Artificial Cover Survey Report 2010
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Xenosaurus Tzacualtipantecus. the Zacualtipán Knob-Scaled Lizard Is Endemic to the Sierra Madre Oriental of Eastern Mexico
Xenosaurus tzacualtipantecus. The Zacualtipán knob-scaled lizard is endemic to the Sierra Madre Oriental of eastern Mexico. This medium-large lizard (female holotype measures 188 mm in total length) is known only from the vicinity of the type locality in eastern Hidalgo, at an elevation of 1,900 m in pine-oak forest, and a nearby locality at 2,000 m in northern Veracruz (Woolrich- Piña and Smith 2012). Xenosaurus tzacualtipantecus is thought to belong to the northern clade of the genus, which also contains X. newmanorum and X. platyceps (Bhullar 2011). As with its congeners, X. tzacualtipantecus is an inhabitant of crevices in limestone rocks. This species consumes beetles and lepidopteran larvae and gives birth to living young. The habitat of this lizard in the vicinity of the type locality is being deforested, and people in nearby towns have created an open garbage dump in this area. We determined its EVS as 17, in the middle of the high vulnerability category (see text for explanation), and its status by the IUCN and SEMAR- NAT presently are undetermined. This newly described endemic species is one of nine known species in the monogeneric family Xenosauridae, which is endemic to northern Mesoamerica (Mexico from Tamaulipas to Chiapas and into the montane portions of Alta Verapaz, Guatemala). All but one of these nine species is endemic to Mexico. Photo by Christian Berriozabal-Islas. amphibian-reptile-conservation.org 01 June 2013 | Volume 7 | Number 1 | e61 Copyright: © 2013 Wilson et al. This is an open-access article distributed under the terms of the Creative Com- mons Attribution–NonCommercial–NoDerivs 3.0 Unported License, which permits unrestricted use for non-com- Amphibian & Reptile Conservation 7(1): 1–47. -
Element Status Designations by Common Name Arizona Game And
Element Status Designations by Common Name Arizona Game and Fish Department, Heritage Data Management System Updated: 10/15/2019 COMMON NAME SCIENTIFIC NAME ELCODE ESA DATE CRITHAB BLM USFS NESL MEXFED SGCN NPL SRANK GRANK TRACK TAXON A Arizona‐Mexican Orange Choisya arizonica var. amplophylla PDRUT02031 S2 G4TNR Y Plant A Balsamroot Balsamorhiza hookeri var. hispidula PDAST11041 S1 G5T3T5 Y Plant A Blueberry Bee Osmia ribifloris IIHYMA2570 S? G4G5 Y Invertebrate A Buckmoth Hemileuca grotei IILEW0M070 S? G4 N Invertebrate A Buckmoth Hemileuca grotei diana IILEW0M072 S? G4T3T4 Y Invertebrate A Bumble Bee Bombus centralis IIHYM24100 S? G4G5 Y Invertebrate A Bumble Bee Bombus fervidus IIHYM24110 S? G4? Y Invertebrate A Bumble Bee Bombus flavifrons IIHYM24120 S? G5 Y Invertebrate A Bumble Bee Bombus huntii IIHYM24140 S? G5 Y Invertebrate A Bumble Bee Bombus melanopygus IIHYM24150 S? G5 Y Invertebrate A Bumble Bee Bombus morrisoni IIHYM24460 S? G4G5 Y Invertebrate A Bumble Bee Bombus nevadensis IIHYM24170 S? G4G5 Y Invertebrate A Bushtail Caddisfly Gumaga griseola IITRI53010 S? G5 Y Invertebrate A Bushtailed Caddisfly Gumaga nigricula IITRI53020 S? G3G4 Y Invertebrate A Buttercup Ranunculus inamoenus var. subaffinis PDRAN0L1C3 S1 G5T1 YPlant A caddisfly Hydropsyche occidentalis IITRI25460 S2S3 G5 Y Invertebrate A caddisfly Hydropsyche oslari IITRIG6010 S2S3 G5 Y Invertebrate A caddisfly Lepidostoma apache IITRI64A10 S S1 G1 Y Invertebrate A Caddisfly Agapetus boulderensis IITRI33190 S? G5 Y Invertebrate A Caddisfly Alisotrichia arizonica IITRID7010 -
Reptiles Squamata/Charinidae [ ] Lichanura Trivirgata Rosy Boa
National Park Service U.S. Department of the Interior Species Checklist for Mojave National Preserve (MOJA) This species list is a work in progress. It represents information currently in the NPSpecies data system and records are continually being added or updated by National Park Service staff. To report an error or make a suggestion, go to https://irma.nps.gov/npspecies/suggest. Scientific Name Common Name Reptiles Squamata/Charinidae [ ] Lichanura trivirgata rosy boa Squamata/Colubridae [ ] Arizona elegans glossy snake [ ] Chionactis occipitalis western shovel-nosed snake [ ] Coluber flagellum coachwhip [ ] Coluber taeniatus striped whipsnake [ ] Diadophis punctatus ring-necked snake [ ] Hypsiglena chlorophaea desert nightsnake [ ] Lampropeltis californiae California kingsnake [ ] Phyllorhynchus decurtatus spotted leaf-nosed snake [ ] Pituophis catenifer gopher snake [ ] Rhinocheilus lecontei long-nosed snake [ ] Salvadora hexalepis western patch-nosed snake [ ] Sonora semiannulata western groundsnake [ ] Tantilla hobartsmithi Smith's black-headed snake [ ] Trimorphodon biscutatus California lyresnake Squamata/Crotaphytidae [ ] Crotaphytus bicinctores Great Basin collared lizard [ ] Gambelia wislizenii long-nosed leopard lizard Squamata/Eublepharidae [ ] Coleonyx variegatus western banded gecko Squamata/Helodermatidae [ ] Heloderma suspectum gila monster Squamata/Iguanidae [ ] Dipsosaurus dorsalis desert iguana [ ] Sauromalus ater common chuckwalla [ ] Sceloporus occidentalis western fence lizard [ ] Sceloporus uniformis yellow-backed -
Effects of Human Use of NCCP Reserves on Reptile and Mammal Species in San Diego
FINAL REPORT Wildlife Conservation Society Agreement No: P1582100 Effects of Human Use of NCCP Reserves on Reptile and Mammal Species in San Diego SARAH E. REED1.2, COURTNEY L. LARSON2 and KEVIN R. CROOKS2 1Americas Program, Wildlife Conservation Society 2Department of Fish, Wildlife & Conservation Biology, Colorado State University June 1, 2019 Table of Contents Executive Summary ........................................................................................................................................... 2 Background and Objectives ............................................................................................................................. 4 Chapter 1. Landscape Model Validation ........................................................................................................ 8 Chapter 2. Citizen Science Monitoring ......................................................................................................... 13 Chapter 3. Effects of Human Activity on Reptiles and Mammals ........................................................... 18 Chapter 4. Before-After Control-Impact Experiment ............................................................................... 37 Discussion ......................................................................................................................................................... 42 Literature Cited ................................................................................................................................................ 50 -
Legal Authority Over the Use of Native Amphibians and Reptiles in the United States State of the Union
STATE OF THE UNION: Legal Authority Over the Use of Native Amphibians and Reptiles in the United States STATE OF THE UNION: Legal Authority Over the Use of Native Amphibians and Reptiles in the United States Coordinating Editors Priya Nanjappa1 and Paulette M. Conrad2 Editorial Assistants Randi Logsdon3, Cara Allen3, Brian Todd4, and Betsy Bolster3 1Association of Fish & Wildlife Agencies Washington, DC 2Nevada Department of Wildlife Las Vegas, NV 3California Department of Fish and Game Sacramento, CA 4University of California-Davis Davis, CA ACKNOWLEDGEMENTS WE THANK THE FOLLOWING PARTNERS FOR FUNDING AND IN-KIND CONTRIBUTIONS RELATED TO THE DEVELOPMENT, EDITING, AND PRODUCTION OF THIS DOCUMENT: US Fish & Wildlife Service Competitive State Wildlife Grant Program funding for “Amphibian & Reptile Conservation Need” proposal, with its five primary partner states: l Missouri Department of Conservation l Nevada Department of Wildlife l California Department of Fish and Game l Georgia Department of Natural Resources l Michigan Department of Natural Resources Association of Fish & Wildlife Agencies Missouri Conservation Heritage Foundation Arizona Game and Fish Department US Fish & Wildlife Service, International Affairs, International Wildlife Trade Program DJ Case & Associates Special thanks to Victor Young for his skill and assistance in graphic design for this document. 2009 Amphibian & Reptile Regulatory Summit Planning Team: Polly Conrad (Nevada Department of Wildlife), Gene Elms (Arizona Game and Fish Department), Mike Harris (Georgia Department of Natural Resources), Captain Linda Harrison (Florida Fish and Wildlife Conservation Commission), Priya Nanjappa (Association of Fish & Wildlife Agencies), Matt Wagner (Texas Parks and Wildlife Department), and Captain John West (since retired, Florida Fish and Wildlife Conservation Commission) Nanjappa, P. -
Life History Account for Gilbert's Skink
California Wildlife Habitat Relationships System California Department of Fish and Wildlife California Interagency Wildlife Task Group GILBERT'S SKINK Plestiodon gilberti Family: SCINCIDAE Order: SQUAMATA Class: REPTILIA R037 Written by: S. Morey Reviewed by: T. Papenfuss Edited by: R. Duke Updated by: CWHR Program Staff, March 2000 DISTRIBUTION, ABUNDANCE, AND SEASONALITY A common but seldom observed lizard, the Gilbert's skink is found in the northern San Joaquin Valley, in the Sierra Nevada Foothills from Yuba Co. southward, and along the inner flanks of the Coast Ranges from San Francisco Bay to the Mexican border. It is also found in the mountains of southern California, and at scattered mountain localities in the eastern deserts from Mono Co. to San Bernardino Co. Its elevational range is from sea level to at least 2220 m (7300 ft) (Stebbins 1985). Found in a wide variety of habitats, this lizard is most common in early successional stages or open areas within habitats in which it occurs. Heavy brush and densely forested areas are generally avoided. SPECIFIC HABITAT REQUIREMENTS Feeding: This skink, like the western skink, forages through leaf litter and dense vegetation, occasionally digging through loose soil. Stebbins (1954) suggested that its food habits are similar to those of the western skink, which takes a large percentage of ground dwelling insects. Cover: Cover for these secretive lizards is provided by rotting logs, surface litter, and large flat stones. Gilbert's skinks are good burrowers and often construct their own shelters by burrowing under surface objects. Reproduction: Females construct nest chambers in loose moist soil several cm deep under surface objects, especially flat rocks. -
Ecography ECOG-03593 Tarr, S., Meiri, S., Hicks, J
Ecography ECOG-03593 Tarr, S., Meiri, S., Hicks, J. J. and Algar, A. C. 2018. A biogeographic reversal in sexual size dimorphism along a continental temperature gradient. – Ecography doi: 10.1111/ecog.03593 Supplementary material SUPPLEMENTARY MATERIAL A biogeographic reversal in sexual size dimorphism along a continental temperature gradient Appendix 1: Supplementary Tables and Figures Table A1. Placement of species missing from phylogeny. Species Comment Reference Most closely related to oaxaca and Campbell, J.A., et al. 2016. A new species of Abronia mixteca, most similar to mixteca Abronia cuetzpali (Squamata: Anguidae) from the Sierra Madre del Sur of according to Campbell et al. so add Oaxaca, Mexico. Journal of Herpetology 50: 149-156. as sister to mixteca Anolis alocomyos Both formerly part of tropidolepis, Köhler, G., et al. 2014. Two new species of the Norops & Anolis make a random clade with pachypus complex (Squamata, Dactyloidae) from Costa leditzigorum tropidolepis Rica. Mesoamerican Herpetology 1: 254–280. Part of a clade with microtus and Poe S, Ryan M.J. 2017. Description of two new species Anolis brooksi & ginaelisae so make a random clade similar to Anolis insignis (Squamata: Iguanidae) and Anolis kathydayae with these & brooksi & kathydayae, resurrection of Anolis (Diaphoranolis) brooksi. Amphibian based on Poe & Ryan. & Reptile Conservation 11: 1–16. Part of a clade with aquaticus and Köhler, J.J., et al. 2015. Anolis marsupialis Taylor 1956, a Anolis woodi so make a random clade with valid species from southern Pacific Costa Rica (Reptilia, marsupialis these Squamata, Dactyloidae). Zootaxa 3915111–122 Köhler, G., et al. 2016. Taxonomic revision of the Norops Anolis mccraniei, Formerly part of tropidonotus, so tropidonotus complex (Squamata, Dactyloidae), with the Anolis spilorhipis, split tropidonotus into a random resurrection of N. -
Western Riverside County Regional Conservation Authority (RCA) Annual Report to the Wildlife Agencies
Western Riverside County Multiple Species Habitat Conservation Plan (MSHCP) Biological Monitoring Program Stream Survey Report 2009 23 April 2010 Stream Survey Report 2009 TABLE OF CONTENTS INTRODUCTION.........................................................................................................................................1 GOALS AND OBJECTIVES ...................................................................................................................2 METHODS ....................................................................................................................................................2 PROTOCOL DEVELOPMENT ................................................................................................................2 PERSONNEL AND TRAINING ...............................................................................................................3 STUDY SITE SELECTION.....................................................................................................................3 SURVEY METHODS ............................................................................................................................4 COVERED SPECIES....................................................................................................................5 NON-COVERED SPECIES ............................................................................................................5 RESULTS.......................................................................................................................................................5 -
East Tennessee State University Digital Commons@ East
East Tennessee State University Digital Commons @ East Tennessee State University Electronic Theses and Dissertations Student Works 5-2011 On The rC anial Osteology of Eremiascincus and Its Use For Identification. William B. Gelnaw East Tennessee State University Follow this and additional works at: https://dc.etsu.edu/etd Part of the Paleontology Commons Recommended Citation Gelnaw, William B., "On The rC anial Osteology of Eremiascincus and Its Use For Identification." (2011). Electronic Theses and Dissertations. Paper 1294. https://dc.etsu.edu/etd/1294 This Thesis - Open Access is brought to you for free and open access by the Student Works at Digital Commons @ East Tennessee State University. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons @ East Tennessee State University. For more information, please contact [email protected]. On the Cranial Osteology of Eremiascincus, and Its Use for Identification ________________________________________ A thesis presented to the faculty of the department of Biological Sciences East Tennessee State University In partial fulfillment of the requirements for the degree Master of Sciences in Biology _______________________________________ by William B. Gelnaw May 2011 _______________________________________ James Mead, Chair Blaine Schubert Stephen Wallace Keywords: Squamata, Morphometrics, Lizards, Skull ABSTRACT On the Cranial Osteology of Eremiascincus, and Its Use for Identification by William B. Gelnaw A persistent problem -
A Tale of Ecology and Evolution Under Two Temperatures Shai Meiri1*, Aaron M
Global Ecology and Biogeography, (Global Ecol. Biogeogr.) (2013) 22, 834–845 bs_bs_banner RESEARCH Are lizards feeling the heat? PAPER A tale of ecology and evolution under two temperatures Shai Meiri1*, Aaron M. Bauer2,LaurentChirio3, Guarino R. Colli4, Indraneil Das5, Tiffany M. Doan6, Anat Feldman1, Fernando-Castro Herrera7, Maria Novosolov1,PanayiotisPafilis8, Daniel Pincheira-Donoso9, Gary Powney10,11, Omar Torres-Carvajal12, Peter Uetz13 and Raoul Van Damme14 1Department of Zoology, Tel Aviv University, ABSTRACT 69978, Tel Aviv, Israel, 2Department of Aim Temperature influences most components of animal ecology and life history Biology, Villanova University, 800 Lancaster Avenue, Villanova, PA 19085, USA, –butwhatkindoftemperature?Physiologistsusuallyexaminetheinfluenceof 3Département de Systématique et Evolution, body temperatures, while biogeographers and macroecologists tend to focus on Muséum National d’Histoire Naturelle, 25 Rue environmental temperatures. We aim to examine the relationship between these Cuvier, 75231 Paris, France, 4Departamento de two measures, to determine the factors that affect lizard body temperatures and to Zoologia, Universidade de Brasilia, 70910-900 test the effect of both temperature measures on lizard life history. 5 Brasília, DF, Brazil, Institute of Biodiversity Location World-wide. and Environmental Conservation, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Methods We used a large (861 species) global dataset of lizard body tempera- Sarawak, Malaysia, 6Department of Biology, tures, and the mean annual temperatures across their geographic ranges to examine Central Connecticut State University, New the relationships between body and mean annual temperatures. We then examined Britain, CT, USA, 7Departamento de Biología factors influencing body temperatures, and tested for the influence of both on Facultad de Ciencias Naturales y Exactas, ecological and life-history traits while accounting for the influence of shared Universidad del Valle, Cali, Colombia, 8School ancestry. -
BULLETIN Chicago Herpetological Society
BULLETIN of the Chicago Herpetological Society Volume 52, Number 7 July 2017 BULLETIN OF THE CHICAGO HERPETOLOGICAL SOCIETY Volume 52, Number 7 July 2017 Book Review: Snakes of the Eastern United States by Whit Gibbons . Brian S. Gray 113 Notes on the Testicular Cycle of Southeastern Five-lined Skinks, Plestiodon inexpectatus (Squamata: Scincidae), from North Carolina . Stephen R. Goldberg 116 Pick Your Poison . Aquila Wilks 118 A Note on the Distribution of the Eastern Musk Turtle, Sternotherus odoratus, within the North and West Branches of the Susquehanna River, Pennsylvania . Sean M. Hartzell 122 A Little about a Lot: Lyresnakes, My Way! . Roger A. Repp 123 What You Missed at the June Meeting . .John Archer 128 Advertisements . 131 New CHS Members This Month . 131 Minutes of the CHS Board Meeting, June 16, 2017 . 132 Show Schedule.......................................................... 132 Cover: In situ image of a Sonoran lyresnake (Trimorphodon lambda) basking in a wet crevice during a cold desert rain shower, 22 November 2013. Photograph by Martin J. Feldner. STAFF Membership in the CHS includes a subscription to the monthly Bulletin. Annual dues are: Individual Membership, $25.00; Editor: Michael A. Dloogatch --- [email protected] Family Membership, $28.00; Sustaining Membership, $50.00; Copy editor: Joan Moore Contributing Membership, $100.00; Institutional Membership, $38.00. Remittance must be made in U.S. funds. Subscribers 2017 CHS Board of Directors outside the U.S. must add $12.00 for postage. Send membership dues or address changes to: Chicago Herpetological Society, President: Rich Crowley Membership Secretary, 2430 N. Cannon Drive, Chicago, IL 60614. Vice-president: Jessica Wadleigh Treasurer: Andy Malawy Manuscripts published in the Bulletin of the Chicago Herpeto- Recording Secretary: Gail Oomens logical Society are not peer reviewed. -
A Biogeographic Reversal in Sexual Size Dimorphism Along A
1 1 ORIGINAL RESEARCH 2 3 TITLE: A biogeographic reversal in sexual size dimorphism along a continental temperature 4 gradient 5 6 AUTHORS 7 Simon Tarr 8 School of Geography, University of Nottingham, Nottingham, NG7 2RD, UK 9 [email protected] 10 Orcid ID: 0000-0001-8464-1240 11 12 Shai Meiri 13 Department of Zoology, Tel-Aviv University, Tel-Aviv, 69978, Israel 14 [email protected] 15 Orcid ID: 0000-0003-3839-6330 16 17 James J. Hicks 18 School of Geography, University of Nottingham, Nottingham, NG7 2RD, UK 19 [email protected] 20 Orcid ID: 0000-0001-5154-5615 21 22 Adam C. Algar (Corresponding Author) 23 School of Geography, University of Nottingham, Nottingham, NG7 2RD, UK 24 [email protected] 25 Orcid ID: 0000-0001-8095-0097 26 27 28 KEYWORDS 29 Body size, sexual size dimorphism, sexual selection 30 31 ACKNOWLEDGEMENTS 32 Thanks to Daniel Pincheira-Donoso and Andrew MacColl for thoughts on the early stages of this 33 work. The University of Nottingham’s Biogeography, Ecology and Evolution Research group 34 supplied valuable feedback on an earlier draft. 35 36 2 37 ABSTRACT 38 The magnitude and direction of sexual size dimorphism (SSD) varies greatly across the animal 39 kingdom, reflecting differential selection pressures on the reproductive and/or ecological roles of 40 males and females. If the selection pressures and constraints imposed on body size change along 41 environmental gradients, then SSD will vary geographically in a predictable way. Here, we uncover a 42 biogeographical reversal in SSD of lizards from Central and North America: in warm, low latitude 43 environments, males are larger than females, but at colder, high latitudes, females are larger than 44 males.