Torix Rickettsia: Aspects of Diversity, Host Range and Symbiont-Host Interaction

Total Page:16

File Type:pdf, Size:1020Kb

Torix Rickettsia: Aspects of Diversity, Host Range and Symbiont-Host Interaction Institute of Infection, Veterinary and Ecological Sciences Torix Rickettsia: aspects of diversity, host range and symbiont-host interaction. Thesis submitted in accordance with the requirements of the University of Liverpool for the degree of Doctor in Philosophy Panupong Thongprem December 2020 DECLARATION I hereby declare that the work in this thesis is based on research carried out at the Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool. The work contained in this thesis is my own, unless otherwise acknowledged and cited. The data that have already been published in scientific journals are specifically declared in each chapter with authors contribution described. This thesis is original and has not been previously submitted for any other degree. Panupong Thongprem December 2020 i ABSTRACT Rickettsia bacteria have traditionally been considered as the aetiologic agent of deadly arthropod-borne diseases in humans and livestock. However, more recent studies have discovered Rickettsia as non-vertebrate pathogens that are actually important to invertebrate evolution as symbionts. Recently, Rickettsia in the ‘torix’ clade were described from glossiphoniid leeches. This clade has since been observed to infect a wide range of invertebrate species and is thought to be most common in host species associated with freshwater habitats. This leads to a general hypothesis that torix Rickettsia are a common endosymbiont of freshwater taxa. However, this hypothesis is yet to be formally tested. To assess this hypothesis, I firstly investigated in-depth a freshwater-associated insect order, the Odonata (dragonflies and damselflies), in which torix Rickettsia had not been previously recorded. This study revealed the first incidence of torix Rickettsia in odonates, present in roughly 10% of the screened species. Maternal transmission of this endosymbiont was observed in a damselfly (Coenagrion puella), and this strain has likely driven mtDNA introgression between the insect and its sister species (C. pulchellum). Then, I expanded the screen to test for torix Rickettsia in other invertebrate taxa and compared the infection frequency between freshwater and terrestrial communities. Fisher’s exact test indicated that the proportions of infected species from freshwater community is significantly higher than the terrestrial group in three representative insect orders. In addition to this broad screen, torix Rickettsia in a few blood-feeding insects are recorded for the first time, including mosquitos (Anopheles plumbeus), black flies (Simulium aureum) and the common bed bug (Cimex lectularius). Bed bugs were then established as a model system to study biological impacts of torix Rickettsia carriage. Symbionts in the bed bug were transmitted via matrilines only. There were no signs of reproductive parasitism, sex ratio distortion or cytoplasmic incompatibility phenotypes. Torix Rickettsia only express mild parasitic impacts on C. lectularius biology by slowing development time and reducing fecundity. Finally, this thesis raises three questions for onward study; i) why torix Rickettsia are abundant in freshwater biomes, ii) how do torix strains transition into terrestrial species and iii) how torix Rickettsia are associated with broad spectrum of eukaryotic hosts. Possible scenarios for these three questions are discussed for future study. ii ACKNOWLEDGEMENTS I would like to express my great appreciation to ‘Development and Promotion of Science and Technology Talents Project (DPST)’ for the financial support and opportunity to study in University of Liverpool, UK, along with the ‘Office of Educational Affairs, Royal Thai Embassy’ for being responsible for my academic life. However, the completion of my PhD degree would not have been possible without the support of these following people. First and foremost, I would like to thank my supervisor, Prof Greg Hurst, for his kind hospitality, consistent support and useful guidance during these four years of my research and personal development. Not only was he a major reason of my PhD success, but he also was a major supplier of chocolates and foods, and especially ice-creams on a hot summer day. Secondly, I would like to thank Dr Lucy Weinert for her kind response to be the external examiner in my viva. This thesis would have not been accomplished without the useful guidance of my assessors, Prof David Atkinson and Dr Kate Baker, temporary assessors, Dr Meriel Jones and Dr Seth Barribeau, and my secondary supervisor, Dr Alistair Darby. I was lucky to receive help from two people with expertise in the common bed bug, Dr Oliver Otti and Dr Sophie Evison. They guided me in all the works in bed bug experiments. Grateful thanks to Otti for a major blood resource of bed bug productions and his kind hospitality when I was visiting the lab in University of Bayreuth, Germany. I had great pleasure of working with Prof David Thompson and Dr M. Olalla Lorenzo- Carballa in my first publication, and thanks for their odonate samples. I also would like to acknowledge other contributors who contributed specimens and DNA samples for this research, i.e., Craig Maccadam, Dr Anthony Cook, Dr Steffon Roth and Dr Klaus Reinhardt. Special thanks to Dr Jack Pilgrim who firstly taught me PCR and FISH techniques. He always proof-reads and comments on my works since the first-year report, including my first publication and until this thesis in the end. Thanks to people in the Hurst group who always support and share all happy memories together. In particular, I’m very grateful to Dr Stefanos Siozios and Dr Ewa Chrostek for their guidance and assistance in teaching me all these years. Thanks to Dr Louise Reynolds for her comments on every aspect of my oral presentation practices, Dr Emily Hornett for her comments in my manuscripts. Thanks to Helen Davison for helping me in all field and the works until we finished the publication from Chapter 2. Thanks also to Andrew Williams for his help in BEV-like symbiont screening, Jordan Jones and Sam Edwards for their blood donation to supply my bed bugs when they were hungry. Thanks go to all academic staff and PhD colleagues in Biosciences building for their help and support, my Thai friends in Liverpool for the company in all situations and Chaba Chaba Thai restaurant in Allerton for being my shelter over these years. Finally, my deep and sincere gratitude go to my family, my mom, dad and sister, for their encouragement, support and love. P.S. “My deepest condolences go to all invertebrates that were sacrificed, especially numbers of bed bugs that were left to die for nothing during the pandemic of COVID-19” iii Table of Contents DECLARATION ........................................................................................................ i ABSTRACT ............................................................................................................. ii ACKNOWLEDGEMENTS ........................................................................................ iii Table of Contents .................................................................................................. iv CHAPTER 1 Introduction ........................................................................................ 1 1.1 Heritable endosymbionts ........................................................................................ 2 1.1.1 Primary and secondary endosymbionts ............................................................................... 2 1.1.2 Symbionts that manipulate host reproduction .................................................................... 4 1.1.3 Cytoplasmic incompatibility (CI) .......................................................................................... 8 1.1.4 Fitness impacts of symbiont association ............................................................................ 10 1.2 Rickettsia .............................................................................................................. 13 1.2.1 Rickettsia in the aspects of arthropod borne disease ........................................................ 13 1.2.2 Arthropod-associated Rickettsia ........................................................................................ 15 1.2.3 Transmission patterns and impact on host biology ........................................................... 15 1.2.4 Host range .......................................................................................................................... 16 1.2.5 Diversity of Rickettsia ......................................................................................................... 17 1.3 Torix group Rickettsia ............................................................................................ 20 1.3.1 Incidence of torix group Rickettsia ..................................................................................... 20 1.3.2 Torix Rickettsia hosts ......................................................................................................... 20 1.4 General objectives, study system and directions for this thesis ............................. 21 1.4.1 Chapter 2: Diversity of Rickettsia in order Odonata .......................................................... 21 1.4.2 Chapter 3: Screening of freshwater and terrestrial arthropod taxa .................................. 21 1.4.3 Chapter 4: Incidence of torix Rickettsia in the common bed bug ...................................... 22 1.4.4 Chapter 5: Torix Rickettsia-Bed bug interaction ...............................................................
Recommended publications
  • The Circadian Rhythm and Visual Elements in Scorpions: a Review
    Arthropods, 2013, 2(4): 150-158 Article The circadian rhythm and visual elements in scorpions: A review M. R. Warburg Dept. of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel E-mail: [email protected] Received 12 August 2013; Accepted 15 September 2013; Published online 1 December 2013 Abstract The purpose of this paper is to review the state of research in this field and to outline future ways how to proceed. The term: "Zeitgeber", implies ‘time giver’ meaning: synchronizer when an external entrainment factor synchronizes the endogenous rhythm. Is this ‘time’, the chronological date in the sense that it is related to the time of day as reflected in the natural light-dark cycles? Or does it mean cyclic phases of activity as demonstrated in the laboratory? Moreover, is it totally independent of the animal's physiological condition? This subject was studied largely in buthid species (15) of a total of only 30 scorpion species. Moreover, many (over 25%) of the studies (19) were done on a single buthid species: Androctonus australis. Species diversity was observed only by one author’s work who studied eye structure in seven species. Since he found variability in eye structure it would not be advisable to generalize. The fact that experimenting was carried out irrespective of species diversity, gender, ecological or physiological conditions, and was usually done on animals kept in captivity for some time before the experimenting had started, is a major drawback to this kind of study. The diurnal rhythms is triggered either directly through spontaneous arrhythmic activity in the central nervous system, or by neurosecretory material.
    [Show full text]
  • Dragonflies and Damselflies in Your Garden
    Natural England works for people, places and nature to conserve and enhance biodiversity, landscapes and wildlife in rural, urban, coastal and marine areas. Dragonflies and www.naturalengland.org.uk © Natural England 2007 damselflies in your garden ISBN 978-1-84754-015-7 Catalogue code NE21 Written by Caroline Daguet Designed by RR Donnelley Front cover photograph: A male southern hawker dragonfly. This species is the one most commonly seen in gardens. Steve Cham. www.naturalengland.org.uk Dragonflies and damselflies in your garden Dragonflies and damselflies are Modern dragonflies are tiny by amazing insects. They have a long comparison, but are still large and history and modern species are almost spectacular enough to capture the identical to ancestors that flew over attention of anyone walking along a prehistoric forests some 300 million river bank or enjoying a sunny years ago. Some of these ancient afternoon by the garden pond. dragonflies were giants, with This booklet will tell you about the wingspans of up to 70 cm. biology and life-cycles of dragonflies and damselflies, help you to identify some common species, and tell you how you can encourage these insects to visit your garden. Male common blue damselfly. Most damselflies hold their wings against their bodies when at rest. BDS Dragonflies and damselflies belong to Dragonflies the insect order known as Odonata, Dragonflies are usually larger than meaning ‘toothed jaws’. They are often damselflies. They are stronger fliers and referred to collectively as ‘dragonflies’, can often be found well away from but dragonflies and damselflies are two water. When at rest, they hold their distinct groups.
    [Show full text]
  • Damselflies & Dragonflies of the Tees and Humber Industrial Sites
    Damselflies & Dragonflies of the Tees and Humber Industrial Sites Introduction Damselflies and dragonflies belong to the same ‘order’ of insects called the Odonata. Although the adults are flying insects, the other stages of their life cycle are spent in water. Adults lay their eggs on aquatic plants or in the mud of still or slow moving freshwater. The larval or ‘nymph’ form is the immature stage which is wingless. Nymphs eat other aquatic insects and small animals such as tadpoles and small fish. They shed their skin as they grow and larger species can take several years to reach the point Damsel or Dragon? where they become full-grown. At this point The following key points will give an they climb out of the water onto surrounding indication of the main differences vegetation and after a short period the adult between dragonflies and damselflies: insect emerges from the old larval skin. The adults are also fearsome predators, catching • Both have two large ‘compound’ eyes at other flying insects on the wing. Damselflies the front of their head. A dragonfly’s eyes eat smaller species, such as greenfly or are so large that they meet in the middle midges, but a dragonfly’s diet includes larger or at the top of the head, but those of a flying insects such as butterflies, moths and damselfly are smaller and always separate. even smaller dragonflies and damselflies! • Both have four wings, but when resting, damselflies fold their wings back This leaflet is a useful field guide, that covers along their bodies or at 45 degrees, the Odonata species which can be seen in whereas dragonflies rest with their the Tees and Humber industrial areas.
    [Show full text]
  • Brouci Z Čeledi Mandelinkovitých (Coleoptera: Chrysomelidae) Lokality Hůrka V Hluboké Nad Vltavou
    STŘEDOŠKOLSKÁ ODBORNÁ ČINNOST Brouci z čeledi mandelinkovitých (Coleoptera: Chrysomelidae) lokality Hůrka v Hluboké nad Vltavou Albert Damaška Praha 2012 STŘEDOŠKOLSKÁ ODBORNÁ ČINNOST OBOR SOČ: 08 – Ochrana a tvorba životního prostředí Brouci z čeledi mandelinkovitých (Coleoptera: Chrysomelidae) lokality Hůrka v Hluboké nad Vltavou Leaf beetles (Coleoptera, Chrysomelidae) of the locality „Hůrka“ in Hluboká nad Vltavou Autor: Albert Damaška Škola: Gymnázium Jana Nerudy, Hellichova 3, Praha 1 Konzultant: Michael Mikát Praha 2012 1 Prohlášení Prohlašuji, že jsem svou práci vypracoval samostatně pod vedením Michaela Mikáta, použil jsem pouze podklady (literaturu, SW atd.) uvedené v přiloženém seznamu a postup při zpracování a dalším nakládání s prací je v souladu se zákonem č. 121/2000 Sb., o právu autorském, o právech souvisejících s právem autorským a o změně některých zákonů (autorský zákon) v platném znění. V ………… dne ………………… podpis: …………………………… 2 Poděkování Rád bych na tomto místě poděkoval především svému konzultantovi Michaelu Mikátovi za pomoc při psaní textu práce, tvorbě grafů a výpočtech. Dále patří dík Mgr. Pavlu Špryňarovi a RNDr. Jaromíru Strejčkovi za determinaci některých jedinců a za cenné rady a zkušenosti k práci v terénu, které jsem mimo jiné užil i při sběru dat pro tuto práci. Děkuji i Mgr. Lýdii Černé za korekturu anglického jazyka v anotaci. V neposlední řadě patří dík i mým rodičům za obětavou pomoc v mnoha situacích a za pomoc při dopravě na lokalitu. 3 Anotace Mandelinkovití brouci (Chrysomelidae) jsou velmi vhodnými bioindikátory vzhledem k jejich vazbě na rostliny. Cílem práce bylo provedení faunistického průzkumu brouků čeledi mandelinkovitých na lokalitě Hůrka v Hluboké nad Vltavou na Českobudějovicku a zjištěné výsledky aplikovat v ochraně lokality.
    [Show full text]
  • Ad Hoc Referees Committee for This Issue Thomas Dirnböck
    COMITATO DI REVISIONE PER QUESTO NUMERO – Ad hoc referees committee for this issue Thomas Dirnböck Umweltbundesamt GmbH Studien & Beratung II, Spittelauer Lände 5, 1090 Wien, Austria Marco Kovac Slovenian Forestry Institute, Vecna pot 2, 1000 Ljubljana, Slovenija Susanna Nocentini Università degli Studi di Firenze, DISTAF, Via S. Bonaventura 13, 50145 Firenze Ralf Ohlemueller Department of Biology, University of York, PO Box 373, York YO10 5YW, UK Sandro Pignatti Orto Botanico di Roma, Dipartimento di Biologia Vegetale, L.go Cristina di Svezia, 24, 00165 Roma Stergios Pirintsos Department of Biology, University of Crete, P.O.Box 2208, 71409 Heraklion, Greece Matthias Plattner Hintermann & Weber AG, Oeko-Logische Beratung Planung Forschung, Hauptstrasse 52, CH-4153 Reinach Basel Arne Pommerening School of Agricultural & Forest Sciences, University of Wales, Bangor, Gwynedd LL57 2UW, DU/ UK Roberto Scotti Università degli Studi di Sassari, DESA, Nuoro branch, Via C. Colombo 1, 08100 Nuoro Franz Starlinger Forstliche Bundesversuchsanstalt Wien, A 1131 Vienna, Austria Silvia Stofer Eidgenössische Forschungsanstalt für Wald, Schnee und Landschaft – WSL, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland Norman Woodley Systematic Entomology Lab-USDA , c/o Smithsonian Institution NHB-168 , O Box 37012 Washington, DC 20013-7012 CURATORI DI QUESTO NUMERO – Editors Marco Ferretti, Bruno Petriccione, Gianfranco Fabbio, Filippo Bussotti EDITORE – Publisher C.R.A. - Istituto Sperimentale per la Selvicoltura Viale Santa Margherita, 80 – 52100 Arezzo Tel.. ++39 0575 353021; Fax. ++39 0575 353490; E-mail:[email protected] Volume 30, Supplemento 2 - 2006 LIST OF CONTRIBUTORS C.R.A.A - ISTITUTO N SPERIMENTALE N A PER LA LSELVICOLTURA I (in alphabetic order) Allegrini, M. C.
    [Show full text]
  • 196 Arachnology (2019)18 (3), 196–212 a Revised Checklist of the Spiders of Great Britain Methods and Ireland Selection Criteria and Lists
    196 Arachnology (2019)18 (3), 196–212 A revised checklist of the spiders of Great Britain Methods and Ireland Selection criteria and lists Alastair Lavery The checklist has two main sections; List A contains all Burach, Carnbo, species proved or suspected to be established and List B Kinross, KY13 0NX species recorded only in specific circumstances. email: [email protected] The criterion for inclusion in list A is evidence that self- sustaining populations of the species are established within Great Britain and Ireland. This is taken to include records Abstract from the same site over a number of years or from a number A revised checklist of spider species found in Great Britain and of sites. Species not recorded after 1919, one hundred years Ireland is presented together with their national distributions, before the publication of this list, are not included, though national and international conservation statuses and syn- this has not been applied strictly for Irish species because of onymies. The list allows users to access the sources most often substantially lower recording levels. used in studying spiders on the archipelago. The list does not differentiate between species naturally Keywords: Araneae • Europe occurring and those that have established with human assis- tance; in practice this can be very difficult to determine. Introduction List A: species established in natural or semi-natural A checklist can have multiple purposes. Its primary pur- habitats pose is to provide an up-to-date list of the species found in the geographical area and, as in this case, to major divisions The main species list, List A1, includes all species found within that area.
    [Show full text]
  • Targeting a Portion of Central European Spider Diversity for Permanent Preservation
    Biodiversity Data Journal 1: e980 doi: 10.3897/BDJ.1.e980 Taxonomic paper Targeting a portion of central European spider diversity for permanent preservation Klemen Čandek†, Matjaž Gregorič†, Rok Kostanjšek‡§, Holger Frick , Christian Kropf|, Matjaž Kuntner†,¶ † Institute of Biology, Scientific Research Centre, Slovenian Academy of Sciences and Arts, Ljubljana, Slovenia ‡ Department of Biology, Biotechnical faculty, University of Ljubljana, Ljubljana, Slovenia § National Collection of Natural History, Office of Environment, Vaduz, Liechtenstein | Department of Invertebrates, Natural History Museum, Bern, Switzerland ¶ National Museum of Natural History, Smithsonian Institution, Washington, DC, United States of America Corresponding author: Klemen Čandek ([email protected]) Academic editor: Jeremy Miller Received: 02 Aug 2013 | Accepted: 29 Aug 2013 | Published: 16 Sep 2013 Citation: Čandek K, Gregorič M, Kostanjšek R, Frick H, Kropf C, Kuntner M (2013) Targeting a portion of central European spider diversity for permanent preservation. Biodiversity Data Journal 1: e980. doi: 10.3897/ BDJ.1.e980 Abstract Given the limited success of past and current conservation efforts, an alternative approach is to preserve tissues and genomes of targeted organisms in cryobanks to make them accessible for future generations. Our pilot preservation project aimed to obtain, expertly identify, and permanently preserve a quarter of the known spider species diversity shared between Slovenia and Switzerland, estimated at 275 species. We here report on the faunistic part of this project, which resulted in 324 species (227 in Slovenia, 143 in Switzerland) for which identification was reasonably established. This material is now preserved in cryobanks, is being processed for DNA barcoding, and is available for genomic studies. Keywords Conservation, DNA barcoding, cryobank, biorepository, faunistics © Čandek K et al.
    [Show full text]
  • MONITORING REPORT 2020 BILL BUDD It Is with Great Sadness That We Must Report the Death of Bull Budd in Autumn 2020
    Wimbledon and Putney Commons ECOLOGICAL AND ENVIRONMENTAL MONITORING REPORT 2020 BILL BUDD It is with great sadness that we must report the death of Bull Budd in autumn 2020. Bill was our much respected, dragonfly and damselfly recorder and a member of the Wildlife and Conservation Forum. As well as recording on the Commons, Bill also worked as a volunteer at the London Natural History Museum for many years and was the Surrey Vice County Dragonfly Recorder. Bill supported our BioBlitz activities and, with others from the Forum, led dedicated walks raising public awareness of the dragonfly and damselfly populations on the Commons. In September 2020 in recognition of his outstanding contributions to the recording and conservation of Odonata, a newly identified dragonfly species found in the Bornean rainforest* was named Megalogomphus buddi. His contributions will be very much missed. * For further information see: https://british-dragonflies.org.uk/dragonfly-named-after-bds-county-dragonfly-recorder-bill-budd/ Dow, R.A. and Price, B.W. (2020) A review of Megalogomphus sumatranus (Krüger, 1899) and its allies in Sundaland with a description of a new species from Borneo (Odonata: Anisoptera: Gomphidae). Zootaxa 4845 (4): 487–508. https://www.mapress.com/j/zt/article/view/zootaxa.4845.4.2 Accessed 24.02.2021 Thanks are due to everyone who has contributed records and photographs for this report; to the willing volunteers; for the support of Wildlife and Conservation Forum members; and for the reciprocal enthusiasm of Wimbledon and Putney Commons’ staff. A special thank you goes to Angela Evans-Hill for her help with proof reading, chasing missing data and assistance with the final formatting, compilation and printing of this report.
    [Show full text]
  • Actual Problems of Protection and Sustainable Use of the Animal World Diversity
    ACADEMY OF SCIENCES OF MOLDOVA DEPARTMENT OF NATURE AND LIFE SCIENCES INSTITUTE OF ZOOLOGY Actual problems of protection and sustainable use of ThE animal world diversity International Conference of Zoologists dedicated to the 50th anniversary from the foundation of Institute of Zoology of ASM Chisinau – 2011 ACTUAL PRObLEMS OF PROTECTION AND SUSTAINAbLE USE OF ThE ANIMAL wORLD DIVERSITY Content CZU 59/599:502.74 (082) D 53 Dumitru Murariu. READING ABOUT SPECIES CONCEPT IN BIOLOGY.......................................................................10 Dan Munteanu. AChievements Of Romania in ThE field Of nature The materials of International Conference of Zoologists „Actual problems of protection and protection and implementation Of European Union’S rules concerning ThE biodiversity conservation (1990-2010)...............................................................................11 sustainable use of animal world diversity” organized by the Institute of Zoology of the Aca- demy of Sciences of Moldova in celebration of the 50th anniversary of its foundation are a gene- Laszlo Varadi. ThE protection and sustainable use Of Aquatic resources.....................................13 ralization of the latest scientific researches in the country and abroad concerning the diversity of aquatic and terrestrial animal communities, molecular-genetic methods in systematics, phylo- Terrestrial Vertebrates.................................................................................................................................................15
    [Show full text]
  • Estudio Taxonómico Preliminar De Los Grylloidea De España (Insecta, Orthoptera)
    Graellsia, 57(2): 95-139 (2001) ESTUDIO TAXONÓMICO PRELIMINAR DE LOS GRYLLOIDEA DE ESPAÑA (INSECTA, ORTHOPTERA) A. V. Gorochov * y V. Llorente ** RESUMEN En el presente trabajo se realiza un estudio taxonómico y faunístico de la superfami- lia Grylloidea de España, incluyendo las islas Baleares y Canarias. Se examinan las 60 especies y subespecies que se han encontrado hasta ahora en este país, siendo seis de ellas nuevas para la ciencia: Petaloptila (P.) fermini, P. (P.) isabelae, P. (Zapetaloptila) venosa, P. (Z.) barrancoi, Paramogoplistes dentatus sp. n. y Grylloderes orlovskajae adventicius subsp. n.; asimismo se crean dos nuevos subgéneros Italoptila y Zapetaloptila. Se establece una sinonimia correcta del género Grylloderes Bolívar, 1894 (= Platy- gryllus Chopard, 1961, syn. dist. ), así como siete sinonimias específicas: Gryllomorpha (G.) dalmatina (Ocskay, 1832) (= Gryllomorpha dalmatina strumae Andreeva, 1982, syn. n.), Petaloptila (P.) aliena (Brunner-Wattenwyl, 1882) (= Discoptila eitschbergeri Harz, 1976, syn. n.), Acheta hispanicus Rambur, 1839 (= Gryllus erythrospilus Walker, 1869, syn. n., Gryllus hispanicus var. fusculus Bolívar, 1927, syn. n.), Eumodicogryllus bordigalensis (Latreille, 1802) (= Gryllodes ferdinandi Bolívar, 1899, syn. n., Gryllus chinensis var intermedia Bolívar, 1927, syn. n.), Eugryllodes pipiens (Dufour, 1820) (= Gryllodes pipiens var. provincialis Azam, 1901, syn. n.), y además cinco estatus nuevos y una combinación nueva. Se citan por primera vez para la Península Ibérica tres especies [Eumodicogryllus theryi (Chopard, 1943), Sciobia natalia Gorochov, 1985 y Oecanthus dulcisonans Gorochov, 1993], las dos primeras de las cuales, lo son también para Europa; para la España peninsular una (Svercus p. palmetorum Krauss, 1902) y tres para las islas Canarias [Natula averni (Costa, 1855), comb.
    [Show full text]
  • Entomophthorales
    ARSARSARSARSARSARS ARSARS CollectionCollectionef ofof EntomopathogenicEntomopathogenic FungalFungal CulturesCultures ENTOMOPHTHORALES FULLY INDEXED [INCLUDES 1568 ISOLAtes] USDA-ARS Biological Integrated Pest Management Research Robert W. Holley Center for Agriculture and Health 538 Tower Road Ithaca, New York 14853-2901 28 July 2011 Search the ARSEF catalog online at http://www.ars.usda.gov/Main/docs.htm?docid=12125 ARSEF Collection Staff Richard A. Humber, Curator phone: [+1] 607-255-1276 fax: [+1] 607-255-1132 email: [email protected] Karen S. Hansen phone: [+1] 607-255-1274 fax: [+1] 607-255-1132 email: [email protected] Micheal M. Wheeler phone: [+1] 607-255-1274 fax: [+1] 607-255-1132 email: [email protected] USDA-ARS Biological IPM Research Unit Robert W. Holley Center for Agriculture & Health 538 Tower Road Ithaca, New York 14853-2901, USA IMPORTANT NOTE Recent phylogenetically based reclassifications of fungal pathogens of invertebrates Richard A. Humber Insect Mycologist and Curator, ARSEF UPDATED July 2011 Some seemingly dramatic and comparatively recent changes in the classification of a number of fungi may continue to cause confusion or a degree of discomfort to many of the clients of the cultures and informational resources provided by the ARSEF culture collection. This short treatment is an attempt to summarize some of these changes, the reasons for them, and to provide the essential references to the literature in which the changes are proposed. As the Curator of the ARSEF collection I wish to assure you that these changes are appropriate, progressive, and necessary to modernize and to stabilize the systematics of the fungal pathogens affecting insects and other invertebrates, and I urge you to adopt them into your own thinking, teaching, and publications.
    [Show full text]
  • Aspects, Including Pitfalls, of Temporal Sampling of Flying Insects, with Special Reference to Aphids
    insects Perspective Aspects, Including Pitfalls, of Temporal Sampling of Flying Insects, with Special Reference to Aphids Hugh D. Loxdale School of Biosciences, Cardiff University, The Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, Wales, UK; [email protected] Received: 10 September 2018; Accepted: 26 October 2018; Published: 1 November 2018 Abstract: Since the advent and widespread use of high-resolution molecular markers in the late 1970s, it is now well established that natural populations of insects are not necessarily homogeneous genetically and show variations at different spatial scales due to a variety of reasons, including hybridization/introgression events. In a similar vein, populations of insects are not necessarily homogenous in time, either over the course of seasons or even within a single season. This of course has profound consequences for surveys examining, for whatever reason/s, the temporal population patterns of insects, especially flying insects as mostly discussed here. In the present article, the topics covered include climate and climate change; changes in ecological niches due to changes in available hosts, i.e., essentially, adaptation events; hybridization influencing behaviour–host shifts; infection by pathogens and parasites/parasitoids; habituation to light, sound and pheromone lures; chromosomal/genetic changes affecting physiology and behaviour; and insecticide resistance. If such phenomena—i.e., aspects and pitfalls—are not considered during spatio-temporal study programmes, which is even more true in the light of the recent discovery of morphologically similar/identical cryptic species, then the conclusions drawn in terms of the efforts to combat pest insects or conserve rare and endangered species may be in error and hence end in failure.
    [Show full text]