Crystal Structure of an Active Form of RAS Protein, a Complex of a GTP
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
G Protein Alpha 13 (GNA13) (NM 006572) Human Tagged ORF Clone Lentiviral Particle Product Data
OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for RC207762L3V G protein alpha 13 (GNA13) (NM_006572) Human Tagged ORF Clone Lentiviral Particle Product data: Product Type: Lentiviral Particles Product Name: G protein alpha 13 (GNA13) (NM_006572) Human Tagged ORF Clone Lentiviral Particle Symbol: GNA13 Synonyms: G13 Vector: pLenti-C-Myc-DDK-P2A-Puro (PS100092) ACCN: NM_006572 ORF Size: 1131 bp ORF Nucleotide The ORF insert of this clone is exactly the same as(RC207762). Sequence: OTI Disclaimer: The molecular sequence of this clone aligns with the gene accession number as a point of reference only. However, individual transcript sequences of the same gene can differ through naturally occurring variations (e.g. polymorphisms), each with its own valid existence. This clone is substantially in agreement with the reference, but a complete review of all prevailing variants is recommended prior to use. More info OTI Annotation: This clone was engineered to express the complete ORF with an expression tag. Expression varies depending on the nature of the gene. RefSeq: NM_006572.3 RefSeq Size: 4744 bp RefSeq ORF: 1134 bp Locus ID: 10672 UniProt ID: Q14344, A0A024R8M0 Domains: G-alpha Protein Families: Druggable Genome Protein Pathways: Long-term depression, Regulation of actin cytoskeleton, Vascular smooth muscle contraction MW: 44 kDa This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 2 G protein alpha 13 (GNA13) (NM_006572) Human Tagged ORF Clone Lentiviral Particle – RC207762L3V Gene Summary: Guanine nucleotide-binding proteins (G proteins) are involved as modulators or transducers in various transmembrane signaling systems (PubMed:15240885, PubMed:16787920, PubMed:16705036, PubMed:27084452). -
Hras Intracellular Trafficking and Signal Transduction Jodi Ho-Jung Mckay Iowa State University
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2007 HRas intracellular trafficking and signal transduction Jodi Ho-Jung McKay Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Biological Phenomena, Cell Phenomena, and Immunity Commons, Cancer Biology Commons, Cell Biology Commons, Genetics and Genomics Commons, and the Medical Cell Biology Commons Recommended Citation McKay, Jodi Ho-Jung, "HRas intracellular trafficking and signal transduction" (2007). Retrospective Theses and Dissertations. 13946. https://lib.dr.iastate.edu/rtd/13946 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. HRas intracellular trafficking and signal transduction by Jodi Ho-Jung McKay A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Genetics Program of Study Committee: Janice E. Buss, Co-major Professor Linda Ambrosio, Co-major Professor Diane Bassham Drena Dobbs Ted Huiatt Iowa State University Ames, Iowa 2007 Copyright © Jodi Ho-Jung McKay, 2007. All rights reserved. UMI Number: 3274881 Copyright 2007 by McKay, Jodi Ho-Jung All rights reserved. UMI Microform 3274881 Copyright 2008 by ProQuest Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. ProQuest Information and Learning Company 300 North Zeeb Road P.O. -
Myopia Genetics Report
Special Issue IMI – Myopia Genetics Report Milly S. Tedja,1,2 Annechien E. G. Haarman,1,2 Magda A. Meester-Smoor,1,2 Jaakko Kaprio,3,4 David A. Mackey,5–7 Jeremy A. Guggenheim,8 Christopher J. Hammond,9 Virginie J. M. Verhoeven,1,2,10 and Caroline C. W. Klaver1,2,11; for the CREAM Consortium 1Department of Ophthalmology, Erasmus Medical Center, Rotterdam, the Netherlands 2Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands 3Institute for Molecular Medicine, University of Helsinki, Helsinki, Finland 4Department of Public Health, University of Helsinki, Helsinki, Finland 5Centre for Eye Research Australia, Ophthalmology, Department of Surgery, University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia 6Department of Ophthalmology, Menzies Institute of Medical Research, University of Tasmania, Hobart, Tasmania, Australia 7Centre for Ophthalmology and Visual Science, Lions Eye Institute, University of Western Australia, Perth, Western Australia, Australia 8School of Optometry and Vision Sciences, Cardiff University, Cardiff, United Kingdom 9Section of Academic Ophthalmology, School of Life Course Sciences, King’s College London, London, United Kingdom 10Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, the Netherlands 11Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands Correspondence: Caroline C. W. The knowledge on the genetic background of refractive error and myopia has expanded Klaver, Erasmus Medical Center, dramatically in the past few years. This white paper aims to provide a concise summary of Room Na-2808, P.O. Box 2040, 3000 current genetic findings and defines the direction where development is needed. CA, Rotterdam, the Netherlands; [email protected]. We performed an extensive literature search and conducted informal discussions with key MST and AEGH contributed equally to stakeholders. -
G-Protein ␥-Complex Is Crucial for Efficient Signal Amplification in Vision
The Journal of Neuroscience, June 1, 2011 • 31(22):8067–8077 • 8067 Cellular/Molecular G-Protein ␥-Complex Is Crucial for Efficient Signal Amplification in Vision Alexander V. Kolesnikov,1 Loryn Rikimaru,2 Anne K. Hennig,1 Peter D. Lukasiewicz,1 Steven J. Fliesler,4,5,6,7 Victor I. Govardovskii,8 Vladimir J. Kefalov,1 and Oleg G. Kisselev2,3 1Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri 63110, Departments of 2Ophthalmology and 3Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri 63104, 4Research Service, Veterans Administration Western New York Healthcare System, and Departments of 5Ophthalmology (Ross Eye Institute) and 6Biochemistry, University at Buffalo/The State University of New York (SUNY), and 7SUNY Eye Institute, Buffalo, New York 14215, and 8Sechenov Institute for Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint Petersburg 194223, Russia A fundamental question of cell signaling biology is how faint external signals produce robust physiological responses. One universal mechanism relies on signal amplification via intracellular cascades mediated by heterotrimeric G-proteins. This high amplification system allows retinal rod photoreceptors to detect single photons of light. Although much is now known about the role of the ␣-subunit of the rod-specific G-protein transducin in phototransduction, the physiological function of the auxiliary ␥-complex in this process remains a mystery. Here, we show that elimination of the transducin ␥-subunit drastically reduces signal amplification in intact mouse rods. The consequence is a striking decline in rod visual sensitivity and severe impairment of nocturnal vision. Our findings demonstrate that transducin ␥-complex controls signal amplification of the rod phototransduction cascade and is critical for the ability of rod photoreceptors to function in low light conditions. -
Identification of HRAS Mutations and Absence of GNAQ Or GNA11
Modern Pathology (2013) 26, 1320–1328 1320 & 2013 USCAP, Inc All rights reserved 0893-3952/13 $32.00 Identification of HRAS mutations and absence of GNAQ or GNA11 mutations in deep penetrating nevi Ryan P Bender1, Matthew J McGinniss2, Paula Esmay1, Elsa F Velazquez3,4 and Julie DR Reimann3,4 1Caris Life Sciences, Phoenix, AZ, USA; 2Genoptix Medical Laboratory, Carlsbad, CA, USA; 3Dermatopathology Division, Miraca Life Sciences Research Institute, Newton, MA, USA and 4Department of Dermatology, Tufts Medical Center, Boston, MA, USA HRAS is mutated in B15% of Spitz nevi, and GNAQ or GNA11 is mutated in blue nevi (46–83% and B7% respectively). Epithelioid blue nevi and deep penetrating nevi show features of both blue nevi (intradermal location, pigmentation) and Spitz nevi (epithelioid morphology). Epithelioid blue nevi and deep penetrating nevi can also show overlapping features with melanoma, posing a diagnostic challenge. Although epithelioid blue nevi are considered blue nevic variants, no GNAQ or GNA11 mutations have been reported. Classification of deep penetrating nevi as blue nevic variants has also been proposed, however, no GNAQ or GNA11 mutations have been reported and none have been tested for HRAS mutations. To better characterize these tumors, we performed mutational analysis for GNAQ, GNA11, and HRAS, with blue nevi and Spitz nevi as controls. Within deep penetrating nevi, none demonstrated GNAQ or GNA11 mutations (0/38). However, 6% revealed HRAS mutation (2/32). Twenty percent of epithelioid blue nevi contained a GNAQ mutation (2/10), while none displayed GNA11 or HRAS mutation. Eighty-seven percent of blue nevi contained a GNAQ mutation (26/30), 4% a GNA11 mutation (1/28), and none an HRAS mutation. -
Transducin -Subunit Can Interact with Multiple G-Protein ␥-Subunits to Enable Light Detection by Rod Photoreceptors
New Research Sensory and Motor Systems Transducin -Subunit Can Interact with Multiple G-Protein ␥-Subunits to Enable Light Detection by Rod Photoreceptors Paige M. Dexter,1 Ekaterina S. Lobanova,2 Stella Finkelstein,2 William J. Spencer,1 Nikolai P. Skiba,2 and Vadim Y. Arshavsky1,2 DOI:http://dx.doi.org/10.1523/ENEURO.0144-18.2018 1Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina 27710 and 2Albert Eye Research Institute, Duke University, Durham, North Carolina 27710 Visual Overview The heterotrimeric G-protein transducin mediates visual signaling in vertebrate photoreceptor cells. Many aspects of the function of transducin were learned from knock-out mice lacking its individual subunits. Of particular interest is ␥ ␥ the knockout of its rod-specific -subunit (G 1). Two stud- ies using independently generated mice documented that this knockout results in a considerable Ͼ60-fold reduction in the light sensitivity of affected rods, but provided dif- ␣ ␣ ferent interpretations of how the remaining -subunit (G t)  ␥ mediates phototransduction without its cognate G 1 1- subunit partner. One study found that the light sensitivity ␣ reduction matched a corresponding reduction in G t con- tent in the light-sensing rod outer segments and proposed ␣  that G t activation is supported by remaining G 1 asso- ciating with other G␥ subunits naturally expressed in pho- toreceptors. In contrast, the second study reported the same light sensitivity loss but a much lower, only approx- ␣ imately sixfold, reduction of G t and proposed that the light responses of these rods do not require G␥ at all. To resolve this controversy and elucidate the mechanism ␥ driving visual signaling in G 1 knock-out rods, we analyzed both mouse lines side by side. -
GNAI3 Gene G Protein Subunit Alpha I3
GNAI3 gene G protein subunit alpha i3 Normal Function The GNAI3 gene provides instructions for making one component, the inhibitory alpha subunit, of a protein complex called a guanine nucleotide-binding protein (G protein). G proteins are composed of three protein subunits: alpha, beta, and gamma. Each of these subunits is produced from a different gene. Through a process called signal transduction, G proteins trigger a complex network of signaling pathways within cells. These pathways help transmit information from outside the cell to inside the cell. Specifically, G proteins made with the GNAI3 inhibitory alpha subunit reduce (inhibit) the activity of an enzyme called adenylyl cyclase, which is an important chemical messenger within cells. G protein signaling ultimately influences many cell activities, instructing the cell to grow, divide, or take on specialized functions. Studies suggest that G protein signaling involving the GNAI3 inhibitory alpha subunit contributes to the development of the first and second pharyngeal arches. These embryonic structures ultimately develop into the jawbones, facial muscles, middle ear bones, ear canals, outer ears, and related tissues. Health Conditions Related to Genetic Changes Auriculo-condylar syndrome At least two mutations in the GNAI3 gene have been found to cause auriculo-condylar syndrome, a disorder that primarily affects the development of the ears and lower jaw ( mandible). The identified mutations change single protein building blocks (amino acids) in the inhibitory alpha subunit. These mutations likely alter the structure of the inhibitory alpha subunit and impair G protein signaling. Abnormal signaling alters the formation of the lower jaw: instead of developing normally, the lower jaw becomes shaped more like the smaller upper jaw (maxilla). -
Prevalence of Mutations in TSHR, GNAS, PRKAR1A and RAS Genes
European Journal of Endocrinology (2008) 159 623–631 ISSN 0804-4643 CLINICAL STUDY Prevalence of mutations in TSHR, GNAS, PRKAR1A and RAS genes in a large series of toxic thyroid adenomas from Galicia, an iodine-deficient area in NW Spain F Palos-Paz1, O Perez-Guerra1, J Cameselle-Teijeiro3,CRueda-Chimeno5, F Barreiro-Morandeira4, J Lado-Abeal1,2 and the Galician Group for the Study of Toxic Multinodular Goitre: D Araujo Vilar1,2, R Argueso7, O Barca1, MBotana7, J M Cabezas-Agrı´cola2, P Catalina6, L Dominguez Gerpe1, T Fernandez9, A Mato8, A Nun˜o11,MPenin10 and B Victoria1 1Unidade de Enfermedades Tiroideas e Metabo´licas (UETeM), 2Endocrinology Section, Department of Medicine, 3Pathology Department and 4Surgery Department, Complexo Hospitalario Universitary de Santiago (CHUS), University of Santiago de Compostela, Santiago de Compostela, 15705, Spain, 5General Surgery Section and 6Endocrinology Section, Complexo Hospitalario de Pontevedra, Pontevedra, Spain, 7Endocrinology Section, Complexo Hospitalario Xeral-Calde, Lugo, Spain, 8Endocrinology Section, Complexo Hospitalario de Ourense, Ourense, Spain, 9Endocrinology Section, Complexo Hospitalario Universitario Juan-Canalejo, A Corun˜a, Spain, 10Endocrinology Section, Hospital Arquitecto Marcide, Ferrol, Spain and 11General Surgery Section, Hospital do Meixoeiro, Complexo Hospitalario Universitario de Vigo, Vigo, Spain (Correspondence should be addressed to J Lado-Abeal who is now at UETeM, Department of Medicine, School of Medicine, University of Santiago de Compostela, C/San Francisco sn 15705, Santiago de Compostela, Spain; Email: [email protected]) Abstract Objective: Toxic thyroid adenoma (TA) is a common cause of hyperthyroidism. Mutations in the TSH receptor (TSHR) gene, and less frequently in the adenylate cyclase-stimulating G alpha protein (GNAS) gene, are well established causes of TA in Europe. -
Mosaic Activating Mutations in GNA11 and GNAQ Are Associated with Phakomatosis Pigmentovascularis and Extensive Dermal Melanocytosis Anna C
ORIGINAL ARTICLE Mosaic Activating Mutations in GNA11 and GNAQ Are Associated with Phakomatosis Pigmentovascularis and Extensive Dermal Melanocytosis Anna C. Thomas1,18, Zhiqiang Zeng2,18, Jean-Baptiste Rivie`re3,18, Ryan O’Shaughnessy4, Lara Al-Olabi1, Judith St.-Onge3, David J. Atherton5,He´le`ne Aubert6, Lorea Bagazgoitia7, Se´bastien Barbarot6, Emmanuelle Bourrat8,9, Christine Chiaverini10, W. Kling Chong11, Yannis Duffourd3, Mary Glover5, Leopold Groesser12, Smail Hadj-Rabia13, Henning Hamm14, Rudolf Happle15, Imran Mushtaq16, Jean-Philippe Lacour10, Regula Waelchli5, Marion Wobser14, Pierre Vabres3,17,19, E. Elizabeth Patton2,19 and Veronica A. Kinsler1,5,19 Common birthmarks can be an indicator of underlying genetic disease but are often overlooked. Mongolian blue spots (dermal melanocytosis) are usually localized and transient, but they can be extensive, permanent, and associated with extracutaneous abnormalities. Co-occurrence with vascular birthmarks defines a subtype of phakomatosis pigmentovascularis, a group of syndromes associated with neurovascular, ophthalmological, overgrowth, and malignant complications. Here, we discover that extensive dermal melanocytosis and pha- komatosis pigmentovascularis are associated with activating mutations in GNA11 and GNAQ, genes that encode Ga subunits of heterotrimeric G proteins. The mutations were detected at very low levels in affected tissues but were undetectable in the blood, indicating that these conditions are postzygotic mosaic disorders. R183C Q209L In vitro expression of mutant GNA11 and GNA11 in human cell lines demonstrated activation of the downstream p38 MAPK signaling pathway and the p38, JNK, and ERK pathways, respectively. Transgenic R183C mosaic zebrafish models expressing mutant GNA11 under promoter mitfa developed extensive dermal melanocytosis recapitulating the human phenotype. Phakomatosis pigmentovascularis and extensive dermal melanocytosis are therefore diagnoses in the group of mosaic heterotrimeric G-protein disorders, joining McCune-Albright and Sturge-Weber syndromes. -
Multi-Functionality of Proteins Involved in GPCR and G Protein Signaling: Making Sense of Structure–Function Continuum with In
Cellular and Molecular Life Sciences (2019) 76:4461–4492 https://doi.org/10.1007/s00018-019-03276-1 Cellular andMolecular Life Sciences REVIEW Multi‑functionality of proteins involved in GPCR and G protein signaling: making sense of structure–function continuum with intrinsic disorder‑based proteoforms Alexander V. Fonin1 · April L. Darling2 · Irina M. Kuznetsova1 · Konstantin K. Turoverov1,3 · Vladimir N. Uversky2,4 Received: 5 August 2019 / Revised: 5 August 2019 / Accepted: 12 August 2019 / Published online: 19 August 2019 © Springer Nature Switzerland AG 2019 Abstract GPCR–G protein signaling system recognizes a multitude of extracellular ligands and triggers a variety of intracellular signal- ing cascades in response. In humans, this system includes more than 800 various GPCRs and a large set of heterotrimeric G proteins. Complexity of this system goes far beyond a multitude of pair-wise ligand–GPCR and GPCR–G protein interactions. In fact, one GPCR can recognize more than one extracellular signal and interact with more than one G protein. Furthermore, one ligand can activate more than one GPCR, and multiple GPCRs can couple to the same G protein. This defnes an intricate multifunctionality of this important signaling system. Here, we show that the multifunctionality of GPCR–G protein system represents an illustrative example of the protein structure–function continuum, where structures of the involved proteins represent a complex mosaic of diferently folded regions (foldons, non-foldons, unfoldons, semi-foldons, and inducible foldons). The functionality of resulting highly dynamic conformational ensembles is fne-tuned by various post-translational modifcations and alternative splicing, and such ensembles can undergo dramatic changes at interaction with their specifc partners. -
(12) United States Patent (10) Patent No.: US 9.410,182 B2 W (45) Date of Patent: Aug
USOO941 0182B2 (12) United States Patent (10) Patent No.: US 9.410,182 B2 W (45) Date of Patent: Aug. 9, 2016 (54) PHOSPHATASE COUPLED OTHER PUBLICATIONS GLYCOSYLTRANSFERASE ASSAY Wu et al., R&D Systems Poster, “Universal Phosphatase-Coupled (75) Inventor: Zhengliang L. Wu, Edina, MN (US) Glycosyltransferase Assay”, Apr. 2010, 3 pages.* “Malachite Green Phosphate Detection Kit'. Research and Diagnos (73) Assignee: Bio-Techne Corporation, Minneapolis, tic Systems, Inc. Catalog No. DY996, Feb. 4, 2010, 6 pages.* MN (US) Zhu et al., Analytica Chimica Acta 636:105-110, 2009.* Motomizu et al., Analytica Chimica Acta 211:119-127, 1988.* *) NotOt1Ce: Subjubject to anyy d1Sclaimer,disclai theh term off thisthi Schachter et al., Methods Enzymol. 98.98-134, 1983.* patent is extended or adjusted under 35 Unverzagt et al., J. Am. Chem. Soc. 112:9308-9309, 1990.* U.S.C. 154(b) by 0 days. IUBMB Enzyme Nomenclature for EC 3.1.3.1, obtained from www. chem.cmul.ac.uk/iubmb? enzyme/EC3/1/3/5.html, last viewed on (21) Appl. No.: 13/699,175 Apr. 13, 2015, 1 page.* IUBMB Enzyme Nomenclature for EC 3.1.3.5, obtained from www. (22) PCT Filed: May 24, 2010 chem.cmul.ac.uk/iubmb? enzyme/EC3/1/3/5.html, last viewed on Apr. 13, 2015, 1 page.* (86). PCT No.: PCT/US2010/035938 Compain et al., Bio. Med. Chem. 9:3077-3092, 2001.* Lee et al., J. Biol. Chem. 277:49341-49351, 2002.* S371 (c)(1), Donovan R S et al., “A Solid-phase glycosyltransferase assay for (2), (4) Date: Nov. -
The Potential Druggability of Chemosensory G Protein-Coupled Receptors
International Journal of Molecular Sciences Review Beyond the Flavour: The Potential Druggability of Chemosensory G Protein-Coupled Receptors Antonella Di Pizio * , Maik Behrens and Dietmar Krautwurst Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, 85354, Germany; [email protected] (M.B.); [email protected] (D.K.) * Correspondence: [email protected]; Tel.: +49-8161-71-2904; Fax: +49-8161-71-2970 Received: 13 February 2019; Accepted: 12 March 2019; Published: 20 March 2019 Abstract: G protein-coupled receptors (GPCRs) belong to the largest class of drug targets. Approximately half of the members of the human GPCR superfamily are chemosensory receptors, including odorant receptors (ORs), trace amine-associated receptors (TAARs), bitter taste receptors (TAS2Rs), sweet and umami taste receptors (TAS1Rs). Interestingly, these chemosensory GPCRs (csGPCRs) are expressed in several tissues of the body where they are supposed to play a role in biological functions other than chemosensation. Despite their abundance and physiological/pathological relevance, the druggability of csGPCRs has been suggested but not fully characterized. Here, we aim to explore the potential of targeting csGPCRs to treat diseases by reviewing the current knowledge of csGPCRs expressed throughout the body and by analysing the chemical space and the drug-likeness of flavour molecules. Keywords: smell; taste; flavour molecules; drugs; chemosensory receptors; ecnomotopic expression 1. Introduction Thirty-five percent of approved drugs act by modulating G protein-coupled receptors (GPCRs) [1,2]. GPCRs, also named 7-transmembrane (7TM) receptors, based on their canonical structure, are the largest family of membrane receptors in the human genome.