Gila Elegans): Application to Propagation and Thermal-Regime Management of Rivers of the Colorado River Basin Author(S): Kevin M

Total Page:16

File Type:pdf, Size:1020Kb

Gila Elegans): Application to Propagation and Thermal-Regime Management of Rivers of the Colorado River Basin Author(S): Kevin M Thermal Requirements of the Bonytail (Gila elegans): Application to Propagation and Thermal-Regime Management of Rivers of the Colorado River Basin Author(s): Kevin M. Kappenman , Elijah S. Cureton , Jason Ilgen , Matt Toner , William C. Fraser , and Greg A. Kindschi Source: The Southwestern Naturalist, 57(4):421-429. 2012. Published By: Southwestern Association of Naturalists DOI: http://dx.doi.org/10.1894/0038-4909-57.4.421 URL: http://www.bioone.org/doi/full/10.1894/0038-4909-57.4.421 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. THE SOUTHWESTERN NATURALIST 57(4): 421–429 DECEMBER 2012 THERMAL REQUIREMENTS OF THE BONYTAIL (GILA ELEGANS): APPLICATION TO PROPAGATION AND THERMAL-REGIME MANAGEMENT OF RIVERS OF THE COLORADO RIVER BASIN * KEVIN M. KAPPENMAN, ELIJAH S. CURETON,JASON ILGEN,MATT TONER,WILLIAM C. FRASER, AND GREG A. KINDSCHI United States Fish and Wildlife Service, Bozeman Fish Technology Center, 4050 Bridger Canyon Road, Bozeman, MT 59715 (KMK, ESC, JI, MT, WCF) 505 North Valley Drive, Bozeman, MT 59718 (GAK) *Correspondent: [email protected] ABSTRACT—We performed experimental trials on hatchery-reared juvenile bonytails (Gila elegans) using the acclimated-chronic-exposure method. Bonytails were exposed to 8–308C for 112 days to determine effects on growth, condition factor, composition of body, and survival. Survival was ‡98% for all treatments. The predicted temperature was 25.98C for maximum gain in weight and 14.28C for zero gain. Temperatures <148C depressed growth, 14–208C provided incremental growth, and 22–268C allowed accelerated growth. We hypothesize that temperatures during propagation and seasonal temperatures of rivers that are 22–268C, or both, would maximize growth of juveniles and might promote higher survival because bonytails would be less vulnerable to predation, and have greater energy reserves and increased metabolic efficiency. RESUMEN—Subadultos de la carpa elegante (Gila elegans) criados en cautiverio fueron sometidos a pruebas experimentales utilizando el m´etodo de aclimataci´on y exposici´on cr´onica. Utilizamos exposiciones entre 8 y 308C con una duraci´on de 112 d´ıas para determinar los efectos en el crecimiento, condici´on, composici´on corporal, y sobrevivencia. La sobrevivencia fue ‡98% en todos los tratamientos. Las temperaturas predichas para obtener crecimiento de peso m´aximo y de cero fueron de 25.98C y 14.28C, respectivamente. Temperaturas <148C impidieron el crecimiento, las entre 14 y 208C incrementaron el crecimiento gradual, mientras que las entre 22–268C aceleraron el crecimiento. Proponemos la hip´otesis de que las temperaturas durante la propagaci´on y las temperaturas estacionales de los r´ıos entre 22–268C, o ambas, pueden maximizar el crecimiento de los juveniles y pueden promover m´as alta sobrevivencia porque las carpas elegantes ser´an menos vulnerables a ala depredaci´on, y tendr´an m´as reservas energ´eticas e incrementar´an su eficiencia metab´olica. The bonytail (Gila elegans) is endemic to the Colorado necessary to recover the species. The two principal River Basin and once inhabited the large, warm-water limiting factors that prohibit recruitment are altered rivers of the basin (United States Fish and Wildlife thermal regimes and predation by nonnative species Service, 1984, 2002a). Altered hydro-regimes and reduc- (Minckley, 1983, 1991; Marsh, 1985; Clarkson and Childs, tion in floodplains occurring in the era of dam building 2000; Bestgen, 2008). Changes to thermal habitats have in the early 1900s reduced habitat available to bonytails, occurred both from a direct impact of in-river hypolim- size of populations, and historical range (Minckley and netic releases from dams and a loss of natural inundation Deacon, 1968; Holden and Stalnaker, 1970; United States of floodplains that historically provided warmer backwa- Fish and Wildlife Service, 2002a). A viable wild popula- ter areas. Introduction of nonnative piscivorous species is, tion might no longer exist and potential for recruitment in general, a consequence of introductions of sport fish. appears to be limited to bonytails released from propa- Three other endangered species of fish inhabit the gation programs (Kaeding et al., 1986; Minckley et al., Colorado River Basin, the humpback chub Gila cypha, 2003; Bestgen et al., 2008). The bonytail was listed as Colorado pikeminnow Ptychocheilus lucius, and razorback endangered in 1980 (United States Fish and Wildlife sucker Xyrauchen texanus (United States Fish and Wildlife Service, 1984) and remains one of the most imperiled Service, 2002b, 2002c, 2002d). Among native fishes of the species of fish in the United States. Colorado Basin, these three large-bodied species along The Bonytail Recovery Plan (United States Fish and with the bonytail commonly are referred to as the big- Wildlife Service, 1984) identified factors believed to be river fishes of the Colorado River (Minckley et al., 2003). responsible for causing declines and outlined actions Life histories of bonytails and these three sympatric 422 The Southwestern Naturalist vol. 57, no. 4 species are similar. Often, the conclusion of a study (or a Kappenman et al., 2009). The objective of our study was result from a management action) pertaining to one of to determine thermal requirements of juvenile bonytails. these species can be applied to another member of the We examined effects of temperature of water on survival, group. For example, the temperature regime that growth, condition factor, and constituents in the body promotes the life cycle of one species might likely be (e.g., proteins, lipids, moisture, and ash) of juveniles beneficial to the sympatric group, or the size needed by across a range of temperatures they might be exposed to subadults of one species to avoid early mortality in life in rivers and in propagation programs at hatcheries. from nonnative predation might be similar among species Determining optimal thermal regime for bonytails might (Minckley et al., 1991; Schooley and Marsh, 2007). provide managers of hatcheries the ability to promote Although research specific to bonytails is limited, increased growth and produce healthier fish more likely researchers have produced a body of literature for the to survive in the river, and also provide guidance on four big-river fishes that demonstrates that alterations of thermal habitats to managers of rivers. temperature have reduced survival of embryos, reduced rates of growth of larvae and juveniles, and slow growth MATERIALS AND METHODS—Our study was conducted at the has increased early-life mortality (Minckley, 1983, 1991; United States Fish and Wildlife Service Bozeman Fish Technol- Marsh, 1985; Kaeding and Osmundson, 1988; Clarkson ogy Center in Bozeman, Gallatin County, Montana. Adult and Childs, 2000; Tyus and Saunders, 2000; Minckley et broodstock were spawned at the United States Fish and Wildlife Service Dexter National Fish Hatchery and Technology Center, al., 2003; Schooley and Marsh, 2007). Researchers have Chaves County, New Mexico. The Bozeman Fish Technology further identified that, although temperature has played Center received embryos on 25 March 2008. Embryos were a significant role in reduction of bonytails and the three incubated and hatched at 188C and survival to hatch was >90%. other species, temperature alone is not the single limiting During April–September 2008, bonytails were held in the factor (Marsh, 1985; Kaeding et al., 1986; United States quarantine facility at Bozeman Fish Technology Center. During Fish and Wildlife Service, 2002a, 2002b, 2002c, 2002d). the larval-to-juvenile transition, bonytails were maintained at Predation by nonnatives is a causative agent in the 188C in circular tanks and fed to excess with a diet of Otohime continued demise of these four species (Minckley et al., Marine (BioKyowa; Kyowa Hakko Kogyo Co., Ltd., Cape 2003; Clarkson et al., 2005; Schooley and Marsh, 2007). Girardeau, Missouri), live Artemia reared at Bozeman Fish The combination of an altered riverscape and interaction Technology Center from cultured cysts (Argent Laboratories, of native and nonnative species with competing and Redmond, Washington), and lyophilized freeze-dried Cyclop- eeze (Argent Laboratories, Redmond, Washington). Survival of nonadapted life histories has led to what appears to be larvae was high (mortality <5–15%) from hatching to transition the largest-scaled expansion and displacement of species to exogenous feed. Larvae gradually were transitioned onto a of fish in a North American river basin (Olden et al., diet of Otohime Marine, size of feed was increased as fish grew, 2006). and feed-to-excess rations were
Recommended publications
  • Literature Cited for the Withdrawal of the Proposed Rule on Threatened Species Status for the Headwater Chub and Roundtail Chub Distinct Population Segment
    Literature Cited for the Withdrawal of the Proposed Rule on Threatened Species Status for the Headwater Chub and Roundtail Chub Distinct Population Segment Arizona Game and Fish Department (AGFD). 2006. Arizona statewide conservation agreement for roundtail chub (Gila robusta), headwater chub (Gila nigra), flannelmouth sucker (Catostomus latipinnis), Little Colorado River sucker (Catostomus spp.), bluehead sucker (Catostomus discobolus), and Zuni bluehead sucker (Catostomus discobolus yarrowi). December 2006. Arizona Game and Fish Department, Wildlife Management Division, Nongame Branch Native Fish Program, Phoenix, Arizona. 63 pages. Arizona Game and Fish Department (AGFD). 2017. February 1, 2017, letter to Steve Spangle, U.S. Fish and Wildlife Service re: Conservation commitment for roundtail chub (Gila robusta). 2 pages. Baird, S. F. and C. Girard. 1853. Report of an expedition down the Zuni and Colorado Rivers. Report of the Secretary of War. Fishes: 147-154. Brandenburg, W. H., J. L. Kennedy, and M. A. Farrington. 2015. Determining the historical distribution of the Gila robusta complex (Gila chub, Gila intermedia, headwater chub, Gila nigra, and roundtail chub, Gila robusta) in the Gila River Basin, New Mexico, using morphological analysis. Final Report to New Mexico Department of Game and Fish, Santa Fe, New Mexico. 19 pages. Carman, S. M. 2006. Colorado River Basin chubs, roundtail chub (Gila robusta), Gila chub (Gila intermedia), headwater chub (Gila nigra), recovery plan. New Mexico Department of Game and Fish, Conservation Services Division, Santa Fe, New Mexico. 63 pages. Carter, J. M, M. J. Clement, A. S. Makinster, C. D. Crowder, and B. Hickerson. 2017. Classification success of species within the Gila robusta complex using morphological and meristic characters – a reexamination of taxonomic designations.
    [Show full text]
  • Roundtail Chub (Gila Robusta Robusta): a Technical Conservation Assessment
    Roundtail Chub (Gila robusta robusta): A Technical Conservation Assessment Prepared for the USDA Forest Service, Rocky Mountain Region, Species Conservation Project May 3, 2005 David E. Rees, Jonathan A. Ptacek, and William J. Miller Miller Ecological Consultants, Inc. 1113 Stoney Hill Drive, Suite A Fort Collins, Colorado 80525-1275 Peer Review Administered by American Fisheries Society Rees, D.E., J.A. Ptacek, and W.J. Miller. (2005, May 3). Roundtail Chub (Gila robusta robusta): a technical conservation assessment. [Online]. USDA Forest Service, Rocky Mountain Region. Available: http:// www.fs.fed.us/r2/projects/scp/assessments/roundtailchub.pdf [date of access]. ACKNOWLEDGMENTS We would like to thank those people who promoted, assisted, and supported this species assessment for the Region 2 USDA Forest Service. Ryan Carr and Kellie Richardson conducted preliminary literature reviews and were valuable in the determination of important or usable literature. Laura Hillger provided assistance with report preparation and dissemination. Numerous individuals from Region 2 national forests were willing to discuss the status and management of this species. Thanks go to Greg Eaglin (Medicine Bow National Forest), Dave Gerhardt (San Juan National Forest), Kathy Foster (Routt National Forest), Clay Spease and Chris James (Grand Mesa, Uncompahgre, and Gunnison National Forest), Christine Hirsch (White River National Forest), as well as Gary Patton and Joy Bartlett from the Regional Office. Dan Brauh, Lory Martin, Tom Nesler, Kevin Rogers, and Allen Zincush, all of the Colorado Division of Wildlife, provided information on species distribution, management, and current regulations. AUTHORS’ BIOGRAPHIES David E. Rees studied fishery biology, aquatic ecology, and ecotoxicology at Colorado State University where he received his B.S.
    [Show full text]
  • Edna Assay Development
    Environmental DNA assays available for species detection via qPCR analysis at the U.S.D.A Forest Service National Genomics Center for Wildlife and Fish Conservation (NGC). Asterisks indicate the assay was designed at the NGC. This list was last updated in June 2021 and is subject to change. Please contact [email protected] with questions. Family Species Common name Ready for use? Mustelidae Martes americana, Martes caurina American and Pacific marten* Y Castoridae Castor canadensis American beaver Y Ranidae Lithobates catesbeianus American bullfrog Y Cinclidae Cinclus mexicanus American dipper* N Anguillidae Anguilla rostrata American eel Y Soricidae Sorex palustris American water shrew* N Salmonidae Oncorhynchus clarkii ssp Any cutthroat trout* N Petromyzontidae Lampetra spp. Any Lampetra* Y Salmonidae Salmonidae Any salmonid* Y Cottidae Cottidae Any sculpin* Y Salmonidae Thymallus arcticus Arctic grayling* Y Cyrenidae Corbicula fluminea Asian clam* N Salmonidae Salmo salar Atlantic Salmon Y Lymnaeidae Radix auricularia Big-eared radix* N Cyprinidae Mylopharyngodon piceus Black carp N Ictaluridae Ameiurus melas Black Bullhead* N Catostomidae Cycleptus elongatus Blue Sucker* N Cichlidae Oreochromis aureus Blue tilapia* N Catostomidae Catostomus discobolus Bluehead sucker* N Catostomidae Catostomus virescens Bluehead sucker* Y Felidae Lynx rufus Bobcat* Y Hylidae Pseudocris maculata Boreal chorus frog N Hydrocharitaceae Egeria densa Brazilian elodea N Salmonidae Salvelinus fontinalis Brook trout* Y Colubridae Boiga irregularis Brown tree snake*
    [Show full text]
  • Operation of Flaming Gorge Dam Final Environmental Impact Statement
    Record of Decision Operation of Flaming Gorge Dam Final Environmental Impact Statement I. Summary of Action and Background The Bureau of Reclamation (Reclamation) has completed a final environmental impact statement (EIS) on the operation of Flaming Gorge Dam. The EIS describes the potential effects of modifying the operation of Flaming Gorge Dam to assist in the recovery of four endangered fish, and their critical habitat, downstream from the dam. The four endangered fish species are Colorado pikeminnow (Ptychocheilus lucius), humpback chub (Gila cypha), razorback sucker (Xyrauchen texanus), and bonytail (Gila elegans). Reclamation would implement the proposed action by modifying the operations of Flaming Gorge Dam, to the extent possible, to achieve the flows and temperatures recommended by participants of the Upper Colorado River Endangered Fish Recovery Program (Recovery Program). Reclamation’s goal is to implement the proposed action and, at the same time, maintain and continue all authorized purposes of the Colorado River Storage Project. The purpose of the proposed action is to operate Flaming Gorge Dam to protect and assist in recovery of the populations and designated critical habitat of the four endangered fishes, while maintaining all authorized purposes of the Flaming Gorge Unit of the Colorado River Storage Project (CRSP), including those related to the development of water resources in accordance with the Colorado River Compact. As the Federal agency responsible for the operation of Flaming Gorge Dam, Reclamation was the lead agency in preparing the EIS. Eight cooperating agencies also participated in preparing this EIS: the Bureau of Indian Affairs (BIA), Bureau of Land Management, National Park Service, State of Utah Department of Natural Resources, U.S.
    [Show full text]
  • Population Status of Humpback Chub, Gila Cypha, and Catch
    Population Status of Humpback Chub, Gila cypha, and Catch Indices and Population Structure of Sympatric Roundtail Chub, Gila robusta, in Black Rocks, Colorado River, Colorado, 1998- 2012 Picture 1. Humpback chub on grid board (2012). Photo credit: T. Francis, USFWS. Upper Colorado River Endangered Fish Recovery Program Project Number 131 (22a3) Final Report April, 2016 Travis A. Francis U.S. Fish and Wildlife Service Colorado River Fishery Project 445 West Gunnison Avenue, Suite 140 Grand Junction, Colorado 81501 -and- Dr. Kevin R. Bestgen Dr. Gary C. White Colorado State University Larval Fish Laboratory Fort Collins, Colorado 80523 i Suggested Citation: Francis, T.A., K.R. Bestgen, and G.C. White. 2016. Population status of humpback chub, Gila cypha, and catch indices and population structure of sympatric roundtail chub, Gila robusta, in Black Rocks, Colorado River, Colorado, 1998-2012. Larval Fish Laboratory Contribution 199. Final Report from the U.S. Fish and Wildlife Service to the Upper Colorado River Endangered Fish Recovery Program, Project Number 131. Grand Junction, Colorado. ii Table of Contents ACKNOWLEDGEMENTS ......................................................................................................................... vi EXECUTIVE SUMMARY .......................................................................................................................... vii INTRODUCTION .....................................................................................................................................
    [Show full text]
  • Fish Lake Valley Tui Chub Listing Petition
    BEFORE THE SECRETARY OF INTERIOR PETITION TO LIST THE FISH LAKE VALLEY TUI CHUB (SIPHATELES BICOLOR SSP. 4) AS A THREATENED OR ENDANGERED SPECIES UNDER THE ENDANGERED SPECIES ACT Tui Chub, Siphateles bicolor (Avise, 2016, p. 49) March 9, 2021 CENTER FOR BIOLOGICAL DIVERSITY 1 March 9, 2021 NOTICE OF PETITION David Bernhardt, Secretary U.S. Department of the Interior 1849 C Street NW Washington, D.C. 20240 [email protected] Martha Williams Principal Deputy Director U.S. Fish and Wildlife Service 1849 C Street NW Washington, D.C. 20240 [email protected] Amy Lueders, Regional Director U.S. Fish and Wildlife Service P.O. Box 1306 Albuquerque, NM 87103-1306 [email protected] Marc Jackson, Field Supervisor U.S. Fish and Wildlife Service Reno Fish and Wildlife Office 1340 Financial Blvd., Suite 234 Reno, Nevada 89502 [email protected] Dear Secretary Bernhardt, Pursuant to Section 4(b) of the Endangered Species Act (“ESA”), 16 U.S.C. § 1533(b); section 553(e) of the Administrative Procedure Act (APA), 5 U.S.C. § 553(e); and 50 C.F.R. § 424.14(a), the Center for Biological Diversity, Krista Kemppinen, and Patrick Donnelly hereby petition the Secretary of the Interior, through the U.S. Fish and Wildlife Service (“FWS” or “Service”), to protect the Fish Lake Valley tui chub (Siphateles bicolor ssp. 4) as a threatened or endangered species. The Fish Lake Valley tui chub is a recognized, but undescribed, subspecies of tui chub. Should the service not accept the tui chub as valid subspecies we request that it be considered as a distinct population as it is both discrete and significant.
    [Show full text]
  • Endangered Species
    FEATURE: ENDANGERED SPECIES Conservation Status of Imperiled North American Freshwater and Diadromous Fishes ABSTRACT: This is the third compilation of imperiled (i.e., endangered, threatened, vulnerable) plus extinct freshwater and diadromous fishes of North America prepared by the American Fisheries Society’s Endangered Species Committee. Since the last revision in 1989, imperilment of inland fishes has increased substantially. This list includes 700 extant taxa representing 133 genera and 36 families, a 92% increase over the 364 listed in 1989. The increase reflects the addition of distinct populations, previously non-imperiled fishes, and recently described or discovered taxa. Approximately 39% of described fish species of the continent are imperiled. There are 230 vulnerable, 190 threatened, and 280 endangered extant taxa, and 61 taxa presumed extinct or extirpated from nature. Of those that were imperiled in 1989, most (89%) are the same or worse in conservation status; only 6% have improved in status, and 5% were delisted for various reasons. Habitat degradation and nonindigenous species are the main threats to at-risk fishes, many of which are restricted to small ranges. Documenting the diversity and status of rare fishes is a critical step in identifying and implementing appropriate actions necessary for their protection and management. Howard L. Jelks, Frank McCormick, Stephen J. Walsh, Joseph S. Nelson, Noel M. Burkhead, Steven P. Platania, Salvador Contreras-Balderas, Brady A. Porter, Edmundo Díaz-Pardo, Claude B. Renaud, Dean A. Hendrickson, Juan Jacobo Schmitter-Soto, John Lyons, Eric B. Taylor, and Nicholas E. Mandrak, Melvin L. Warren, Jr. Jelks, Walsh, and Burkhead are research McCormick is a biologist with the biologists with the U.S.
    [Show full text]
  • Movements of Sonic Tagged Razorback Suckers Between Davis and Parker Dams (Lake Havasu) 2007–2010
    Movements of Sonic Tagged Razorback Suckers between Davis and Parker Dams (Lake Havasu) 2007–2010 May 2012 Lower Colorado River Multi-Species Conservation Program Steering Committee Members Federal Participant Group California Participant Group Bureau of Reclamation California Department of Fish and Game U.S. Fish and Wildlife Service City of Needles National Park Service Coachella Valley Water District Bureau of Land Management Colorado River Board of California Bureau of Indian Affairs Bard Water District Western Area Power Administration Imperial Irrigation District Los Angeles Department of Water and Power Palo Verde Irrigation District Arizona Participant Group San Diego County Water Authority Southern California Edison Company Arizona Department of Water Resources Southern California Public Power Authority Arizona Electric Power Cooperative, Inc. The Metropolitan Water District of Southern Arizona Game and Fish Department California Arizona Power Authority Central Arizona Water Conservation District Cibola Valley Irrigation and Drainage District Nevada Participant Group City of Bullhead City City of Lake Havasu City Colorado River Commission of Nevada City of Mesa Nevada Department of Wildlife City of Somerton Southern Nevada Water Authority City of Yuma Colorado River Commission Power Users Electrical District No. 3, Pinal County, Arizona Basic Water Company Golden Shores Water Conservation District Mohave County Water Authority Mohave Valley Irrigation and Drainage District Native American Participant Group Mohave Water Conservation District North Gila Valley Irrigation and Drainage District Hualapai Tribe Town of Fredonia Colorado River Indian Tribes Town of Thatcher Chemehuevi Indian Tribe Town of Wickenburg Salt River Project Agricultural Improvement and Power District Unit “B” Irrigation and Drainage District Conservation Participant Group Wellton-Mohawk Irrigation and Drainage District Yuma County Water Users’ Association Ducks Unlimited Yuma Irrigation District Lower Colorado River RC&D Area, Inc.
    [Show full text]
  • ECOLOGY of NORTH AMERICAN FRESHWATER FISHES
    ECOLOGY of NORTH AMERICAN FRESHWATER FISHES Tables STEPHEN T. ROSS University of California Press Berkeley Los Angeles London © 2013 by The Regents of the University of California ISBN 978-0-520-24945-5 uucp-ross-book-color.indbcp-ross-book-color.indb 1 44/5/13/5/13 88:34:34 AAMM uucp-ross-book-color.indbcp-ross-book-color.indb 2 44/5/13/5/13 88:34:34 AAMM TABLE 1.1 Families Composing 95% of North American Freshwater Fish Species Ranked by the Number of Native Species Number Cumulative Family of species percent Cyprinidae 297 28 Percidae 186 45 Catostomidae 71 51 Poeciliidae 69 58 Ictaluridae 46 62 Goodeidae 45 66 Atherinopsidae 39 70 Salmonidae 38 74 Cyprinodontidae 35 77 Fundulidae 34 80 Centrarchidae 31 83 Cottidae 30 86 Petromyzontidae 21 88 Cichlidae 16 89 Clupeidae 10 90 Eleotridae 10 91 Acipenseridae 8 92 Osmeridae 6 92 Elassomatidae 6 93 Gobiidae 6 93 Amblyopsidae 6 94 Pimelodidae 6 94 Gasterosteidae 5 95 source: Compiled primarily from Mayden (1992), Nelson et al. (2004), and Miller and Norris (2005). uucp-ross-book-color.indbcp-ross-book-color.indb 3 44/5/13/5/13 88:34:34 AAMM TABLE 3.1 Biogeographic Relationships of Species from a Sample of Fishes from the Ouachita River, Arkansas, at the Confl uence with the Little Missouri River (Ross, pers. observ.) Origin/ Pre- Pleistocene Taxa distribution Source Highland Stoneroller, Campostoma spadiceum 2 Mayden 1987a; Blum et al. 2008; Cashner et al. 2010 Blacktail Shiner, Cyprinella venusta 3 Mayden 1987a Steelcolor Shiner, Cyprinella whipplei 1 Mayden 1987a Redfi n Shiner, Lythrurus umbratilis 4 Mayden 1987a Bigeye Shiner, Notropis boops 1 Wiley and Mayden 1985; Mayden 1987a Bullhead Minnow, Pimephales vigilax 4 Mayden 1987a Mountain Madtom, Noturus eleutherus 2a Mayden 1985, 1987a Creole Darter, Etheostoma collettei 2a Mayden 1985 Orangebelly Darter, Etheostoma radiosum 2a Page 1983; Mayden 1985, 1987a Speckled Darter, Etheostoma stigmaeum 3 Page 1983; Simon 1997 Redspot Darter, Etheostoma artesiae 3 Mayden 1985; Piller et al.
    [Show full text]
  • DRAFT Bonytail Chub (Pimephales Promelas ) Thermal Tolerance Analyses – Juvenile and Adult, Summer March 2016
    DRAFT Bonytail Chub (Pimephales promelas ) Thermal Tolerance Analyses – Juvenile and Adult, Summer March 2016 Introduction Recommended summer chronic and acute thermal tolerance values for juvenile and adult bonytail chub and their justification are discussed below. The recommended tolerance values were developed in accordance with the “ DRAFT Methodology for Developing Thermal Tolerance Thresholds for Various Fish in Nevada – Juvenile and Adult, Summer ” (September 2015). Chronic Thermal Tolerance Thresholds Table 1 provides a summary of the range of chronic temperature tolerance values for bonytail chub for various lines of evidence. These values are based upon a review of 2 papers and publications, the details of which are summarized in Attachment A. There is obviously a wide range of temperatures from which to select an appropriate value and best professional judgment is called for. NDEP’s approach is to accept the EPA recommendations from Brungs and Jones (1977) unless the literature review provides a compelling reason to utilize other values. However, in the case of the bonytail chub, EPA has not recommended a chronic thermal tolerance value. As discussed in the methodology, chronic temperature criteria are generally not set to ensure the most optimum conditions. In fact, Brungs and Jones (1977) recommends chronic criterion for a given fish species that is between the optimum temperature and the UUILT. Based upon the available data, the recommended chronic threshold for bonytail chub is 29°C. This value is consistent with the upper
    [Show full text]
  • Razorback Suckers Are Making a Comeback in the Upper Colorado River Basin
    Winter 13 Razorback suckers are making a comeback in the upper Colorado River basin iologists are thrilled that the recovery programs’ stocking Hatchery programs have been very successful. In the upper efforts are bearing fruit and razorback suckers are becom- basin, razorback suckers are being raised by the Ouray National Bing more numerous throughout the upper Colorado River Fish Hatchery, Randlett and Grand Valley units near Vernal, Utah basin. “We catch so many razorbacks these days; it takes us lon- and Grand Junction, Colorado. Following analysis of razorback ger to complete our Colorado pikeminnow sampling trips,” says sucker stocking and survival by Colorado State University’s Larval U. S. Fish and Wildlife Service (USFWS) researcher Travis Francis. Fish Lab, the Recovery Program increased the size of razorback Historically, the razorback sucker occurred throughout warm- sucker for stocking from an average of about 11 inches to about 14 water reaches of the Colorado River Basin from Mexico to Wyoming. PHOTOGRAPH COURTESY UDWR-MOAB inches and is stocking the fish in the fall when fish survive better. When this species was listed in 1991, its numbers were much reduced To increase growth, the Program raises the fish in a combination and biologists were worried it might become extinct. Thanks to of outdoor ponds during warmer months and indoor tanks in the the efforts of the San Juan River Basin Recovery Implementation winter. Program and the Upper Colorado River Endangered Fish Recovery This past summer, many wild-spawned razorback larvae drift- Program, these fish are making a real comeback today. Hatchery- ed from a middle Green River spawning bar into the Stewart Lake produced fish are being stocked to re-establish the species in the JUVENILE RAZORBACK SUCKER, MAY, 2013 wetland about 11 miles downstream.
    [Show full text]
  • Colorado Pikeminnow: Forgotten Predator of the Lower Colorado River
    Colorado Pikeminnow: Forgotten Predator of the Lower Colorado River David Ward US Geological Survey Grand Canyon Monitoring and Research Center Outline • Historical context • A common misperception about Colorado Pikeminnow • Political Context • A Call to Action Historical Context Celebration at completion of Laguna Dam 1909 Concrete Cap on Laguna Dam stretching from CA to AZ Catching Colorado pikeminnow above Hoover Dam c.1938 Last Colorado pikeminnow captured in Lake Mohave, November 13, 1962 1976 last pikeminnow caught in Grand Canyon at Havasu Creek A Common Misperception • Colorado Pikeminnow will cause detrimental impacts to other endangered fish Conservation efforts through predation Flathead Catfish Smallmouth Bass Bullhead Catfish Colorado Pikeminnow Body depth of Humpback Chub Body depth of Razorback Sucker Why Have they Been forgotten? •2002 Recovery Goals stated that no Conservation actions downstream of Glen Canyon Dam count toward species recovery • This decision was to be re- evaluated during 5-year status reviews - but has not occurred Adult Pikeminnow persist in the Verde River, but no research is conducted because no money is available The River is too disjunct! Segregated native fish management Marsh and Pacey 2005 Clarkson et al. 2005 Mueller 2005 If we are not going to pursue segregated fish management Which of our native fish are likely to persist with Non-native fishes? Colorado Pikeminow – one of best candidates Conclusions • Gape comparisons indicate Pikeminnow pose little threat relative to other introduced predatory fishes (and they have no teeth) • Arguments against repatriation based on fears of potential negative impacts to other endangered native fishes may be overstated • Without revision of the recovery goals the fate of Colorado Pikeminnow in the Lower Colorado River basin may be sealed.
    [Show full text]