roy Halling • Viktor Papp • Ivan V. Zmitrovich • Bart Buyck • 8,9 3 17 18 1 Damien Ertz • Nalin N. Wijayawardene • Bao-Kai Cui • Nathan Schoutteten • Xin-Zhan Liu • 19 1 1,3 1 1 1 Tai-Hui Li • Yi-Jian Yao • Xin-Yu Zhu • An-Qi Liu • Guo-Jie Li • Ming-Zhe Zhang • 1 1 20 21,22 23 Zhi-Lin Ling • Bin Cao • Vladimı´r Antonı´n • Teun Boekhout • Bianca Denise Barbosa da Silva • 18 24 25 26 27 Eske De Crop • Cony Decock • Ba´lint Dima • Arun Kumar Dutta • Jack W. Fell • 28 29 30 31 Jo´ zsef Geml • Masoomeh Ghobad-Nejhad • Admir J. Giachini • Tatiana B. Gibertoni • 32 33,34 17 35 Sergio P. Gorjo´ n • Danny Haelewaters • Shuang-Hui He • Brendan P. Hodkinson • 36 37 38 39 40,41 Egon Horak • Tamotsu Hoshino • Alfredo Justo • Young Woon Lim • Nelson Menolli Jr. • 42 43,44 45 46 47 Armin Mesˇic´ • Jean-Marc Moncalvo • Gregory M. Mueller • La´szlo´ G. Nagy • R. Henrik Nilsson • 48 48 49 2 Machiel Noordeloos • Jorinde Nuytinck • Takamichi Orihara • Cheewangkoon Ratchadawan • 50,51 52 53 Mario Rajchenberg • Alexandre G. -
Savoryellales (Hypocreomycetidae, Sordariomycetes): a Novel Lineage
Mycologia, 103(6), 2011, pp. 1351–1371. DOI: 10.3852/11-102 # 2011 by The Mycological Society of America, Lawrence, KS 66044-8897 Savoryellales (Hypocreomycetidae, Sordariomycetes): a novel lineage of aquatic ascomycetes inferred from multiple-gene phylogenies of the genera Ascotaiwania, Ascothailandia, and Savoryella Nattawut Boonyuen1 Canalisporium) formed a new lineage that has Mycology Laboratory (BMYC), Bioresources Technology invaded both marine and freshwater habitats, indi- Unit (BTU), National Center for Genetic Engineering cating that these genera share a common ancestor and Biotechnology (BIOTEC), 113 Thailand Science and are closely related. Because they show no clear Park, Phaholyothin Road, Khlong 1, Khlong Luang, Pathumthani 12120, Thailand, and Department of relationship with any named order we erect a new Plant Pathology, Faculty of Agriculture, Kasetsart order Savoryellales in the subclass Hypocreomyceti- University, 50 Phaholyothin Road, Chatuchak, dae, Sordariomycetes. The genera Savoryella and Bangkok 10900, Thailand Ascothailandia are monophyletic, while the position Charuwan Chuaseeharonnachai of Ascotaiwania is unresolved. All three genera are Satinee Suetrong phylogenetically related and form a distinct clade Veera Sri-indrasutdhi similar to the unclassified group of marine ascomy- Somsak Sivichai cetes comprising the genera Swampomyces, Torpedos- E.B. Gareth Jones pora and Juncigera (TBM clade: Torpedospora/Bertia/ Mycology Laboratory (BMYC), Bioresources Technology Melanospora) in the Hypocreomycetidae incertae -
Fungi of Forests: Examining the Diversity of Root- Associated Fungi and Their Responses to Acid Deposition Donald Jay Nelsen University of Arkansas, Fayetteville
University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 12-2017 Fungi of Forests: Examining the Diversity of Root- associated Fungi and Their Responses to Acid Deposition Donald Jay Nelsen University of Arkansas, Fayetteville Follow this and additional works at: http://scholarworks.uark.edu/etd Part of the Environmental Indicators and Impact Assessment Commons, Environmental Microbiology and Microbial Ecology Commons, Forest Biology Commons, Fungi Commons, and the Terrestrial and Aquatic Ecology Commons Recommended Citation Nelsen, Donald Jay, "Fungi of Forests: Examining the Diversity of Root-associated Fungi and Their Responses to Acid Deposition" (2017). Theses and Dissertations. 2543. http://scholarworks.uark.edu/etd/2543 This Dissertation is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. Fungi of Forests: Examining the Diversity of Root-associated Fungi and Their Responses to Acid Deposition A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biology by Donald Nelsen Minnesota State University, Mankato Bachelor of Science in Biology, 2010 Louisiana State University Master of Science in Plant Health, 2013 December 2017 University of Arkansas This dissertation is approved for recommendation to the Graduate Council. ____________________________________ Dr. Steven Lee Stephenson Dissertation Director ____________________________________ ____________________________________ Dr. Fred Spiegel Dr. Burt H. Bluhm Committee Member Committee Member ____________________________________ Dr. Ravi Damodar Barabote Committee Member Abstract Global importance of forests is difficult to overestimate, given their role in oxygen production, ecological roles in nutrient cycling and supporting numerous living species, and economic value for industry and as recreational zones. -
Microfungi on the Kernels of Transgenic and Non-Transgenic Maize Damaged by the European Corn Borer
CZECH MYCOL. 59(2): 205–213, 2007 Microfungi on the kernels of transgenic and non-transgenic maize damaged by the European corn borer 1,2 3,4 3 JANA REMEŠOVÁ MIROSLAV KOLAŘÍK and KAREL PRÁŠIL 1Department of Crop Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Kamýcká 129, CZ-165 21, Prague 6, Czech Republic [email protected] 2Department of Mycology, Division of Plant Health, Crop Research Production, Drnovská 507, CZ-161 06, Prague 6, Czech Republic 3Department of Botany, Faculty of Science, Charles University, Benátská 2, CZ-128 00, Prague 2, Czech Republic 4 Institute of Microbiology ASCR, Vídeňská 1086, CZ-142 20 Praha 4, Czech Republic Remešová J., Kolařík M. and Prášil K. (2007): Microfungi on the kernels of trans- genic and non-transgenic maize damaged by the European corn borer.–Czech Mycol. 59(2): 205–213. From 2002–2004 isolations were carried out to determine the kinds and abundance of microfungi from non-transgenic maize kernels damaged by the European corn borer (ECB) and from transgenic Bt-maize (enriched with delta-endotoxin from the soil bacterium Bacillus thuringiensis). Bt-maize and non-transgenic maize (Zea mays) were grown at Praha-Ruzyně and Ivanovice na Hané, Czech Re- public. Thirty-one taxa of filamentous microfungi were isolated, including eight zygomycetes and twenty-three ascomycetes (anamorphic stage). Presence of ECB, corn treatment, year, locality and iso- lation method significantly accounted for differences in fungus communities. Bt-maize was signifi- cantly different from the treatments with non-transgenic hybrids and was often associated with the po- tentially toxinogenic fungi Alternaria alternata and Epicoccum nigrum. -
<I>Olpitrichum Sphaerosporum:</I> a New USA Record and Phylogenetic
MYCOTAXON ISSN (print) 0093-4666 (online) 2154-8889 © 2016. Mycotaxon, Ltd. January–March 2016—Volume 131, pp. 123–133 http://dx.doi.org/10.5248/131.123 Olpitrichum sphaerosporum: a new USA record and phylogenetic placement De-Wei Li1, 2, Neil P. Schultes3* & Charles Vossbrinck4 1The Connecticut Agricultural Experiment Station, Valley Laboratory, 153 Cook Hill Road, Windsor, CT 06095 2Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China 3The Connecticut Agricultural Experiment Station, Department of Plant Pathology and Ecology, 123 Huntington Street, New Haven, CT 06511-2016 4 The Connecticut Agricultural Experiment Station, Department of Environmental Sciences, 123 Huntington Street, New Haven, CT 06511-2016 * Correspondence to: [email protected] Abstract — Olpitrichum sphaerosporum, a dimorphic hyphomycete isolated from the foliage of Juniperus chinensis, constitutes the first report of this species in the United States. Phylogenetic analyses using large subunit rRNA (LSU) and internal transcribed spacer (ITS) sequence data support O. sphaerosporum within the Ceratostomataceae, Melanosporales. Key words — asexual fungi, Chlamydomyces, Harzia, Melanospora Introduction Olpitrichum G.F. Atk. was erected by Atkinson (1894) and is typified by Olpitrichum carpophilum G.F. Atk. Five additional species have been described: O. africanum (Saccas) D.C. Li & T.Y. Zhang, O. macrosporum (Farl. Ex Sacc.) Sumst., O. patulum (Sacc. & Berl.) Hol.-Jech., O. sphaerosporum, and O. tenellum (Berk. & M.A. Curtis) Hol.-Jech. This genus is dimorphic, with a Proteophiala (Aspergillus-like) synanamorph. Chlamydomyces Bainier and Harzia Costantin are dimorphic fungi also with a Proteophiala synanamorph (Gams et al. 2009). Melanospora anamorphs comprise a wide range of genera including Acremonium, Chlamydomyces, Table 1.