Aluminium Chloride:- Aluminium Chloride (Alcl3) Is the Main Compound of Aluminium and Chlorine

Total Page:16

File Type:pdf, Size:1020Kb

Aluminium Chloride:- Aluminium Chloride (Alcl3) Is the Main Compound of Aluminium and Chlorine Aluminium Chloride:- Aluminium chloride (AlCl3) is the main compound of aluminium and chlorine. It is white, but samples are often contaminated with iron trichloride, giving it a yellow colour. The solid has a low melting and boiling point. It is mainly produced and consumed in the production of aluminium metal, but large amounts are also used in other areas of chemical industry. The compound is often cited as a Lewis acid. It is an example of an inorganic compound that "cracks" at mild temperature, reversibly changing from a polymer to a molecule. Aluminium Fluoride Aluminium fluoride ( Al F 3) is an inorganic compound used primarily in the production of aluminium. This colourless solid can be prepared synthetically but also occurs in nature. Aluminium Sulphate Aluminium sulfate, alternatively spelt aluminum sulfate, aluminium sulphate, or aluminum sulphate; is a chemical compound with the formula Al2(SO4)3. Aluminium sulfate is mainly used as a flocculating agent in the purification of drinking water[2][3] and waste water treatment plants, and also in paper manufacturing. Ammonium Bi Fluoride Ammonium hydrogen fluoride is the inorganic compound with the formula NH4HF2 or NH4F·HF. It is produced from ammonia and hydrogen fluoride. This colourless salt is a glass-etchant and an intermediate in a once-contemplated route to hydrofluoric acid. Ammonium Carbonate Ammonium carbonate (formerly known as sal volatile or salt of hartshorn) is a commercial salt with the chemical formula (NH4)2CO3. It is used when crushed as a smelling salt. It can be crushed when needed in order to revive someone who has fainted. It is also known as baker's ammonia and was a predecessor to the more modern leavening agents baking soda and baking powder.] Ammonium Chloride Ammonium chloride NH4Cl is an inorganic compound with the formula NH4Cl. It is a white crystalline salt that is highly soluble in water. Solutions of ammonium chloride are mildly acidic. Sal ammoniac is a name of natural, mineralogical form of ammonium chloride. The mineral is especially common on burning coal dumps (formed by condensation of coal-derived gases), but also on some volcanoes. It is the product from the reaction of hydrochloric acid and ammonia Ammonium Fluoride Ammonium fluoride is the inorganic compound with the formula NH4F. It crystallizes as small colourless prisms, having a sharp saline taste, and is exceedingly soluble in water.The acid salt is usually used in preference to the neutral salt in the etching of glass and related silicates. This property is shared among all soluble fluorides. For this reason it cannot be handled in glass test tubes or apparatus during laboratory work.It is also used for preserving wood, as a mothproofing agent, in printing and dying textiles, and as an antiseptic in breweries.[3] Ammonium Persulphate Ammonium persulfate (NH4)2S2O8 is a strong oxidizing agent. It is very soluble in water; the dissolution of the salt in water is endothermic. It is a radical initiator. It is used to etch copper on printed circuit boards as an alternative to ferric chloride solution.[1] It is also used along with tetramethylethylenediamine to catalyze the polymerization of acrylamide in making a polyacrylamide gel.Ammonium persulfate is the main component of Nochromix. On dissolving in sulfuric acid, it is used to clean laboratory glassware as a metal-free alternative to chromic acid baths.[3] It is also a standard ingredient in western blot gels and hair bleach. Ammonium Polyphosphate Ammonium polyphosphate is an inorganic salt of polyphosphoric acid and ammonia containing bothchains and possibly branching. Its chemical formula is [NH4 PO3]n. Ammonium polyphosphate is an inorganic salt of polyphosphoric acid and ammonia containing both chains and possibly branching. Its chemical formula is [NH4 PO3]n showing that each monomer consists of an orthophosphate radical of a phosphorus atom with three oxygens and one negative charge neutralized by an ammonium cation leaving two bonds free to polymerize. In the branched cases some monomers are missing the ammonium anion and instead link to three other monomers. Ammonium Sulphate Ammonium sulfate (IUPAC-recommended spelling; also ammonium sulphate in British English), ( N H 4)2 S O 4, is an inorganic salt with a number of commercial uses. The most common use is as a soil fertilizer. It contains 21% nitrogen as ammonium cations, and 24% sulfur as sulfate anions. In fertilizer the purpose of the sulfate is to reduce the soil pH. Ascorbic Acid Ascorbic acid is a naturally occurring organic compound with antioxidant properties. It is a white solid, but impure samples can appear yellowish. It dissolves well in water to give mildly acidic solutions. Ascorbic acid is one form ("vitamer") of vitamin C. The name is derived from a- (meaning "no") and scorbutus (scurvy), the disease caused by a deficiency of vitamin C. Because it is derived from glucose, many animals are able to produce it, but humans require it as part of their nutrition. Other vertebrates lacking the ability to produce ascorbic acid include primates, guinea pigs, teleost fishes, bats, and birds, all of which require it as a dietary micronutrient (that is, a vitamin).[2] Barium carbonate Barium carbonate ( Ba CO 3), also known as witherite, is a chemical compound used in rat poison, bricks, ceramic glazes and cement.Witherite crystallizes in the orthorhombic system. The crystals are invariably twinned together in groups of three, giving rise to pseudo-hexagonal forms somewhat resembling bipyramidal crystals of quartz, the faces are usually rough and striated horizontally.The mineral is named after William Withering, who in 1784 recognized it to be chemically distinct from barytes. It occurs in veins of lead ore at Hexham in Northumberland, Alston in Cumbria, Anglezarke, near Chorley in Lancashire and a few other localities. Witherite is readily altered to barium sulfate by the action of water containing calcium sulfate in solution and crystals are therefore frequently encrusted with barytes. It is the chief source of barium salts and is mined in considerable amounts in Northumberland. It is used for the preparation of rat poison, in the manufacture of glass and porcelain, and formerly for refining sugar. It is also used for controlling the chromate to sulfate ratio in chromium electroplating baths.[1] Barium Chloride Barium chloride is the inorganic compound with the formula Ba Cl 2. It is one of the most common water-soluble salts of barium. Like other barium salts, it is toxic and imparts a yellow-green coloration to a flame. It is also hygroscopic. Barium Hydroxide Barium hydroxide is the chemical compound with the formula Ba(OH)2. Also known as baryta, it is one of the principal compounds of barium. The white granular monohydrate is the usual commercial form. Barium Sulphate Barium sulfate is the inorganic compound with the chemical formula BaSO4. It is a white crystalline solid that is odorless and insoluble in water. It occurs as the mineral barite, which is the main commercial source of barium and materials prepared from it. The white opaque appearance and its high density are exploited in its main applications.[2] Basic Chromium Sulphate Benzoic Acid Benzoic acid (pronunciation: / b ɛ n ˈ z o ʊ . ɪ k /), C7H6O2 (or C6H5COOH), is a colorless crystalline solid and the simplest aromatic carboxylic acid. The name derived from gum benzoin, which was for a long time the only source for benzoic acid. Its salts are used as a food preservative and benzoic acid is an important precursor for the synthesis of many other organic substances. The salts and esters of benzoic acid are known as benzoates Benzyl Benzoate Benzyl benzoate is the ester of benzyl alcohol and benzoic acid, with the formula C6H5CH2O2CC6H5. This easily prepared compound has a variety of uses. Benzyl benzoate, as a topical solution, may be used as an antiparasitic insecticide to kill the mites responsible for the skin condition scabies,[2] for example as a combination drug of benzyl benzoate/disulfiram.[3] Bleaching Powder Borax Borax, also known as sodium borate, sodium tetraborate, or disodium tetraborate, is an important boron compound, a mineral, and a salt of boric acid. It is usually a white powder consisting of soft colorless crystals that dissolve easily in water.Borax has a wide variety of uses. It is a component of many detergents, cosmetics, and enamel glazes. It is also used to make buffer solutions in biochemistry, as a fire retardant, as an anti-fungal compound for fiberglass, as an insecticide, as a flux in metallurgy, a texturing agent in cooking, and as a precursor for other boron compounds. Boric Acid Boric acid, also called hydrogen borate or boracic acid or orthoboric acid or acidum boricum, is a weak acid of boron often used as an antiseptic, insecticide, flame retardant, as a neutron absorber, and as a precursor of other chemical compounds. It exists in the form of colorless crystals or a white powder and dissolves in water. It has the chemical formula H3 B O 3, sometimes written B(OH)3. When occurring as a mineral, it is called sassolite. Butyl Acrylate Butylated Hydroxy Anisole Butylated hydroxyanisole (BHA) is an antioxidant consisting of a mixture of two isomeric organic compounds, 2-tert-butyl-4-hydroxyanisole and 3-tert-butyl-4-hydroxyanisole. It is prepared from 4- methoxyphenol and isobutylene. It is a waxy solid used as a food additive with the E number E320. The primary use for BHA is as an antioxidant and preservative in food, food packaging, animal feed, cosmetics, rubber, and petroleum products.[3] BHA also is commonly used in medicines, such as isotretinoin, lovastatin, and simvastatin, among others. Calcium Carbonate Calcium carbonate is a chemical compound with the formula Ca C O 3.
Recommended publications
  • Trisodium Hexafluoroaluminate Product Stewardship Summary February 2011
    Trisodium hexafluoroaluminate Product Stewardship Summary February 2011 Na3AlF6 Chemical Name: Trisodium hexafluoroaluminate Chemical Category (if applicable): Alkali Metal Halide Synonyms: Aluminate (3-), hexafluoro-, trisodium; Aluminium trisodium hexafluoride; Sodium aluminium fluoride; and Sodium hexafluoroaluminate; Icestone; Synthetic cryolite CAS Number: 13775-53-6 CAS Name: Aluminate(3-), hexafluoro-, trisodium, (OC-6-11)- EC (EINECS) Number: 237-410-6 Document Number: GPS0046 V1.0 Trisodium hexafluoroaluminate (synthetic cryolite) is primarily used a flux agent or bath material by aluminum smelters in the production of aluminum. It is also used in the production of synthetic resins for abrasives and in the manufacture of cutting or grinding discs. Minor uses are as a coloring agent (opacifier) in the glass, ceramic and pyrotechnic industries, and as a component of insecticides in the U.S. Exposure can occur at either a synthetic cryolite manufacturing facility or at other manufacturing, packaging or storage facilities that handle synthetic cryolite. Persons involved in maintenance, sampling and testing activities, or in the loading and unloading of synthetic cryolite packages are at risk of exposure, but worker exposure can be controlled with the use of proper general mechanical ventilation and personal protective equipment. Workplace exposure limits for fluoride ion have been established for use in worksite safety programs. When synthetic cryolite is a component of consumer products, users should follow manufacturer’s use and/or label instructions. Synthetic cryolite dusts released to the atmosphere and deposited in soil or surface water in the vicinity of production sites have negligible impact on the environment. Please see the MSDS for additional information. Synthetic cryolite is a nonflammable solid that is stable under normal conditions.
    [Show full text]
  • The Solubility of Aluminium in Melts Containing Aluminium Halides
    THE SOLUBILITY OF ALUMINIUM IN MELTS CONTAINING ALUMINIUM HALIDES A Thesis presented for the degree of Doctor of Philosophy in the University of London by John Dyson Usher London, May 1965 ABSTRACT A technique for measuring the solubility of aluminium in NaF-A1F3 and Nall-A1F3+5%A1203 melts has been developed using a refractory titanium boride- carbide crucible and a gas volumetric method of analysis. Experiments were conducted at 10209 1100 and 1180°C; in both systems no change in solubility limit was detected over the experimental composition range of 25.6 - 36.6 and 25.8 - 31.9 mol % AlF3 respectively. The figures in the pure fluoride are 0.022 0.041 and 0.072 wt %; in the alumina melts 0.073, 0.121 and 0.169 wt %. Solution mechanisms have been suggested which account for the observed behaviour, and an attempt has been made to interpret the current inefficiency process in the reduction cell in terms of the results. CONTENTS 1. INTRODUCTION Page 1.1 Aluminium Reduction Cell - Brief Description 1 1.2 Current Efficiency 3 1.2.1 Measurement 3 1.2.2 Cell Variables and Current Efficiency 5 1.2.2 Postulated Mechanisms of Metal Lose 6 1.3 Origins of Present Work 7 1.3.1 Information Required 7 1.3.A Preliminary Theoretical Approach 9 1.4 Metal-Molten Salt Solutions 11 1.4.1 General 11 1.4.2 Nature of Metal-Molten Salt Solutions 16 1.4.3 Extent of Solubility 19 1.4.4 Effect of Foreign Ions on Metal Solubility 23 1.5 Structure of Cryolite and Cryolite-Alumina Melts 25 1.5.1 Pure Molten Cryolite 25 1.5.2 Cryolite-Alumina Melts 33 1.6 Thermodynamics of Aluminium+Cryolite 40 1.6.1 Equilibrium 1.6(i): Experimental 40 1.6.2 Equilibrium 1.6(i): Calculations 42 1.6.3 Equilibrium 1.6(ii) 45 1.7 Previous Experimental Work 46 1.7.1 Analysis by Metal Weight Loss 48 1.7.2 Gas Volumetric Method 52 2.
    [Show full text]
  • Determination of Aluminium As Oxide
    DETERMINATION OF ALUMINIUM AS OXIDE By William Blum CONTENTS Page I. Introduction 515 II. General principles 516 III. Historical 516 IV. Precipitation of aluminium hydroxide. 518 1. Hydrogen electrode studies 518 (a) The method 518 (b) Apparatus and solutions employed 518 (c) Results of hydrogen electrode experiments 519 (d) Conclusions from hydrogen electrode experiments 520 2. Selection of an indicator for denning the conditions of precipita- '. tion . 522 3. Factors affecting the form of the precipitate 524 4. Precipitation in the presence of iron 525 V. Washing the precipitate . 525 VI. Separation from other elements 526 VII. Ignition and weighing of the precipitate 528 1. Hygroscopicity of aluminium oxide 529 2. Temperature and time of ignition 529 3. Effect of ammonium chloride upon the ignition 531 VIII. Procedure recommended 532 IX. Confirmatory experiments 532 X. Conclusions '534 I. INTRODUCTION Although a considerable number of precipitants have been pro- posed for the determination of aluminium, direct precipitation of aluminium hydroxide by means of ammonium hydroxide, fol- lowed by ignition to oxide, is most commonly used, especially if no separation from iron is desired, in which latter case special methods must be employed. While the general principles involved in this determination are extremely simple, it has long been recog- nized that certain precautions in the precipitation, washing, and ignition are necessary if accurate results are to be obtained. While, however, most of these details have been studied and dis- cussed by numerous authors, it is noteworthy that few publica- tions or textbooks have taken account of all the factors. In the 515 ; 516 Bulletin of the Bureau of Standards [Voi.i3 present paper it seems desirable, therefore, to assemble the various recommendations and to consider their basis and their accuracy.
    [Show full text]
  • Safety Data Sheet
    SAFETY DATA SHEET FennoFloc A 19 Ref. /US/EN Revision Date: 02/09/2017 Previous date: 02/09/2017 Print Date:04/20/2017 1. IDENTIFICATION OF THE SUBSTANCE/MIXTURE AND OF THE COMPANY/UNDERTAKING Product information Product name FennoFloc A 19 Recommended use of the chemical and restrictions on use Use of the Substance/Mixture Recommended restrictions on use There are no uses advised against. Supplier's details Kemira Chemicals, Inc. 1000 Parkwood Circle, Suite 500 30339 Atlanta USA Telephone+17704361542, Telefax. +17704363432 HEAD OFFICE Kemira Oyj P.O. Box 330 00101 HELSINKI FINLAND Telephone +358108611 Telefax +358108621124 Emergency telephone number CHEMTREC: 1-800-424-9300 CANUTEC: 1-613-996-6666 2. HAZARDS IDENTIFICATION Classification of the substance or mixture Corrosive to metals; Category 1; May be corrosive to metals.; Serious eye damage; Category 1; Causes serious eye damage.; GHS-Labelling 1/14 SAFETY DATA SHEET FennoFloc A 19 Ref. /US/EN Revision Date: 02/09/2017 Previous date: 02/09/2017 Print Date:04/20/2017 Hazard pictograms : Signal word : Danger Hazard statements : Hazard statements: H290 May be corrosive to metals. H318 Causes serious eye damage. Precautionary statements : Prevention: P234 Keep only in original container. P264 Wash face, hands and any exposed skin thoroughly after handling. P280 Wear protective gloves/ eye protection/ face protection. Response: P390 Absorb spillage to prevent material damage. P305 + P351 + P338 IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. P310 Immediately call a POISON CENTER or doctor/ physician. Storage: P406 Store in corrosive resistant container with a resistant inner liner.
    [Show full text]
  • A Critical Appraisal and Review of Aluminium Chloride Electrolysis for the Production of Aluminium
    Bulletin of Eledrochemistry 1 (5) Sep.-Od. 1985, pp. 483488 A CRITICAL APPRAISAL AND REVIEW OF ALUMINIUM CHLORIDE ELECTROLYSIS FOR THE PRODUCTION OF ALUMINIUM C N KANNAN and PS DESIKAN Central Electrochemical Research Institute, Karaikudi - 623 006, ABSTRACT This paper is an attempt to examine the current state of art of aluminium chloride electrolysis through a review of all the available published literature and patents so that this could help the formulation of the plans of work for any serious R&D effort to develop the chloride te&nolcgy in this country. Even though the development of technology for aluminium chloride electrolysis is being carried out in a big way by ALCOA and a few other multinational companies for the past several years, many of the data and information are lacking in published literature and the answers to various critical questions have to be found only through inferences from the meagre information available in patents. It was therefore thought fit to undertake a thorough review of all the basic applied and R&Dwork that are reported in this field and critically assess the various problems to be tackled to evolve a viable technology. This review confines itself to the electrolytic aspect and those relating to the material preparation will be taken up separately later. Key words : Production of aluminium. Molten salt electrolysis, chlorination of alumina INTRODUCTION The most obvious advantages of the aluminium chloride smelting are 131 : he need to develop a new technology for aluminium metal production 1. Substantially lower working temperature (700°C) compared to Hall- T has been felt very much in the major aluminium producing countries Heroult cell (980°C).
    [Show full text]
  • Aluminum Chloride 7446-70-0 >95
    SAFETY DATA SHEET Creation Date 10-Sep-2010 Revision Date 27-May-2019 Revision Number 6 1. Identification Product Name Aluminium chloride Cat No. : AC217460000; AC217460025; AC217460050; AC217461000; AC217465000 CAS-No 7446-70-0 Synonyms Aluminium trichloride Recommended Use Laboratory chemicals. Uses advised against Food, drug, pesticide or biocidal product use. Details of the supplier of the safety data sheet Company Fisher Scientific Acros Organics One Reagent Lane One Reagent Lane Fair Lawn, NJ 07410 Fair Lawn, NJ 07410 Tel: (201) 796-7100 Emergency Telephone Number For information US call: 001-800-ACROS-01 / Europe call: +32 14 57 52 11 Emergency Number US:001-201-796-7100 / Europe: +32 14 57 52 99 CHEMTREC Tel. No.US:001-800-424-9300 / Europe:001-703-527-3887 2. Hazard(s) identification Classification This chemical is considered hazardous by the 2012 OSHA Hazard Communication Standard (29 CFR 1910.1200) Skin Corrosion/Irritation Category 1 B Serious Eye Damage/Eye Irritation Category 1 Specific target organ toxicity (single exposure) Category 3 Target Organs - Respiratory system. Label Elements Signal Word Danger Hazard Statements Causes severe skin burns and eye damage May cause respiratory irritation ______________________________________________________________________________________________ Page 1 / 7 Aluminium chloride Revision Date 27-May-2019 ______________________________________________________________________________________________ Precautionary Statements Prevention Do not breathe dust/fume/gas/mist/vapors/spray Wash face, hands and any exposed skin thoroughly after handling Wear protective gloves/protective clothing/eye protection/face protection Use only outdoors or in a well-ventilated area Response Immediately call a POISON CENTER or doctor/physician Inhalation IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing Skin IF ON SKIN (or hair): Take off immediately all contaminated clothing.
    [Show full text]
  • The Effect of Various Hydroxide and Salt Additives on the Reduction of Fluoride Ion Mobility in Industrial Waste
    sustainability Article The Effect of Various Hydroxide and Salt Additives on the Reduction of Fluoride Ion Mobility in Industrial Waste Tadas Dambrauskas 1,* , Kestutis Baltakys 1, Agne Grineviciene 1 and Valdas Rudelis 2 1 Department of Silicate Technology, Kaunas University of Technology, LT-50270 Kaunas, Lithuania; [email protected] (K.B.); [email protected] (A.G.) 2 JSC “Lifosa”, LT-57502 Kedainiai, Lithuania; [email protected] * Correspondence: [email protected] Abstract: In this work, the influence of various hydroxide and salt additives on the removal of F− ions from silica gel waste, which is obtained during the production of AlF3, was examined. The leaching of the mentioned ions from silica gel waste to the liquid medium was achieved by the application of different techniques: (1) leaching under static conditions; (2) leaching under dynamic conditions by the use of continuous liquid medium flow; and (3) leaching in cycles under dynamic conditions. It was determined that the efficiency of the fluoride removal from this waste depends on the w/s ratio, the leaching conditions, and the additives used. It was proven that it is possible to reduce the concentration of fluorine ions from 10% to <5% by changing the treatment conditions and by adding alkaline compounds. The silica gel obtained after the leaching is a promising silicon dioxide source. Keywords: fluorine ions; silica gel waste; leaching; hydroxide additives Citation: Dambrauskas, T.; Baltakys, K.; Grineviciene, A.; Rudelis, V. The 1. Introduction Effect of Various Hydroxide and Salt Waste management and the reduction of pollution are the priority areas of environ- Additives on the Reduction of mental protection in the World [1–4].
    [Show full text]
  • Ffinmffiffih$Nry3fhrt
    aaourlll q*{Jl}ll ol:f,Ul Arab lnt'|. Organization ,i*If, i*fr* .it*^ Srab Fertilizers ft ssociation Since: L975 flrf*r* ffinmffiffih$nry3Fhrt AFA P FluJsilisic acid: Recovery System and Aluminum Fluoride production Prepared by Eng. Kamal SAMRANE, R&D Direction, OCP Group Eng. Mohammad Al-hjouj - EHS Manager - JPMC Revised by Eng. Faisal Doudin Technical advisor to the Chairman JPMC Dr. Abdelaali KOSSIR R&D Director - OCP Group acid: Recovery Fluosilisic ffiliilrTi roride production l. lntroduction Fluosilisic acid (HrSiFu) is mainly produced as a by-product from the wet process of Phosphoric Acid production from fluorapatite. Phosphate rock always contains fluorine. For F/P2O5 ratios, the fluorine content in rock of sedimentary origin ranges in general from 0.10 to 0.14. Rock of igneous origin shows lower ratios, from 0.04 to 0.006. About 50kg of fluorine (as H2SiF6) per tonne of phosphoric acid (as P2O5) is evolved with the concentration of phosphoric acid in the evaporation step. Currently, most of this evolved fluorine is absorbed into the cooling pond water causing alarge environmental problem.The phosphoric and hydrofluoric acids are liberated from Phosphate rock by the action of sulfuric acid. Some of the HF in turn reacts with silicate minerals, which are an unavoidable constituent of the mineral feedstock, to give silicon tetrafluoride. Thus the formed silicon tetrafluoride reacts further with HF. The net process can be described as: SiO, + 6 HF <-- H2SiF6 + ZH.-O - ------) Neutralization of solutions of fluosilisic acid with alkali metal bases produces the corresponding alkali metal fluorosilicate salts: H2SiF6 + 2 NaOH ) NarSiFu + 2HrO The resulting salt Na2SiF6 is mainly used in water fluoridation.
    [Show full text]
  • United States Patent Office 2 1
    2,934,550 Patented Apr. 26, 1960 United States Patent Office 2 1. phenyl or vinyl groups. By “high molecular weight" I mean of molecular weight not less than about 1000. 2,934,550 The material reacted may be in the form of a poly PREPARATION OF CYCLIC METHYLPOLYSILox. siloxane elastomer composition which will, of course, nor ANES BY REACTING ORGANOPOLYSILOXANES mally contain one or more fillers, pigments, etc, or may PHORUSWITH HALDES OF ALUMINUM oR PHOS be in the form of a polysiloxane gum such as is used in the preparation of polysiloxane elastomers. Partially James Jack, Troon, Scotland, assignor to Imperial Chemi cured polysiloxane compositions may also be used and in tionAff." of Great Britain 9 EEE, England, a corpora addition, other high molecular weight linear polysiloxanes 0 may be treated by this process. The advantages of the No Drawing. Application December 8, 1958 process are, however, of most value in the recovery of Serial No. 778,609 elastomersHalides ofand aluminium gums. and phosphorus which may be Claims priority, application Great Britain used in this process include aluminium chloride, alumin January 17, 1958 ium fluoride, aluminium bromide, phosphorus trichlo 5 ride, phosphorus pentachloride and phosphorus oxychlo 8 Claims. (CI. 260-448.2) ride. Aluminium chloride is, however, preferred, since This invention relates to the treatment of high molecu it is relatively inexpensive and does not tend to contami lar weight Substantially linear polysiloxanes and to the nate the products. preparation of low molecular weight cyclic polysiloxanes 20 The process of my invention is normally carried out therefrom. by heating the reactants together in a vessel adapted for High molecular weight linear organopolysiloxanes, for distilation and the low molecular weight cyclic poly example, such as polysiloxane elastomers and gums used siloxanes are distilled off as the reaction proceeds, the for the production thereof, are widely known and used.
    [Show full text]
  • Ehealth DSI [Ehdsi V2.2.2-OR] Ehealth DSI – Master Value Set
    MTC eHealth DSI [eHDSI v2.2.2-OR] eHealth DSI – Master Value Set Catalogue Responsible : eHDSI Solution Provider PublishDate : Wed Nov 08 16:16:10 CET 2017 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 1 of 490 MTC Table of Contents epSOSActiveIngredient 4 epSOSAdministrativeGender 148 epSOSAdverseEventType 149 epSOSAllergenNoDrugs 150 epSOSBloodGroup 155 epSOSBloodPressure 156 epSOSCodeNoMedication 157 epSOSCodeProb 158 epSOSConfidentiality 159 epSOSCountry 160 epSOSDisplayLabel 167 epSOSDocumentCode 170 epSOSDoseForm 171 epSOSHealthcareProfessionalRoles 184 epSOSIllnessesandDisorders 186 epSOSLanguage 448 epSOSMedicalDevices 458 epSOSNullFavor 461 epSOSPackage 462 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 2 of 490 MTC epSOSPersonalRelationship 464 epSOSPregnancyInformation 466 epSOSProcedures 467 epSOSReactionAllergy 470 epSOSResolutionOutcome 472 epSOSRoleClass 473 epSOSRouteofAdministration 474 epSOSSections 477 epSOSSeverity 478 epSOSSocialHistory 479 epSOSStatusCode 480 epSOSSubstitutionCode 481 epSOSTelecomAddress 482 epSOSTimingEvent 483 epSOSUnits 484 epSOSUnknownInformation 487 epSOSVaccine 488 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 3 of 490 MTC epSOSActiveIngredient epSOSActiveIngredient Value Set ID 1.3.6.1.4.1.12559.11.10.1.3.1.42.24 TRANSLATIONS Code System ID Code System Version Concept Code Description (FSN) 2.16.840.1.113883.6.73 2017-01 A ALIMENTARY TRACT AND METABOLISM 2.16.840.1.113883.6.73 2017-01
    [Show full text]
  • Chemistry Spellcheck On
    National Qualications 2019 NX813/75/025 Chemistry Section 1 — Questions FRIDAY, 10 MAY 1:00 PM – 3:30 PM Instructions for the completion of Section 1 are given on page 02 of your question and answer booklet X813/75/01. Record your answers on the answer grid on page 03 of your question and answer booklet. You may refer to the Chemistry Data Booklet for National 5. Before leaving the examination room you must give your question and answer booklet to the Invigilator; if you do not, you may lose all the marks for this paper. © *X8137502* A/SA SECTION 1 — 25 marks Attempt ALL questions Questions 1 and 2 refer to an experiment to investigate the rate of a reaction. The volume of gas collected in 2 minutes was 5 cm3. 1. What was the average rate of reaction over this time? A 0·2 B 0·4 C 2·5 D 5·0 2. The unit for the average rate of this reaction is A cm3/min−1 B cm3 min−1 C min/cm3 D min cm−3 3. Tennessine is a newly discovered element with a predicted electron arrangement of 2,8,18,32,32,18,7. In which group of the periodic table should Tennessine be placed? A 1 B 2 C 7 D 8 page 02 4. Which of the following is a positively charged ion? Protons Neutrons Electrons A 9 10 10 B 10 9 10 C 11 12 11 D 12 13 10 5. To turn a gas into a liquid it must be cooled below a temperature known as its critical temperature.
    [Show full text]
  • Pharmacoepidemiological.Study.Protocol.. ER1379468. A.Retrospective.Cohort.Study.To.Investigate.The.Initiation. And.Persistence.Of.Dual.Antiplatelet.Treatment.After
    Pharmacoepidemiological.study.protocol.ER1379468. % . % % % % % Pharmacoepidemiological.study.protocol.. ER1379468. A.retrospective.cohort.study.to.investigate.the.initiation. and.persistence.of.dual.antiplatelet.treatment.after.. acute.coronary.syndrome.in.a.Finnish.setting.–.THALIA. % Author:(( ( ( Tuire%Prami( Protocol(number:(( %% ER1359468,%ME5CV51306( Sponsor:(( ( ( AstraZeneca%Nordic%Baltic% Protocol(version:(( ( 2.0( Protocol(date:(( ( ( 03%Jul%2014% ( . EPID%Research%Oy%. CONFIDENTIAL. % Pharmacoepidemiological.study.protocol.ER1379468... Version.2.0. 03.Jul.2014. Study Information Title% A% retrospective% cohort% study% to% investigate% the% initiation% and% persistence% of% dual% antiplatelet%treatment%after%acute%coronary%syndrome%in%a%Finnish%setting%–%THALIA% Protocol%version% ER1359468% identifier% ME5CV51306% EU%PAS%register% ENCEPP/SDPP/6161% number% Active%substance% ticagrelor%(ATC%B01AC24),%clopidogrel%(B01AC04),%prasugrel%(B01AC22)% Medicinal%product% Brilique,% Plavix,% Clopidogrel% accord,% Clopidogrel% actavis,% Clopidogrel% krka,% Clopidogrel% mylan,%Clopidogrel%orion,%Clopidogrel%teva%pharma,%Cloriocard,%Efient% Product%reference% N/A% Procedure%number% N/A% Marketing% AstraZeneca%Nordic%Baltic:%Brilique%(ticagrelor)% authorization% holder% financing%the%study% Joint%PASS% No% Research%question% To%describe%initiation%and%persistence%of%dual%antiplatelet%treatment%in%invasively%or%non5 and%objectives% invasively%treated%patients%hospitalized%for%acute%coronary%syndrome%% Country%of%study% Finland% Author% Tuire%Prami%
    [Show full text]