Design and Use of Artificial Refuges for Monitoring Adult Tree Weta, Hemideina Crassidens and H
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Shifting Ranges of Two Tree Weta Species (Hemideina Spp.)
Journal of Biogeography (J. Biogeogr.) (2014) 41, 524–535 ORIGINAL Shifting ranges of two tree weta species ARTICLE (Hemideina spp.): competitive exclusion and changing climate Mariana Bulgarella*, Steven A. Trewick, Niki A. Minards, Melissa J. Jacobson and Mary Morgan-Richards Ecology Group, IAE, Massey University, ABSTRACT Palmerston North, 4442, New Zealand Aim Species’ responses to climate change are likely to depend on their ability to overcome abiotic constraints as well as on the suite of species with which they interact. Responses to past climate change leave genetic signatures of range expansions and shifts, allowing inferences to be made about species’ distribu- tions in the past, which can improve our ability to predict the future. We tested a hypothesis of ongoing range shifting associated with climate change and involving interactions of two species inferred to exclude each other via competition. Location New Zealand. Methods The distributions of two tree weta species (Hemideina crassidens and H. thoracica) were mapped using locality records. We inferred the likely mod- ern distribution of each species in the absence of congeneric competitors with the software Maxent. Range interaction between the two species on an eleva- tional gradient was quantified by transect sampling. Patterns of genetic diver- sity were investigated using mitochondrial DNA, and hypotheses of range shifts were tested with population genetic metrics. Results The realized ranges of H. thoracica and H. crassidens were narrower than their potential ranges, probably due to competitive interactions. Upper and lower elevational limits on Mount Taranaki over 15 years revealed expan- sion up the mountain for H. thoracica and a matching contraction of the low elevation limits of the range of H. -
Flawke's Bay Twits $ At\; Is T *:';;Q*E Kit *: Hawkt:Bad \, Nth U Line Uniat! of Species, Habitats Grid Natural Lectures
, , ,,,..*. *'.~,*, . , ** **~ I*~ tv, *..',.- 4'1 I, ' it**.*, , , *. * 44 ,,! ~**~ $1. \ -* * .,,;. f, *- , **, 3* .* ,J re* *. ^ ,~ I * ,* ,, ^ "*'. 441 , ,*.A, * ~*\,*t* J The open braids of the Totaekuri River Flawke's Bay twits $ at\; is t *:';;q*e Kit *: hawkt:bad \, nth u line uniat! of species, habitats Grid natural lectures. Hawke's Bay is a special part of New Zealand with a It, :ae from one threat can be exacerbated by the effects of variety of species, habitats and natural features, other threats acting together, i. e. habitat fragmentation Before humans settled here, almost the entire lowlands combined with invasive species. and hill country of the region would have been covered Despite extensive modification, Hawke's Bay contains a in dense forests, rich in birdlife. Clearance of vegetation great diversity of landscapes, habitats, plants, animals, cover started with early Maori and continued with and areas of high natural and historic value. There the arrival of Fakeba leaving a legacy of almost total are areas in Flawke's Bay which support a diverse and modification of the natural ecosystems. significant range of indigenous species and ecosystems including the Kaweka Ranges, Lake Walkaremoana, Forest dearance, wedand drainage, engineering of Pekapel<a Wetland, Whal{a}d Lagoon, AhuririEstuary, waterways and redamation of coastal margins has Blowhard Bush, Cape Kidnappers Sanctuary and been necessary for the development of our cities and Boundary Stream. Many of these sites are in very good the region. We are able to live safely and prosper in a condition. Several endemic species which at. e nationally beautiful part of the world but development has had a considerable impact on indigenous biodiversity. -
Weta Sometimes 5 Cicada Mouthparts? Earwig 3 Pairs Stick Insect 1 Pair with Fangs and Now Name One Poison Characteristic Each Wings? of the Other 6 Bugs Usually
Insects To be used with the Tangihua lions lodge program What is an insect All insects ? This insect have these has these Characteristics characteristics 6 legs What do you think? 8 legs More! Just circle the answer Wings Body parts? Or 2 No wings 3 A long thin body Legs? or 6 well developed legs 8 and long feelers More! I am a Eyes? Beetle 6 simple ones Fly 8 simple ones Moth Usually 2 but Giant Weta sometimes 5 Cicada Mouthparts? Earwig 3 pairs Stick insect 1 pair with fangs and Now name one poison characteristic each Wings? of the other 6 bugs Usually Draw a line showing who relates to what What habitats do you find insects in Weta To be used with the Tangihua lions lodge program Animals With out red blood or back bone Red blooded Invertebrates vertebrates Cephalopods Crustaceans Arthropod Plant animals Birds Fish Whales and Reptiles Land Cnidarians dolphins mammals Insects spider Wētā are arthropods and belong to the insect group because they have: 6 legs, 2 antennae, and a 3-part body Weta 5 types Tree Weta Ground Weta Giant Weta Tusked Weta Cave Weta Weta ? two compound eyes for close-up sight have these and three little eyes called ocelli to sense light and dark Antenna short tail-pieces called cerci to detect Femur vibrations Hind leg females have a long ovipositor at the- back to deposit eggs into the soil Front leg an ear on each front leg knee joint Ear palps alongside the jaws for tasting Ovipositor and smelling (like our tongue and nose) Spiracles spikey back legs that kick into the air Palps for defence and make a rasping sound as they come back down. -
Tarantulas and Social Spiders
Tarantulas and Social Spiders: A Tale of Sex and Silk by Jonathan Bull BSc (Hons) MSc ICL Thesis Presented to the Institute of Biology of The University of Nottingham in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy The University of Nottingham May 2012 DEDICATION To my parents… …because they both said to dedicate it to the other… I dedicate it to both ii ACKNOWLEDGEMENTS First and foremost I would like to thank my supervisor Dr Sara Goodacre for her guidance and support. I am also hugely endebted to Dr Keith Spriggs who became my mentor in the field of RNA and without whom my understanding of the field would have been but a fraction of what it is now. Particular thanks go to Professor John Brookfield, an expert in the field of biological statistics and data retrieval. Likewise with Dr Susan Liddell for her proteomics assistance, a truly remarkable individual on par with Professor Brookfield in being able to simplify even the most complex techniques and analyses. Finally, I would really like to thank Janet Beccaloni for her time and resources at the Natural History Museum, London, permitting me access to the collections therein; ten years on and still a delight. Finally, amongst the greats, Alexander ‘Sasha’ Kondrashov… a true inspiration. I would also like to express my gratitude to those who, although may not have directly contributed, should not be forgotten due to their continued assistance and considerate nature: Dr Chris Wade (five straight hours of help was not uncommon!), Sue Buxton (direct to my bench creepy crawlies), Sheila Keeble (ventures and cleans where others dare not), Alice Young (read/checked my thesis and overcame her arachnophobia!) and all those in the Centre for Biomolecular Sciences. -
Phylogeny of Ensifera (Hexapoda: Orthoptera) Using Three Ribosomal Loci, with Implications for the Evolution of Acoustic Communication
Molecular Phylogenetics and Evolution 38 (2006) 510–530 www.elsevier.com/locate/ympev Phylogeny of Ensifera (Hexapoda: Orthoptera) using three ribosomal loci, with implications for the evolution of acoustic communication M.C. Jost a,*, K.L. Shaw b a Department of Organismic and Evolutionary Biology, Harvard University, USA b Department of Biology, University of Maryland, College Park, MD, USA Received 9 May 2005; revised 27 September 2005; accepted 4 October 2005 Available online 16 November 2005 Abstract Representatives of the Orthopteran suborder Ensifera (crickets, katydids, and related insects) are well known for acoustic signals pro- duced in the contexts of courtship and mate recognition. We present a phylogenetic estimate of Ensifera for a sample of 51 taxonomically diverse exemplars, using sequences from 18S, 28S, and 16S rRNA. The results support a monophyletic Ensifera, monophyly of most ensiferan families, and the superfamily Gryllacridoidea which would include Stenopelmatidae, Anostostomatidae, Gryllacrididae, and Lezina. Schizodactylidae was recovered as the sister lineage to Grylloidea, and both Rhaphidophoridae and Tettigoniidae were found to be more closely related to Grylloidea than has been suggested by prior studies. The ambidextrously stridulating haglid Cyphoderris was found to be basal (or sister) to a clade that contains both Grylloidea and Tettigoniidae. Tree comparison tests with the concatenated molecular data found our phylogeny to be significantly better at explaining our data than three recent phylogenetic hypotheses based on morphological characters. A high degree of conflict exists between the molecular and morphological data, possibly indicating that much homoplasy is present in Ensifera, particularly in acoustic structures. In contrast to prior evolutionary hypotheses based on most parsi- monious ancestral state reconstructions, we propose that tegminal stridulation and tibial tympana are ancestral to Ensifera and were lost multiple times, especially within the Gryllidae. -
ARTHROPODA Subphylum Hexapoda Protura, Springtails, Diplura, and Insects
NINE Phylum ARTHROPODA SUBPHYLUM HEXAPODA Protura, springtails, Diplura, and insects ROD P. MACFARLANE, PETER A. MADDISON, IAN G. ANDREW, JOCELYN A. BERRY, PETER M. JOHNS, ROBERT J. B. HOARE, MARIE-CLAUDE LARIVIÈRE, PENELOPE GREENSLADE, ROSA C. HENDERSON, COURTenaY N. SMITHERS, RicarDO L. PALMA, JOHN B. WARD, ROBERT L. C. PILGRIM, DaVID R. TOWNS, IAN McLELLAN, DAVID A. J. TEULON, TERRY R. HITCHINGS, VICTOR F. EASTOP, NICHOLAS A. MARTIN, MURRAY J. FLETCHER, MARLON A. W. STUFKENS, PAMELA J. DALE, Daniel BURCKHARDT, THOMAS R. BUCKLEY, STEVEN A. TREWICK defining feature of the Hexapoda, as the name suggests, is six legs. Also, the body comprises a head, thorax, and abdomen. The number A of abdominal segments varies, however; there are only six in the Collembola (springtails), 9–12 in the Protura, and 10 in the Diplura, whereas in all other hexapods there are strictly 11. Insects are now regarded as comprising only those hexapods with 11 abdominal segments. Whereas crustaceans are the dominant group of arthropods in the sea, hexapods prevail on land, in numbers and biomass. Altogether, the Hexapoda constitutes the most diverse group of animals – the estimated number of described species worldwide is just over 900,000, with the beetles (order Coleoptera) comprising more than a third of these. Today, the Hexapoda is considered to contain four classes – the Insecta, and the Protura, Collembola, and Diplura. The latter three classes were formerly allied with the insect orders Archaeognatha (jumping bristletails) and Thysanura (silverfish) as the insect subclass Apterygota (‘wingless’). The Apterygota is now regarded as an artificial assemblage (Bitsch & Bitsch 2000). -
Hemideina Crassidens
UNIVERSITÉ DU QUÉBEC À MONTRÉAL LE MAINTIEN DE STRATÉGIES ALTERNATIVES CHEZ LE WELLINGTON TREE WETA (HEM/DE/NA CRASSIDENS): TESTER LES PRÉDICTIONS DE L'HYPOTHÈSE DE POLYMORPHISME GÉNÉTIQUE MÉMOIRE PRÉSENTÉ COMME EXIGENCE PARTIELLE DE LA MAÎTRISE EN BIOLOGIE PAR SARAHNASON JANVIER 2019 UNIVERSITÉ DU QUÉBEC À MONTRÉAL Service des bibliothèques Avertissement La diffusion de ce mémoire se fait dans le respect des droits de son auteur, qui a signé le formulaire Autorisation de reproduire et de diffuser un travail de recherche de cycles supérieurs (SDU-522 - Rév.07-2011). Cette autorisation stipule que «conformément à l'article 11 du Règlement no 8 des études de cycles supérieurs, [l'auteur] concède à l'Université du Québec à Montréal une licence non exclusiye d'utilisation et de publication de la totalité ou d'une partie importante de [son] travail de recherche pour des fins pédagogiques et non commerciales. Plus précisément, [l'auteur] autorise l'Université du Québec à Montréal à reproduire, diffuser, prêter, distribuer ou vendre des copies de [son] travail de recherche à des fins non commerciales sur quelque support que ce soit, y compris l'Internet. Cette licence et cette autorisation n'entraînent pas une renonciation de [la] part [de l'auteur] à [ses] droits moraux ni à [ses] droits de propriété intellectuelle. Sauf entente contraire, [l'auteur] conserve la liberté de diffuser et de commercialiser ou non ce travail dont [il] possède un exemplaire.» UNIVERSITÉ DU QUÉBEC À MONTRÉAL THE MAINTENANCE OF ALTERNATIVE STRATEGIES IN WELLINGTON TREE WETA (HEMIDEINA CRASSJDENS): TESTING THE PREDICTIONS OF THE GENETIC POLYMORPHISM HYPOTHESIS MÉMOIRE PRESENTED IN FULFILLMENT OF MASTER'S IN BIOLOGY BY SARAHNASON JANUARY, 2019 REMERCIEMENTS 1 would like to thank my supervisor Dr. -
Male Tree Weta Are Attracted to Cuticular Scent Cues but Do Not Discriminate According to Sex Or Among Two Closely Related Species
Received: 26 April 2017 | Revised: 7 June 2017 | Accepted: 3 July 2017 DOI: 10.1111/eth.12652 RESEARCH PAPER Male tree weta are attracted to cuticular scent cues but do not discriminate according to sex or among two closely related species Priscilla M. Wehi1,2 | Adrian Monks2 | Mary Morgan-Richards1 1Institute of Agriculture & Environment, Massey University, Palmerston North, Abstract New Zealand Recognition of conspecifics is an essential precursor of successful mating. Where 2 Landcare Research, Dunedin, New Zealand related species coexist, species discrimination might be important, but because related Correspondence species are similar, species signal recognition may actually be low. Chemical cues such Priscilla M. Wehi, Landcare Research, Private as cuticular hydrocarbons (CHCs) are frequently used by insects to identify suitable Bag 1930 Dunedin, 9054 New Zealand. Email: [email protected] sexual partners. We predicted that New Zealand tree weta (Hemideina spp.), a genus Funding information of nocturnal ensiferan Orthoptera that live both allopatrically and sympatrically, use This work was supported by New Zealand chemical signals from either frass or CHCs to find mates. In a series of six laboratory Foundation for Research, Science and Technology contract number UOWX0501, trials using both H. thoracica and H. crassidens, we found that male tree weta, but not and Postdoctoral fellowship MAUX0905; female tree weta, occupied cavities primed with female cuticular cues more often than Rutherford Discovery Fellowship 14- LCR- 001 to PMW; and Massey University MURF cavities without. However, males did not discriminate between chemical cues of male funding “What limits a weta?” to MMR. and female conspecifics, or between conspecifics and heterospecifics. -
The Early Evolution of Biting–Chewing Performance in Hexapoda
Chapter 6 The Early Evolution of Biting–Chewing Performance in Hexapoda Alexander Blanke Abstract Insects show a plethora of different mandible shapes. It was advocated that these mandible shapes are mainly a function of different feeding habits. This hypothesis was tested on a larger sampling of non-holometabolan biting–chewing insects with additional tests to understand the interplay of mandible function, feeding guild, and phylogeny. The results show that at the studied systematic level, variation in mandible biting–chewing effectivity is regulated to a large extent by phylogenetic history and the configuration of the mandible joints rather than the food preference of a given taxon. Additionally, lineages with multiple mandibular joints such as primary wingless hexapods show a wider functional space occupation of mandibular effectivity than dicondylic insects (¼ silverfish + winged insects) at significantly different evolutionary rates. The evolution and occupation of a compa- rably narrow functional performance space of dicondylic insects is surprising given the low effectivity values of this food uptake solution. Possible reasons for this relative evolutionary “stasis” are discussed. 6.1 Introduction Insecta sensu lato (¼ Hexapoda) display a high diversity of mouthpart shapes within the early evolved lineages which started to radiate approximately 479 million years ago (Misof et al. 2014). These shape changes were described qualitatively and were often stated to relate mainly to the type of food consumed (Yuasa 1920; Isely 1944; Evans and Forsythe 1985; Chapman and de Boer 1995). To the knowledge of the author, this and related statements regarding mouthpart mechanics being shaped by functional demands have never been tested in a quantitative framework. -
Using Artificial Refuges to Translocate and Establish Auckland Tree Weta Hemideina Thoracica on Korapuki Island, New Zealand
Conservation Evidence (2005) 2, 94-95 www.ConservationEvidence.com Using artificial refuges to translocate and establish Auckland tree weta Hemideina thoracica on Korapuki Island, New Zealand Green C. Department of Conservation, PO Box 10420, The Terrace, Wellington 6143, New Zealand SUMMARY Two hundred wooden refuges were provided for the Auckland tree weta Hemideina thoracica . Within six months over half were used, 52 weta were transferred to Korapuki Island by plugging then translocating these refuges. After five years, there were over 500 individual tree wetas present on Korapuki. BACKGROUND habitat modification led to the loss of a variety of birds, lizards and large bodied invertebrates The Auckland tree weta Hemideina thoracica from Korapuki, including the Auckland tree (Orthoptera: Anostostomatidae) is a common weta. Restoration activities began with the species widely distributed over the upper half eradication of rats in 1987. Subsequently a of the North Island and its offshore islands, variety of native skink species were New Zealand. Their eggs hatch in spring and reintroduced through translocation from weta take 13 – 15 months to mature going neighbouring islands that had escaped invasion through eight to ten instars, with adults by the Pacific rat. In addition the island has reaching about 50 - 60 mm body length. been used to test new methods of invertebrate Although omnivorous, tree weta generally feed monitoring and translocation techniques, on fresh foliage in the canopy of forest trees particularly using artificial weta refuges and shrubs, with occasional fruit, flowers and designed to facilitate both these techniques. other invertebrates augmenting their diet. Thus the project aimed to re-establish the Typically tree weta hide during the day by Auckland tree weta on Korapuki Island using squeezing themselves into refuges such as a artificial refuges. -
Forest Health Technology Enterprise Team
Forest Health Technology Enterprise Team TECHNOLOGY TRANSFER Biological Control ASSESSING HOST RANGES FOR PARASITOIDS AND PREDATORS USED FOR CLASSICAL BIOLOGICAL CONTROL: A GUIDE TO BEST PRACTICE R. G. Van Driesche, T. Murray, and R. Reardon (Eds.) Forest Health Technology Enterprise Team—Morgantown, West Virginia United States Forest FHTET-2004-03 Department of Service September 2004 Agriculture he Forest Health Technology Enterprise Team (FHTET) was created in 1995 Tby the Deputy Chief for State and Private Forestry, USDA, Forest Service, to develop and deliver technologies to protect and improve the health of American forests. This book was published by FHTET as part of the technology transfer series. http://www.fs.fed.us/foresthealth/technology/ Cover photo: Syngaster lepidus Brullè—Timothy Paine, University of California, Riverside. The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, sex, religion, age, disability, political beliefs, sexual orientation, or marital or family status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at 202-720-2600 (voice and TDD). To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326-W, Whitten Building, 1400 Independence Avenue, SW, Washington, D.C. 20250-9410 or call 202-720-5964 (voice and TDD). USDA is an equal opportunity provider and employer. The use of trade, firm, or corporation names in this publication is for information only and does not constitute an endorsement by the U.S. -
Scoping the Potential to Eradicate Rats, Wild Cats and Possums from Stewart Island/Rakiura
Scoping the Potential to Eradicate Rats, Wild Cats and Possums from Stewart Island/Rakiura Scoping the potential to eradicate rats, wild cats and possums from Stewart Island / Rakiura Page 2 of 139 Scoping the potential to eradicate rats, wild cats and possums from Stewart Island / Rakiura Quotes of note Southland mayor Frana Cardno on visiting Sirocco the kakapo on Ulva Island (Southland Times, 2 Sept 2006). “It was a truly magical experience walking through the bush on Ulva Island. The lush undergrowth, the sounds of kiwi and kaka’s call and you can’t help reflect and say a quiet thankyou to the Ulva Island Trust in partnership with DOC, who have eradicated all pests from this beautiful island. The birds and bush are being restored to what we had in the past, what an investment for the future.” Andy Roberts, Southern Islands Area Manager (Campbell Island Eradication Scoping Paper 2000). “We only got to this position by doing what others believed was impossible!” Compiled by: Brent Beaven Department of Conservation Southland Conservancy Invercargill New Zealand June 2008 Contracted by: Stewart Island/ Rakiura Community and Environment Trust PO Box 124 Stewart Island www.sircet.org.nz Page 3 of 139 Page 4 of 139 Summary What is proposed? Stewart Island / Rakiura has exceptionally high conservation values; in part due to the absence of certain pests that are present on mainland New Zealand (notably stoats and mice). However, Norway rats (Rattus norvegicus), ship rats (Rattus rattus), kiore / Pacific rats (Rattus exulans), wild cats (Felis catus) and possums (Trichosurus vulpecula) are established on Stewart Island / Rakiura and these species are causing a steady decline in the Island’s indigenous flora and fauna.