Mitochondrial Genomes and Phylogenetic Relationships of Lates Japonicus, Lates Niloticus, and Psammoperca Waigiensis (Perciformes: Latidae)

Total Page:16

File Type:pdf, Size:1020Kb

Mitochondrial Genomes and Phylogenetic Relationships of Lates Japonicus, Lates Niloticus, and Psammoperca Waigiensis (Perciformes: Latidae) Mitochondrial genomes and phylogenetic relationships of Lates japonicus, Lates niloticus, and Psammoperca waigiensis (Perciformes: Latidae) Citation: Gan, Han Ming, Takahashi, Hiroshi, Hammer, Michael P., Tan, Mun Hua, Lee, Yin Peng, Voss, Jasmyn M. and Austin, Christopher M. 2017, Mitochondrial genomes and phylogenetic relationships of Lates japonicus, Lates niloticus, and Psammoperca waigiensis (Perciformes: Latidae), Mitochondrial DNA part b: resources, vol. 2, no. 1, pp. 73-75. DOI: https://doi.org/10.1080/23802359.2017.1285206 ©2017, The Authors Reproduced by Deakin University under the terms of the Creative Commons Attribution Licence Downloaded from DRO: http://hdl.handle.net/10536/DRO/DU:30091143 DRO Deakin Research Online, Deakin University’s Research Repository Deakin University CRICOS Provider Code: 00113B MITOCHONDRIAL DNA PART B: RESOURCES, 2017 VOL. 2, NO. 1, 73–75 http://dx.doi.org/10.1080/23802359.2017.1285206 MITO COMMUNICATION Mitochondrial genomes and phylogenetic relationships of Lates japonicus, Lates niloticus, and Psammoperca waigiensis (Perciformes: Latidae) Han Ming Gana,b, Hiroshi Takahashic, Michael P. Hammerd, Mun Hua Tana,b, Yin Peng Leea,b, Jasmyn M. Vossb and Christopher M. Austina,b,e aGenomics Facility, Tropical Medicine and Biology Platform, Monash University Malaysia, Petaling Jaya, Malaysia; bSchool of Science, Monash University Malaysia, Petaling Jaya, Malaysia; cDepartment of Applied Aquabiology, National Fisheries University, Shimonoseki, Japan; dMuseum and Art Gallery of the Northern Territory, Darwin, Australia; eSchool of Life and Environmental Sciences, Deakin University, Burwood, Australia ABSTRACT ARTICLE HISTORY The complete mitochondrial genomes of four fish species of the commercially important family Latidae Received 28 November 2016 were sequenced using the Illumina MiSeq, thereby significantly increasing the mitogenomic resources Accepted 18 January 2017 for the family. Whole mitogenome-based phylogenetic analysis supports the monophyly of the genus KEYWORDS Lates and more generally the family Latidae. The mitogenome sequences from this study will be useful Latidae; MiSeq; maximum for future assessments of the diversity within and between Lates species and studies of phylogenetic likelihood relationships within the diverse and taxonomically challenging perciform fishes. The family Latidae currently contains 13 extant perch-like The sample of L. japonicus (Shi04) used for this study was fishes from three genera, Hypopterus Gill, 1861, Lates Cuvier, collected from Shiomi River, Miyazaki Prefecture, Japan as 1828 and Psammoperca Richardson, 1848, which are found in described elsewhere (Takahashi et al. 2015). The sample of a range of freshwater, brackish, and marine environments P. waigiensis was collected from Vesteys Beach, Darwin, in the across Asia, Africa, and the Western Pacific and Indian oceans Northern Territory, Australia (12.436 S, 130.829 E) with tis- (Eschmeyer et al. 2016; Nelson et al. 2016). Despite low diver- sue and matched voucher specimen held at the Museum and sity, the family contains a number of commercially important Art Gallery of the Northern Territory (catalogue number: species including the Asian sea bass or barramundi, Lates cal- S.16708-010). The samples of the commercially important carifer and the Nile Perch, L. niloticus. L. calcarifer and L. niloticus were obtained as muscle (fillets) Psammoperca waigiensis or the Waigieu sea perch is the from fish markets in Darwin, Australia sourced from the only member of the genus Psammoperca (Froese & Pauly Northern Territory and Lake Victoria (imported), respectively. 2016) and ranges widely across the Indo-West Pacific, from Genomic DNA (gDNA) was extracted from approximately the Bay of Bengal to Japan to the northern and western 50 mg fin clip or muscle tissue using the EZDNA Tissue coasts of Australia (Randall et al. 1990). In contrast, L. japoni- extraction kit (OmegaBioTek, Norcross, GA). Approximately cus or akame or the Japanese lates has a relatively restricted 100–200 ng of gDNA was sheared to 500 bp using a M220 range in the north western Pacific around Japan (Masuda focused-ultrasonicator (Covaris, Woburn, MA), prepped using et al. 1984). It is morphologically similar to both P. waigiensis NEBNext Ultra DNA library prep kit and subsequently and L. calcarifer, and was only declared a distinct species in sequenced on the MiSeq desktop sequencer (Illumina, San 1984 (Katayama & Yasuhiko 1984). Unlike most of the other Diego, CA) located at the Monash University Malaysia members of the family above, L. niloticus or the Nile perch is Genomics Facility. Mitogenome assembly was performed a purely freshwater species from north Africa that is of both using MITObim (Hahn et al. 2013). For L. niloticus, L. japonicas, economic importance and conservation concern as it has and P. waigiensis, the COX1 gene fragment for each species been introduced to several African lakes including the bio- was used as the bait for iterative mapping assembly while for logical diverse Lake Victoria (Pringle 2005). the L. calcarifer sample, the complete mitogenome already With the exception of L. calcarifer (Lin et al. 2006; Vij et al. available for the species (GenBank: DQ010541) (Lin et al. 2014), genomic resources for the family Latidae are still fairly 2006) was used instead. Each mitogenome was recircularized limited. In addition, from an evolutionary and taxonomic per- based on the presence of flanking repeat sequence as previ- spective, the status and relationships of the family to other ously described (Gan et al. 2014) and annotated using Perciform groups is uncertain or unresolved (Vij et al. 2014; MitoAnnotator (Iwasaki et al. 2013). For the construction of Harrington et al. 2016). maximum-likelihood tree, 13 protein-coding genes and 2 CONTACT Han Ming Gan [email protected] School of Science, Monash University Malaysia, Building 3, Level 3, Room 3-3-20, Jalan Lagoon Selatan, Bandar Sunway, 47500 Selangor, Malaysia ß 2017 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, dis- tribution, and reproduction in any medium, provided the original work is properly cited. 74 H. M. GAN ET AL. Figure 1. Phylogenetic tree depicting the evolutionary relationships within the order, inferred from maximum-likelihood estimation based on 13 mitochondrial pro- tein-coding genes and two ribosomal RNA genes with best-fit partitioning scheme. Members from the family Acanthuridae were used as an outgroup and a selection of species from families thought to be related to the Latidae were included for comparative purposes. Circles next to tip labels indicate sequence reported in this study. NCBI accession numbers were provided next to tip labels (in red). Numbers at nodes indicate Ultrafast Bootstrap support and branch lengths indicate number of substitutions per site. ribosomal RNA genes were extracted, individually aligned The mitogenome length and AT content ranges from (Abascal et al. 2010; Katoh & Standley 2014) and concaten- 16,510 to 16,684 bp and 53.19 to 55.27%, respectively. The ated to form a super-alignment. The best-fit partitioning recovered mitogenomes exhibit high nucleotide similarity scheme was calculated using ModelFinder (Nguyen et al. (> 95%) to the partial mitochondrial genes of members of 2015). Based on the optimum partitioning scheme, a max- the same species available on NCBI, providing support to imum-likelihood (ML) tree was constructed using IQ-TREE their species designation based on morphology criteria or with the 1000 ultrafast bootstrap approximation option to labelling as fish products. For example, our sample of L. niloti- assess branch supports (Nguyen et al. 2015). The consensus cus was a fillet obtained from a fish market, but it had a 99% tree was visualized and graphically edited using FigTree v sequence similarity to the partial COX1 gene of L. niloticus 1.4.2 (http://tree.bio.ed.ac.uk/software/figtree/). isolate FLN210 (GenBank: KJ443713), which was sampled in Partial genome sequencing successfully recovered the Egypt, the type locality for L. niloticus confirming the sample complete mitogenomes of all fish species obtained for this was true to label. study, increasing the number of complete mitogenome for At the whole mitogenome level, P. waigiensis is the most species of the family Latidae from one species (L. calcarifer) divergent member of the Latidae sequenced with an average to a total of four. The latid mitogenomes have the typical pairwise nucleotide identity of 79.8% (79.4–80.0%) to mem- structure organization of a fish mitogenome and consist of bers of the genus Lates. The sample of L. calcarifer sequenced the typical 13 protein-coding genes, 22 transfer RNA genes in this study is more similar to that of the Australian L. cal- and 2 ribosomal subunit genes, and a non-coding putative carifer isolate P12C03 (99.6%) at the COX1 gene compared to control region. that of Asian L. calcarifer (98.6%), which is consistent with its MITOCHONDRIAL DNA PART B: RESOURCES 75 stated origin from near Darwin, Australia. Within the genus http://researcharchive.calacademy.org/research/ichthyology/catalog/ Lates our sample of L. calcarifer exhibits a similar pair-wise fishcatmain.asp nucleotide identity (whole mitogenome alignment) to L. japo- Froese R, Pauly D. 2016. FishBase (version Aug
Recommended publications
  • Capturing and Maintaining Genetic Diversity for the Establishment of a Long
    Capturing and maintaining genetic diversity for the establishment of a long- term breeding program for barramundi (Lates calcarifer) aquaculture Shannon Loughnan Bachelor of Science with Honours A thesis submitted in fulfilment of the requirements for the Degree of Doctor of Philosophy School of Biological Sciences Faculty of Science and Engineering Flinders University October 2013 ISBN: 978-1-925982-92-3 Contents List of Tables 7 List of Figures 8 List of Appendices 10 Declaration 11 Acknowledgements 12 Statement of Authorship 14 Thesis summary 15 Summary of chapters 19 1 General Introduction 25 1.1 Genetic improvement programs 25 1.2 Barramundi (Lates calcarifer) 28 1.3 Thesis scope and objectives 32 2 Broodstock contribution after mass spawning and size grading in barramundi (Lates calcarifer, Bloch) 34 2.1 Abstract 35 2.2 Introduction 36 2.3 Materials and methods 40 2.3.1 Mass spawning of broodstock 40 2.3.2 Size grading and sampling 42 2.3.3 DNA extraction 43 2.3.4 Batch sampling to discriminate non-contributors from low frequency contributors 44 2.3.5 PCR amplification 45 2.3.6 Statistical analysis 46 2.4 Results 48 2.4.1 Broodstock contribution 48 2.4.2 The production of half and full-sibling families 50 2.4.3 Genetic diversity 51 2.5 Discussion 53 2.6 Conclusion 58 3 Genetic diversity and relatedness estimates for captive barramundi (Lates calcarifer) broodstock populations, informs efforts to form a base population for selective breeding 67 3.1 Abstract 68 3.2 Introduction 69 3.3 Materials and methods 72 3.3.1 Sampling, DNA extraction
    [Show full text]
  • Monophyly and Interrelationships of Snook and Barramundi (Centropomidae Sensu Greenwood) and five New Markers for fish Phylogenetics ⇑ Chenhong Li A, , Betancur-R
    Molecular Phylogenetics and Evolution 60 (2011) 463–471 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Monophyly and interrelationships of Snook and Barramundi (Centropomidae sensu Greenwood) and five new markers for fish phylogenetics ⇑ Chenhong Li a, , Betancur-R. Ricardo b, Wm. Leo Smith c, Guillermo Ortí b a School of Biological Sciences, University of Nebraska, Lincoln, NE 68588-0118, USA b Department of Biological Sciences, The George Washington University, Washington, DC 200052, USA c The Field Museum, Department of Zoology, Fishes, 1400 South Lake Shore Drive, Chicago, IL 60605, USA article info abstract Article history: Centropomidae as defined by Greenwood (1976) is composed of three genera: Centropomus, Lates, and Received 24 January 2011 Psammoperca. But composition and monophyly of this family have been challenged in subsequent Revised 3 May 2011 morphological studies. In some classifications, Ambassis, Siniperca and Glaucosoma were added to the Accepted 5 May 2011 Centropomidae. In other studies, Lates + Psammoperca were excluded, restricting the family to Available online 12 May 2011 Centropomus. Recent analyses of DNA sequences did not solve the controversy, mainly due to limited taxonomic or character sampling. The present study is based on DNA sequence data from thirteen Keywords: genes (one mitochondrial and twelve nuclear markers) for 57 taxa, representative of all relevant Centropomidae species. Five of the nuclear markers are new for fish phylogenetic studies. The monophyly of Centrop- Lates Psammoperca omidae sensu Greenwood was supported by both maximum likelihood and Bayesian analyses of a Ambassidae concatenated data set (12,888 bp aligned). No support was found for previous morphological hypothe- Niphon spinosus ses suggesting that ambassids are closely allied to the Centropomidae.
    [Show full text]
  • Description of Two New Species of Sea Bass (Teleostei: Latidae: Lates) from Myanmar and Sri Lanka
    Zootaxa 3314: 1–16 (2012) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2012 · Magnolia Press ISSN 1175-5334 (online edition) Description of two new species of sea bass (Teleostei: Latidae: Lates) from Myanmar and Sri Lanka ROHAN PETHIYAGODA1 & ANTHONY C. GILL1,2 1Australian Museum, 6 College Street, Sydney NSW 2010, Australia. E-mail: [email protected] 2Macleay Museum and School of Biological Sciences, Macleay Building A12, University of Sydney, Sydney NSW 2006, Australia. E-mail: [email protected] Abstract Two new species of Lates Cuvier are described. Lates lakdiva, new species, from western Sri Lanka, differs from its Indo- Pacific congeners by its lesser body depth, 26.6‒27.6% SL; 5 rows of scales in transverse line between base of third dorsal- fin spine and lateral line; 31‒34 serrae on the posterior edge of the preoperculum; third anal-fin spine longer than second; 47‒52 lateral-line scales on body; and greatest depth of maxilla less than eye diameter. Lates uwisara, new species, from eastern Myanmar, is distinguished by possessing 7 scales in transverse line between base of third dorsal-fin spine and lat- eral line; eye diameter 4.4‒4.7% SL; body depth 28.4‒34.5% SL; and third anal-fin spine shorter than the second. Despite substantial genetic variation, L. calcarifer sensu lato is widely distributed, from tropical Australia through Indonesia, Sin- gapore and Thailand, westwards to at least the west coast of India. Caution is urged in translocating Lates in the Indo- Pacific region as other yet unrecognized species likely exist.
    [Show full text]
  • B Chromosomes of the Asian Seabass (Lates Calcarifer) Contribute to Genome Variations at the Level of Individuals and Populations
    G C A T T A C G G C A T genes Article B Chromosomes of the Asian Seabass (Lates calcarifer) Contribute to Genome Variations at the Level of Individuals and Populations Aleksey Komissarov 1,*, Shubha Vij 2,3, Andrey Yurchenko 1,4, Vladimir Trifonov 5,6 , Natascha Thevasagayam 2, Jolly Saju 2, Prakki Sai Rama Sridatta 2, Kathiresan Purushothaman 2,7, Alexander Graphodatsky 5,6 ,László Orbán 2,8,9,* and Inna Kuznetsova 2,* 1 Theodosius Dobzhansky Center for Genome Bioinformatics, Saint Petersburg State University, St. Petersburg 199004, Russia; [email protected] 2 Reproductive Genomics Group, Temasek Life Sciences Laboratory, Singapore 117604, Singapore; [email protected] (S.V.); [email protected] (N.T.); [email protected] (J.S.); [email protected] (P.S.R.S.); [email protected] (K.P.) 3 School of Applied Science, Republic Polytechnic 9 Woodlands Avenue 9, Singapore 738964, Singapore 4 Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK 5 Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia; [email protected] (V.T.); [email protected] (A.G.) 6 Department of Natural Science, Novosibirsk State University, Novosibirsk 630090, Russia 7 Faculty of Biosciences and Aquaculture, Nord University, 8049 Bodø, Norway 8 Department of Animal Sciences, Georgikon Faculty, University of Pannonia, H-8360 Keszthely, Hungary 9 Center for Comparative Genomics, Murdoch University, 6150 Murdoch, Australia * Correspondence: [email protected] (A.K.); [email protected] (L.O.); [email protected] (I.K.) Received: 4 August 2018; Accepted: 12 September 2018; Published: 20 September 2018 Abstract: The Asian seabass (Lates calcarifer) is a bony fish from the Latidae family, which is widely distributed in the tropical Indo-West Pacific region.
    [Show full text]
  • Diversity and Risk Patterns of Freshwater Megafauna: a Global Perspective
    Diversity and risk patterns of freshwater megafauna: A global perspective Inaugural-Dissertation to obtain the academic degree Doctor of Philosophy (Ph.D.) in River Science Submitted to the Department of Biology, Chemistry and Pharmacy of Freie Universität Berlin By FENGZHI HE 2019 This thesis work was conducted between October 2015 and April 2019, under the supervision of Dr. Sonja C. Jähnig (Leibniz-Institute of Freshwater Ecology and Inland Fisheries), Jun.-Prof. Dr. Christiane Zarfl (Eberhard Karls Universität Tübingen), Dr. Alex Henshaw (Queen Mary University of London) and Prof. Dr. Klement Tockner (Freie Universität Berlin and Leibniz-Institute of Freshwater Ecology and Inland Fisheries). The work was carried out at Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Germany, Freie Universität Berlin, Germany and Queen Mary University of London, UK. 1st Reviewer: Dr. Sonja C. Jähnig 2nd Reviewer: Prof. Dr. Klement Tockner Date of defense: 27.06. 2019 The SMART Joint Doctorate Programme Research for this thesis was conducted with the support of the Erasmus Mundus Programme, within the framework of the Erasmus Mundus Joint Doctorate (EMJD) SMART (Science for MAnagement of Rivers and their Tidal systems). EMJDs aim to foster cooperation between higher education institutions and academic staff in Europe and third countries with a view to creating centres of excellence and providing a highly skilled 21st century workforce enabled to lead social, cultural and economic developments. All EMJDs involve mandatory mobility between the universities in the consortia and lead to the award of recognised joint, double or multiple degrees. The SMART programme represents a collaboration among the University of Trento, Queen Mary University of London and Freie Universität Berlin.
    [Show full text]
  • Freshwater Fishes of the Burdekin Dry Tropics Acknowledgements
    Freshwater Fishes of the Burdekin Dry Tropics Acknowledgements Much of the information about fish species and their distribution in the Burdekin Dry Tropics NRM region is based on the work of Dr Brad Pusey (Griffith University). The Australian Centre for Tropical Freshwater Research (ACTFR) provided access to their Northern Australian Fish (NAF) database which contains the most current fish survey data for tropical Australia. Dr Allan Webb (ACTFR) provided information on the exotic fish species recorded from the immediate Townsville region. Thanks to Alf Hogan from Fisheries Queensland for providing data on species distribution. Thanks also to Bernard Yau and efishalbum for their image of the Threadfin Silver Biddy. Published by NQ Dry Tropics Ltd trading as NQ Dry Tropics. Copyright 2010 NQ Dry Tropics Ltd ISBN 978-921584-21-3 The Copyright Act 1968 permits fair dealing for study research, news reporting, criticism, or review. Selected passages, tables or diagrams may be reproduced for such purposes provided acknowledgement of the source is included. Major extracts of the entire document may not be reproduced by any process without the written permission of the Chief Executive Officer, NQ Dry Tropics. Please reference as: Carter, J & Tait, J 2010, Freshwater Fishes of the Burdekin Dry Tropics, Townsville. Further copies may be obtained from NQ Dry Tropics or from our Website: www.nqdrytropics.com.au Cnr McIlwraith and Dean St P.O Box 1466, Townsville Q 4810 Ph: (07) 4724 3544 Fax: (07) 4724 3577 Important Disclaimer: The information contained in this report has been compiled in good faith from sources NQ Dry Tropics Limited trading as NQ Dry Tropics believes to be reliable.
    [Show full text]
  • The Fish Fauna of Lake Victoria During a Century of Human Induced Perturbations
    The Fish Fauna of Lake Victoria during a Century of Human Induced Perturbations Frans Witte1,2, Mary A. Kishe-Machumu1,3, Olivia C. Mkumbo4, Jan H. Wanink1,5, Pleun C. Goudswaard1,6, Jacco C. Van Rijssel1,2,7, Martien J.P. van Oijen2 ABSTRACT WITTE, F., KISHE-MACHUMU, M. A., MKUMBO, O. C., WANINK, J. H., GOUDSWAARD, P. C., VAN RIJSSEL, J.C. & VAN OIJEN, M. J.P. The fish fauna of Lake Victoria during a century of human induced perturbations. In J. Snoeks & A. Getahun (eds), Pro- ceedings of the Fourth International Conference on African Fish and Fisheries, Addis Ababa, Ethiopia, 22-26 September 2008. Tervuren: Royal Museum for Central Africa, ‘Zoological Documentation Online Series’, pp. 49-66. Lake Victoria, by area the largest tropical lake of the world, is well-known for its diverse native fish fauna, which com- prised about 500 endemic haplochromine cichlid species, two tilapiine species and 46 other species belonging to 12 fami- lies. During the past decades, the fish species diversity in the lake has declined dramatically due to human induced per- turbations in the ecosystem. Based on literature and our own research findings we provide an overview of these changes and their most likely causes. During the first half of the last century, the increasing fishing pressure had a great impact on the native tilapiine cichlids and other large fish species. The shift in fish landings showed a classic example of fishing down the food web. Because of the dwindling catches, the Nile perch and four exotic tilapiine cichlids were introduced into the lake in the 1950s.
    [Show full text]
  • Evolution and Ecology in Widespread Acoustic Signaling Behavior Across Fishes
    bioRxiv preprint doi: https://doi.org/10.1101/2020.09.14.296335; this version posted September 14, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Evolution and Ecology in Widespread Acoustic Signaling Behavior Across Fishes 2 Aaron N. Rice1*, Stacy C. Farina2, Andrea J. Makowski3, Ingrid M. Kaatz4, Philip S. Lobel5, 3 William E. Bemis6, Andrew H. Bass3* 4 5 1. Center for Conservation Bioacoustics, Cornell Lab of Ornithology, Cornell University, 159 6 Sapsucker Woods Road, Ithaca, NY, USA 7 2. Department of Biology, Howard University, 415 College St NW, Washington, DC, USA 8 3. Department of Neurobiology and Behavior, Cornell University, 215 Tower Road, Ithaca, NY 9 USA 10 4. Stamford, CT, USA 11 5. Department of Biology, Boston University, 5 Cummington Street, Boston, MA, USA 12 6. Department of Ecology and Evolutionary Biology and Cornell University Museum of 13 Vertebrates, Cornell University, 215 Tower Road, Ithaca, NY, USA 14 15 ORCID Numbers: 16 ANR: 0000-0002-8598-9705 17 SCF: 0000-0003-2479-1268 18 WEB: 0000-0002-5669-2793 19 AHB: 0000-0002-0182-6715 20 21 *Authors for Correspondence 22 ANR: [email protected]; AHB: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.09.14.296335; this version posted September 14, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • 博士論文(要約) Habitat Use and Behavior of Lates Japonicus In
    博士論文(要約) Habitat use and behavior of Lates japonicus in Shimanto Estuary, an endangered endemic fish in Japan (日本の絶滅危惧固有種アカメ Lates japonicus の 四万十川河口域における生息場利用と行動) サラ ゴンザルボ マロ Sara Gonzalvo Marro Habitat use and behavior of Lates japonicus in Shimanto Estuary, an endangered endemic fish in Japan (日本の絶滅危惧固有種アカメ Lates japonicus の 四万十川河口域における生息場利用と行動) サラ ゴンザルボ マロ Sara Gonzalvo Marro Graduate School of Agriculture and Life Sciences Department of Aquatic Bioscience Laboratory of Behavior, Ecology and Observation Systems PhD Dissertation March of 2017 To my family and friends, for encouraging me all the way here. A special thought for my loving parents and sisters, whose unconditional support made this day possible. Muchísimas gracias a todos. Sara Index Abstract ............................................................................................................................ iii Chapter I: Introduction Lates japonicus, a rare fish of Japan .................................................................... 1 The study of fish otoliths ...................................................................................... 5 Monitoring and tracking aquatic wildlife ............................................................. 6 Purpose of the study ............................................................................................. 9 Chapter II: Environmental conditions on the study site Introduction ........................................................................................................ 10 Materials and Methods
    [Show full text]
  • Update to the Catalogue of South Australian Freshwater Fishes (Petromyzontida & Actinopterygii)
    Zootaxa 3593: 59–74 (2012) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2012 · Magnolia Press Article ISSN 1175-5334 (online edition) urn:lsid:zoobank.org:pub:94493FFD-A8D7-4760-B1D7-201BD7B63F99 Update to the catalogue of South Australian freshwater fishes (Petromyzontida & Actinopterygii) MICHAEL P. HAMMER1,2, MARK ADAMS2 & RALPH FOSTER3 1 Natural Sciences, Museum and Art Gallery of the Northern Territory, PO Box 4646 Darwin NT 0810, Australia. E-mail: [email protected] 2Evolutionary Biology Unit, South Australian Museum, Adelaide SA 5000, Australia. E-mail: [email protected] 3Ichthyology Section, South Australian Museum, Adelaide SA 5000, Australia. E-mail: [email protected] Abstract South Australia is a large Australian state (~1,000,000 km2) with diverse aquatic habitats spread across temperate to arid environments. The knowledge of freshwater fishes in this jurisdiction has advanced considerably since the last detailed catalogue of native and alien species was published in 2004 owing to significant survey and research effort, spatial analysis of museum data, and incidental records. The updated list includes 60 native and 35 alien species. New additions to the native fauna include cryptic species of Retropinna semoni s.l. (Weber) and Galaxias olidus s.l. (Günther). Two others have been rediscovered after long absences, namely Neochanna cleaveri (Scott) and Mogurnda adspersa (Castelnau). Range extensions are reported for native populations of Galaxias brevipinnis Günther, Leiopotherapon unicolour (Günther), Hypseleotris spp. (hybridogenetic forms) and Philypnodon macrostomus Hoese and Reader. There are five new alien spe- cies records (all aquarium species) including Phalloceros caudimaculatus (Hensel), Poecilia reticulata Peters, Xiphopho- rus hellerii Heckel, Astronotus ocellatus (Agassiz) and Paratilapia polleni Bleeker, with confirmation of Misgurnus anguillicaudatus (Cantor).
    [Show full text]
  • Phylogeography of Lake Tanganyika's Giant Cichlid
    Hydrobiologia DOI 10.1007/s10750-014-1863-z ADVANCES IN CICHLID RESEARCH Big fish, little divergence: phylogeography of Lake Tanganyika’s giant cichlid, Boulengerochromis microlepis Stephan Koblmu¨ller • Elizabeth A. Odhiambo • Danny Sinyinza • Christian Sturmbauer • Kristina M. Sefc Received: 16 January 2014 / Accepted: 16 March 2014 Ó The Author(s) 2014. This article is published with open access at Springerlink.com Abstract The largely endemic cichlid species flocks of the Lake Tanganyika radiation [8 MYA, mito- of the East African Great Lakes are among the prime chondrial control region sequences collected in this examples for explosive speciation and adaptive radi- study dated the most recent common ancestor of B. ation. Speciation rates differ among cichlid lineages, microlepis to *60–110 KYA. There was no evidence and the propensity to radiate has been linked to of phylogeographic structure in the lake-wide sample. intrinsic and extrinsic factors such as sexual selection Patterns of genetic diversity and demographic analyses and ecological opportunity. Remarkably, only one were consistent with slow and steady population cichlid tribe—the Boulengerochromini—comprises growth throughout the reconstructed timescale. Addi- just a single species, Boulengerochromis microlepis, tionally, the shallow divergence within the species a predominantly piscivorous endemic of Lake Tang- may be related to a possibly large variance in anyika and the world’s largest cichlid. While the reproductive success in this highly fecund species. lineage diverged from its closest relatives at the onset Trophic niche space restriction by sympatric pisci- vores, lack of geographic structure, low potential for sexual selection arising from the monogamous mating Guest editors: S.
    [Show full text]
  • 2020 Volume 51
    DRUM and CROAKER A Highly Irregular Journal for the Public Aquarist Volume 51 Jan. 2020 TABLE OF CONTENTS Volume 51, 2020 2 Drum and Croaker ~50 Years Ago Richard M. Segedi 3 The Culture of Sepioteuthis lessoniana (Bigfin Reef Squid) at the Monterey Bay Aquarium Alicia Bitondo 15 Comparison of Mean Abundances of Ectoparasites from North Pacific Marine Fishes John W. Foster IV and Tai Fripp 39 A Review of the Biology of Neobenedenia melleni and Neobenedenia girellae, and Analysis of Control Strategies in Aquaria Barrett L. Christie and John W. Foster IV 86 Trends in Aquarium Openings and Closings in North America: 1856 To 2020 Pete Mohan 99 Daphnia Culture Made Simple Doug Sweet 109 Hypersalinity Treatment to Eradicate Aiptasia in a 40,000-Gallon Elasmobranch System at the Indianapolis Zoo Sally Hoke and Indianapolis Zoo Staff 121 German Oceanographic Museum, Zooaquarium de Madrid and Coral Doctors Cluster to Develop a Project on Training of Locals on Reef Rehabilitation in the Maldives Pablo Montoto Gasser 125 Efficacy of Ceramic Biological Filter Bricks as a Substitute for Live Rock in Land-Based Coral Nurseries Samantha Siebert and Rachel Stein 132 AALSO & RAW Joint Conference Announcement for 2020 Johnny Morris' Wonders of Wildlife National Museum and Aquarium in Springfield, Missouri, USA, March 28 - April 1 136 RetroRAW 2019 Abstracts The Columbus Zoo and Aquarium, Columbus, OH, USA, May 13-17 162 A Brief Guide to Authors Cover Photo: Bigfin Reef Squid - Alicia Bitondo Interior Gyotaku: Bruce Koike Interior Line Art Filler: Craig Phillips, D&C Archives Drum and Croaker 51 (2020) 1 DRUM AND CROAKER ~50 YEARS AGO Richard M.
    [Show full text]