Biodiversity of the Epiphyllous Algae in a Chamaecyparis Forest of Northern Taiwan

Total Page:16

File Type:pdf, Size:1020Kb

Biodiversity of the Epiphyllous Algae in a Chamaecyparis Forest of Northern Taiwan Botanical Studies (2012) 53: 489-499. PHYLOGENETICS Biodiversity of the epiphyllous algae in a Chamaecyparis forest of northern Taiwan Ching-Su LIN1, Yu-Hsin LIN1, and Jiunn-Tzong WU1,2,* 1Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei 10660, Taiwan 2Biodiversity Research Center, Academia Sinica, Taipei 11529, Taiwan (Received March 5, 2012; Accepted June 15, 2012) ABSTRACT. Yellow cypress, Chamaecyparis obtusa var. formosana, is a relic species and one of the most important trees in Taiwan. This is the first study of the epiphyllous algae in a yellow cypress forest. The for- est surrounding Yuan-Yang Lake (YYL) in northern Taiwan was chosen for this study. Algal samples collected from leaves and trunks were isolated and cultivated under laboratory conditions. The species were identified with the aid of 23S rDNA sequence analysis. Six species of green algae, including Chloroidium saccharophi- lum, Ettlia pseudoalveolaris, Klebsormidium flaccidum, Prasiococcus calcarius, Rosenvingiella radicans and Trebouxia sp., and one cyanobacterial species, Leptolyngbya sp., were identified in the forest. This is the first instance of any of them being reported in Taiwan. On yellow cypress leaves, four coccoid species, namely C. saccharophilum, E. pseudoalveolaris, P. calcarius, and R. radicans were found. On broadleaf trees, in con- trast, both the filamentous species, Leptolyngbya sp. and K. flaccidum, and the coccoid species were identified. However, there is no strong host-specificity for these epiphyllous algae. The influence of environmental fac- tors on the microhabitat, distribution and population size of epiphyllous algae in the forest is discussed here. Keywords: Biodiversity; Chamaecyparis; Environmental factor; Epiphyllous algae; Yuan-Yang Lake; Yellow cypress forest. INTRODUCTION tablishing the taxonomy to genus level for taxonomically doubtful strains in environmental samples. The identifica- In forests, the leaf surface (phyllosphere) may be colo- tion of microorganisms in the natural ecosystem is diffi- nized by a range of different organisms, including lichens, cult. Many cases of misidentification of strains, inadequate liverworts, fungi, algae and bacteria (Wylie and Schlicht- culture conditions leading to malformation or loss of criti- ing, 1973; Andreoli and Paoletti, 1993). Epiphyllous algae cal features, and growth intricacies all make it difficult inhabit both leaves and trunks (Schlichting, 1975). Leaf to apply taxonomic principles to environmental samples surfaces provide the ecologically appropriate landscapes (Burja et al., 2001). In recent years, molecular techniques for the organisms that encounter or colonize the leaf sur- have provided excellent complementary data to address face. Due to their considerable diversity, the role that epi- the limitations of taxonomic, physiological and biochemi- phylls play in ecosystem functioning varies widely. The cal approaches in biodiversity assessment (Srivastava et epiphyllous microorganisms might not only act as para- al., 2007). Recently, Sherwood and Presting (2007) identi- sites or symbiotes (Garcia-Guzman and Dirzo, 2004), they fied a set of “universal primers”, about 450 bp in length, may also affect the nutrient cycle and the loss of water by flanking Domain V of the 23S plastid rDNA gene fragment evaporation linked to their host (Bentley and Carpenter, in eukaryotic algae and cyanobacteria. Later, Sherwood 1984; Fürnkranz et al., 2008). et al., (2008) demonstrated the amplification of the 23S The nucleic acid sequences of 5S, 16S, 18S or internal rDNA sequences corresponding to algae; this illustrated transcribed spacer (ITS) regions are commonly used in the utility of the 23S rDNA sequence of a primer for anal- studies of microorganisms. Recently, sequence data of 23S ysis of environmental samples. This “universal” primer rDNA become available for a few bacterial, cyanobac- pair allows a more convenient and effective molecular teria and algal species (Ludwig et al., 1995; Anthony et analysis of algae, based on either cultured or environmen- al., 2000; Sherwood and Presting 2007; Sherwood et al., tal samples. In the present study, we employed 23S rDNA 2008). This 23S rDNA sequence is a useful tool for es- sequence analysis for the identification of species. Yuan-Yang Lake (YYL) is a subalpine lake situated in a natural reserve area in northern Taiwan that has been virtu- * Corresponding author: E-mail: [email protected]; ally undisturbed by human activity for a long time (Chen Tel:+886-2-27871073; Fax: +886-2-27871182. and Wu, 1999). It is surrounded by a cloud belt forest of 490 Botanical Studies, Vol. 53, 2012 Taiwan yellow cypress (Chamaecyparis obtusa var. formo- et al., 2000). In addition, the forest is characterised by sana), an important timber tree and a relic species. A long- plenty of epiphytic bryophytes, mainly mosses, represent- term ecological research site was established to study this ing the unique physiognomy of the ecosystem (Liu and unique environment in 1992 by the government (Chang et Hsu, 1973). al., 2002). The annual air temperature at YYL ranges between 5 Most previous studies of the YYL site have concentrat- and 17.5°C, with an average of about 13°C. The annual ed on the floristic diversity of the community (Liao et al., rainfall is ca. 4,000 mm, but varies according to the num- 2003) or on the relation of changes in floristic composition ber and strength of the summer typhoons. The forest is to seasonality, soil conditions (Huang et al., 2005) and en- strongly influenced by the East Asia monsoon. The rainfall vironmental factors (Wu et al., 2001). There have been no in summer is short but moderate to heavy, while in winter studies of epiphyllous algae and its role in the ecosystem. it is long-lasting but light. The relative humidity is usu- As a matter of fact, there is very little information avail- ally higher than 80% (Hwang et al., 1996; Wu et al., 2001; able in the literature on the ubiquitous epiphyllous algae Liao et al., 2003; Lai et al., 2006). in the subtropical forest. The YYL is a unique site for such a study, because of its long-lasting high humidity, which Sampling is a particularly suitable environment for the growth of The epiphyllous algae that grow on four of the domi- epiphyllous algae. The purpose of this study is to estimate nant tree species in the cypress forest were sampled in the diversity of epiphytic algae grown on the leaves of the April, June, August, and October in 2008 and 2009. Two dominant vascular plants in the yellow cypress forest of species of coniferous trees, Chamaecyparis obtusa var. the YYL area. It aims to understand the existing circum- formosana and Calocedrus formosana (Florin) Florin, and stances and the diversity of the epiphyllous algae on both two species of broadleaf trees Eurya crenatifolia (Yamam.) coniferous and broadleaf trees. Kobus. and Illicium philippinense Merr were sampled. To avoid contamination from other algae populations that MATERIALS AND METHODS grow near the ground, a step ladder was used to sample the leaves from the upper part of the targeted trees. An Study Site appropriate amount of leaf pieces were cut, placed in ster- The Yuan-Yang Lake Natural Reserve Area (YYL) is ile plastic boxes, and immediately stored in the portable located in the Chi-lan Mountains of north-eastern Taiwan icebox. They were transferred to the laboratory for further (24°35’ N, 121°24’ E) (Figure 1). It is a typical subtropi- processing. cal mountainous cloud forest, with an area of 374 ha and an altitude range of 1650-2432 m (Table 1) (Hwang et al., Isolation, cultures, and morphological observa- 1996; Chou et al., 2000). It is composed of a mixed co- tions niferous-broadleaf forest that extends from the lakeside to In the lab, a small piece of leaf with visible greenish or the east slope of the Hsueh-shan Mountain Range. Within brown spots was excised under sterile conditions and cul- this forest, two major vegetation communities can be rec- tured in both a liquid and an agar (1.5%) medium of NC ognized: a coniferous-hardwood community, dominated (Kuhl, 1962) or BG11 (Stanier et al., 1971). The condi- by Chamaecyparis obtusa Sieb. & Zucc. var. formosana tions were 25°C and 12:12 h light-dark cycle illuminated (Hayata) Rehder (Taiwan yellow cypress) and Rhodo- with cool-white fluorescent light (20 µmol m-2 s-1). During dendron formosanum Heiml; and a swamp community incubation, the small colonies that grew on the agar were characterised by Miscanthus transmorrisonensis Hayata, transferred to a liquid medium in 250 mL sterile flasks un- Schoenoplectus mucronatus (L.) Palla subsp. robustus der the same conditions for further study. (Miq.) T. Koyama and Sparganium fallax Graedner (Chou Algae were examined under an AxioStar microscope (Zeiss, Germany) equipped with transmitted light, phase contrast and differential interference contrast (DIC, No- marski) illumination and an AxioCam digital camera (Japan). The isolates were maintained in the Biodiversity Research Center, Academia Sinica, Taiwan. Previous stud- ies such as those of Anagnostidis and Komárek (1988), John et al., (2002) and Rindi et al. (2004, 2007, 2008) were used for morphological identification. DNA extraction and PCR amplification The DNA of the algae was extracted using the phenol- chloroform protocol (Saunders, 1993). Amplification was carried out by means of PCR as described by Sherwood Figure 1. The map of Taiwan, showing the site of Yuan-Yang and Presting (2007), using PCR primers pair p23SrV_f1 Lake area. (5’ GGA CAG AAA GAC CCT ATG AA 3’) and p23SrV_ (Promega), 26.0 μL of H (Promega), 26.0 μL 2.0 μL (20 mM) of each 0.2 dNTP, μL of mM), (0.4 primer each of μL 2.0 solution, BSA 1.0% of μL tification Phylogenetic affiliations and morphotype iden 10X PCR 4.0 buffer, of μL 2.0 mM MgCl ny), mixture using a solution of consisting 50 of μL 5.0 μL gradient S thermal cycler (Eppendorf, Hamburg, Germa Mastercycler Eppendorf an in performed was amplification r1 (5’ TCA GCC CCC TGT AG TAG TAT 3’).
Recommended publications
  • Chlorophyta, Trebouxiophyceae) in Lake Tanganyika (Africa)*
    Biologia 63/6: 799—805, 2008 Section Botany DOI: 10.2478/s11756-008-0101-4 Siderocelis irregularis (Chlorophyta, Trebouxiophyceae) in Lake Tanganyika (Africa)* Maya P. Stoyneva1, Elisabeth Ingolič2,WernerKofler3 &WimVyverman4 1Sofia University ‘St Kliment Ohridski’, Faculty of Biology, Department of Botany, 8 bld. Dragan Zankov, BG-1164 Sofia, Bulgaria; e-mail: [email protected], [email protected]fia.bg 2Graz University of Technology, Research Institute for Electron Microscopy, Steyrergasse 17,A-8010 Graz, Austria; e-mail: [email protected] 3University of Innsbruck, Institute of Botany, Sternwartestrasse 15,A-6020 Innsbruck, Austria; e-mail: werner.kofl[email protected] 4Ghent University, Department Biology, Laboratory of Protistology and Aquatic Ecology, Krijgslaan 281-S8,B-9000 Gent, Belgium; e-mail: [email protected] Abstract: Siderocelis irregularis Hindák, representing a genus Siderocelis (Naumann) Fott that is known from European temperate waters, was identified as a common phytoplankter in Lake Tanganyika. It was found aposymbiotic as well as ingested (possibly endosymbiotic) in lake heterotrophs, mainly Strombidium sp. and Vorticella spp. The morphology and ultrastructure of the species, studied with LM, SEM and TEM, are described with emphasis on the structure of the cell wall and the pyrenoid. Key words: Chlorophyta; cell wall; pyrenoid; symbiosis; ciliates; Strombidium; Vorticella Introduction ics of symbiotic species in general came into alignment with that of free-living algae and the term ‘zoochlorel- Tight partnerships between algae and aquatic inver- lae’ was abandoned as being taxonomically ambiguous tebrates, including symbiotic relationships, have long (e.g. Bal 1968; Reisser & Wiessner 1984; Taylor 1984; been of interest and a number of excellent reviews are Reisser 1992a).
    [Show full text]
  • Phylogenetic Placement of Botryococcus Braunii (Trebouxiophyceae) and Botryococcus Sudeticus Isolate Utex 2629 (Chlorophyceae)1
    J. Phycol. 40, 412–423 (2004) r 2004 Phycological Society of America DOI: 10.1046/j.1529-8817.2004.03173.x PHYLOGENETIC PLACEMENT OF BOTRYOCOCCUS BRAUNII (TREBOUXIOPHYCEAE) AND BOTRYOCOCCUS SUDETICUS ISOLATE UTEX 2629 (CHLOROPHYCEAE)1 Hoda H. Senousy, Gordon W. Beakes, and Ethan Hack2 School of Biology, University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU, UK The phylogenetic placement of four isolates of a potential source of renewable energy in the form of Botryococcus braunii Ku¨tzing and of Botryococcus hydrocarbon fuels (Metzger et al. 1991, Metzger and sudeticus Lemmermann isolate UTEX 2629 was Largeau 1999, Banerjee et al. 2002). The best known investigated using sequences of the nuclear small species is Botryococcus braunii Ku¨tzing. This organism subunit (18S) rRNA gene. The B. braunii isolates has a worldwide distribution in fresh and brackish represent the A (two isolates), B, and L chemical water and is occasionally found in salt water. Although races. One isolate of B. braunii (CCAP 807/1; A race) it grows relatively slowly, it sometimes forms massive has a group I intron at Escherichia coli position 1046 blooms (Metzger et al. 1991, Tyson 1995). Botryococcus and isolate UTEX 2629 has group I introns at E. coli braunii strains differ in the hydrocarbons that they positions 516 and 1512. The rRNA sequences were accumulate, and they have been classified into three aligned with 53 previously reported rRNA se- chemical races, called A, B, and L. Strains in the A race quences from members of the Chlorophyta, includ- accumulate alkadienes; strains in the B race accumulate ing one reported for B.
    [Show full text]
  • Neoproterozoic Origin and Multiple Transitions to Macroscopic Growth in Green Seaweeds
    Neoproterozoic origin and multiple transitions to macroscopic growth in green seaweeds Andrea Del Cortonaa,b,c,d,1, Christopher J. Jacksone, François Bucchinib,c, Michiel Van Belb,c, Sofie D’hondta, f g h i,j,k e Pavel Skaloud , Charles F. Delwiche , Andrew H. Knoll , John A. Raven , Heroen Verbruggen , Klaas Vandepoeleb,c,d,1,2, Olivier De Clercka,1,2, and Frederik Leliaerta,l,1,2 aDepartment of Biology, Phycology Research Group, Ghent University, 9000 Ghent, Belgium; bDepartment of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Zwijnaarde, Belgium; cVlaams Instituut voor Biotechnologie Center for Plant Systems Biology, 9052 Zwijnaarde, Belgium; dBioinformatics Institute Ghent, Ghent University, 9052 Zwijnaarde, Belgium; eSchool of Biosciences, University of Melbourne, Melbourne, VIC 3010, Australia; fDepartment of Botany, Faculty of Science, Charles University, CZ-12800 Prague 2, Czech Republic; gDepartment of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742; hDepartment of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138; iDivision of Plant Sciences, University of Dundee at the James Hutton Institute, Dundee DD2 5DA, United Kingdom; jSchool of Biological Sciences, University of Western Australia, WA 6009, Australia; kClimate Change Cluster, University of Technology, Ultimo, NSW 2006, Australia; and lMeise Botanic Garden, 1860 Meise, Belgium Edited by Pamela S. Soltis, University of Florida, Gainesville, FL, and approved December 13, 2019 (received for review June 11, 2019) The Neoproterozoic Era records the transition from a largely clear interpretation of how many times and when green seaweeds bacterial to a predominantly eukaryotic phototrophic world, creat- emerged from unicellular ancestors (8). ing the foundation for the complex benthic ecosystems that have There is general consensus that an early split in the evolution sustained Metazoa from the Ediacaran Period onward.
    [Show full text]
  • Transcriptional Landscapes of Lipid Producing Microalgae Benoît M
    Transcriptional landscapes of lipid producing microalgae Benoît M. Carrères 2019 Transcriptional landscapes of lipid producing microalgae Benoî[email protected]:~$ ▮ Transcriptional landscapes of lipid producing microalgae Benoît Manuel Carrères Thesis committee Promotors Prof. Dr Vitor A. P. Martins dos Santos Professor of Systems and Synthetic Biology Wageningen University & Research Prof. Dr René H. Wij$els Professor of Bioprocess Engineering Wageningen University & Research Co-promotors Dr Peter J. Schaa% Associate professor* Systems and Synthetic Biology Wageningen University & Research Dr Dirk E. Martens Associate professor* Bioprocess Engineering Wageningen University & Research ,ther mem-ers Prof. Dr Alison Smith* University of Cam-ridge Prof. Dr. Dic+ de Ridder* Wageningen University & Research Dr Aalt D.). van Di#+* Wageningen University & Research Dr Ga-ino Sanche/(Pere/* Genetwister* Wageningen This research 0as cond1cted under the auspices of the .rad1ate School V2A. 3Advanced studies in Food Technology* Agro-iotechnology* Nutrition and Health Sciences). Transcriptional landscapes of lipid producing microalgae Benoît Manuel Carrères Thesis su-mitted in ful8lment of the re9uirements for the degree of doctor at Wageningen University -y the authority of the Rector Magnificus, Prof. Dr A.P.). Mol* in the presence of the Thesis' ommittee a%%ointed by the Academic Board to be defended in pu-lic on Wednesday 2; Novem-er 2;<= at 1.>; p.m in the Aula. Benoît Manuel Carrères 5ranscriptional landsca%es of lipid producing
    [Show full text]
  • JUDD W.S. Et. Al. (2002) Plant Systematics: a Phylogenetic Approach. Chapter 7. an Overview of Green
    UNCORRECTED PAGE PROOFS An Overview of Green Plant Phylogeny he word plant is commonly used to refer to any auto- trophic eukaryotic organism capable of converting light energy into chemical energy via the process of photosynthe- sis. More specifically, these organisms produce carbohydrates from carbon dioxide and water in the presence of chlorophyll inside of organelles called chloroplasts. Sometimes the term plant is extended to include autotrophic prokaryotic forms, especially the (eu)bacterial lineage known as the cyanobacteria (or blue- green algae). Many traditional botany textbooks even include the fungi, which differ dramatically in being heterotrophic eukaryotic organisms that enzymatically break down living or dead organic material and then absorb the simpler products. Fungi appear to be more closely related to animals, another lineage of heterotrophs characterized by eating other organisms and digesting them inter- nally. In this chapter we first briefly discuss the origin and evolution of several separately evolved plant lineages, both to acquaint you with these important branches of the tree of life and to help put the green plant lineage in broad phylogenetic perspective. We then focus attention on the evolution of green plants, emphasizing sev- eral critical transitions. Specifically, we concentrate on the origins of land plants (embryophytes), of vascular plants (tracheophytes), of 1 UNCORRECTED PAGE PROOFS 2 CHAPTER SEVEN seed plants (spermatophytes), and of flowering plants dons.” In some cases it is possible to abandon such (angiosperms). names entirely, but in others it is tempting to retain Although knowledge of fossil plants is critical to a them, either as common names for certain forms of orga- deep understanding of each of these shifts and some key nization (e.g., the “bryophytic” life cycle), or to refer to a fossils are mentioned, much of our discussion focuses on clade (e.g., applying “gymnosperms” to a hypothesized extant groups.
    [Show full text]
  • Lateral Gene Transfer of Anion-Conducting Channelrhodopsins Between Green Algae and Giant Viruses
    bioRxiv preprint doi: https://doi.org/10.1101/2020.04.15.042127; this version posted April 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 5 Lateral gene transfer of anion-conducting channelrhodopsins between green algae and giant viruses Andrey Rozenberg 1,5, Johannes Oppermann 2,5, Jonas Wietek 2,3, Rodrigo Gaston Fernandez Lahore 2, Ruth-Anne Sandaa 4, Gunnar Bratbak 4, Peter Hegemann 2,6, and Oded 10 Béjà 1,6 1Faculty of Biology, Technion - Israel Institute of Technology, Haifa 32000, Israel. 2Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Invalidenstraße 42, Berlin 10115, Germany. 3Present address: Department of Neurobiology, Weizmann 15 Institute of Science, Rehovot 7610001, Israel. 4Department of Biological Sciences, University of Bergen, N-5020 Bergen, Norway. 5These authors contributed equally: Andrey Rozenberg, Johannes Oppermann. 6These authors jointly supervised this work: Peter Hegemann, Oded Béjà. e-mail: [email protected] ; [email protected] 20 ABSTRACT Channelrhodopsins (ChRs) are algal light-gated ion channels widely used as optogenetic tools for manipulating neuronal activity 1,2. Four ChR families are currently known. Green algal 3–5 and cryptophyte 6 cation-conducting ChRs (CCRs), cryptophyte anion-conducting ChRs (ACRs) 7, and the MerMAID ChRs 8. Here we 25 report the discovery of a new family of phylogenetically distinct ChRs encoded by marine giant viruses and acquired from their unicellular green algal prasinophyte hosts.
    [Show full text]
  • Comparative Genomic View of the Inositol-1, 4, 5-Trisphosphate
    Title Comparative Genomic View of The Inositol-1,4,5-Trisphosphate Receptor in Plants Author(s) Mikami, Koji Citation Journal of Plant Biochemistry & Physiology, 02(02) Issue Date 2014-9-15 Doc URL http://hdl.handle.net/2115/57862 Type article File Information comparative-genomic-view-of-the-inositoltrisphosphate-receptor.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP Mikami, J Plant Biochem Physiol 2014, 2:3 Plant Biochemistry & Physiology http://dx.doi.org/10.4172/2329-9029.1000132 HypothesisResearch Article OpenOpen Access Access Comparative Genomic View of The Inositol-1,4,5-Trisphosphate Receptor in Plants Koji Mikami* Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate 041 - 8611, Japan Abstract 2+ Terrestrial plants lack inositol-1,4,5-trisphosphate (IP3) receptor regulating transient Ca increase to activate 2+- cellular Ca dependent physiological events. To understand an evolutional route of the loss of the IP3 receptor gene, conservation of the IP3 receptor gene in algae was examined in silico based on the accumulating information of genomes and expression sequence tags. Results clearly demonstrated that the lack of the gene was observed in Rhodophyta, Chlorophyta except for Volvocales and Streptophyta. It was therefore hypothesized that the plant IP3 receptor gene was eliminated from the genome at multiple occasions; after divergence of Chlorophyta and Rhodophyta and of Chlorophyta and Charophyta. Keywords: Alga; Ca2+; Comparative genomics; Gene; Inositol-1,4,5- was probably lost from lineages of red algae and green algae except for trisphosphate receptor Volvocales (Figure 1). In fact, the genomes of unicellular Aureococcus anophagefferrens and multicellular Ectocarpus siliculosus carry an IP3 Abbreviations: DAG: Diacylglycerol; IP3: Inositol-1,4,5- receptor gene homologue (Figure 1).
    [Show full text]
  • The Green Puzzle Stichococcus (Trebouxiophyceae, Chlorophyta): New Generic and Species Concept Among This Widely Distributed Genus
    Phytotaxa 441 (2): 113–142 ISSN 1179-3155 (print edition) https://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2020 Magnolia Press Article ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.441.2.2 The green puzzle Stichococcus (Trebouxiophyceae, Chlorophyta): New generic and species concept among this widely distributed genus THOMAS PRÖSCHOLD1,3* & TATYANA DARIENKO2,4 1 University of Innsbruck, Research Department for Limnology, A-5310 Mondsee, Austria 2 University of Göttingen, Albrecht-von-Haller-Institute of Plant Sciences, Experimental Phycology and Sammlung für Algenkulturen, D-37073 Göttingen, Germany 3 [email protected]; http://orcid.org/0000-0002-7858-0434 4 [email protected]; http://orcid.org/0000-0002-1957-0076 *Correspondence author Abstract Phylogenetic analyses have revealed that the traditional order Prasiolales, which contains filamentous and pseudoparenchy- matous genera Prasiola and Rosenvingiella with complex life cycle, also contains taxa of more simple morphology such as coccoids like Pseudochlorella and Edaphochlorella or rod-like organisms like Stichococcus and Pseudostichococcus (called Prasiola clade of the Trebouxiophyceae). Recent studies have shown a high biodiversity among these organisms and questioned the traditional generic and species concept. We studied 34 strains assigned as Stichococcus, Pseudostichococcus, Diplosphaera and Desmocococcus. Phylogenetic analyses using a multigene approach revealed that these strains belong to eight independent lineages within the Prasiola clade of the Trebouxiophyceae. For testing if these lineages represent genera, we studied the secondary structures of SSU and ITS rDNA sequences to find genetic synapomorphies. The secondary struc- ture of the V9 region of SSU is diagnostic to support the proposal for separation of eight genera.
    [Show full text]
  • Dynamics of Phytoplankton Communities in Eutrophying Tropical Shrimp Ponds Affected by Vibriosis
    1 Marine Pollution Bulletin Achimer September 2016, Volume 110, Issue 1, Pages 449-459 http://dx.doi.org/10.1016/j.marpolbul.2016.06.015 http://archimer.ifremer.fr http://archimer.ifremer.fr/doc/00343/45411/ © 2016 Elsevier Ltd. All rights reserved. Dynamics of phytoplankton communities in eutrophying tropical shrimp ponds affected by vibriosis Lemonnier Hugues 1, *, Lantoine François 2, Courties Claude 2, Guillebault Delphine 2, 3, Nézan Elisabeth 4, Chomérat Nicolas 4, Escoubeyrou Karine 5, Galinié Christian 6, Blockmans Bernard 6, Laugier Thierry 1 1 IFREMER LEAD, BP 2059, 98846 Nouméa cedex, New Caledonia, France 2 Sorbonne Universités, UPMC Univ Paris 06, UMR 8222, LECOB, Observatoire Océanologique, F- 66650 Banyuls/mer, France 3 Microbia Environnement, Observatoire Océanologique de Banyuls, 66650 Banyuls-sur mer, France 4 IFREMER, LER BO, Station de Biologie Marine, Place de la Croix, BP 40537, 29185 Concarneau Cedex, France 5 Sorbonne Universités, UPMC Univ Paris 06, CNRS, Plate-forme Bio2Mar, Observatoire Océanologique, F-66650 Banyuls/Mer, France 6 GFA, Groupement des Fermes Aquacoles, ORPHELINAT, 1 rue Dame Lechanteur, 98800 Nouméa cedex, New Caledonia, France * Corresponding author : Hugues Lemonnier, email address : [email protected] Abstract : Tropical shrimp aquaculture systems in New Caledonia regularly face major crises resulting from outbreaks of Vibrio infections. Ponds are highly dynamic and challenging environments and display a wide range of trophic conditions. In farms affected by vibriosis, phytoplankton biomass and composition are highly variable. These conditions may promote the development of harmful algae increasing shrimp susceptibility to bacterial infections. Phytoplankton compartment before and during mortality outbreaks was monitored at a shrimp farm that has been regularly and highly impacted by these diseases.
    [Show full text]
  • Comparative Genomic View of the Inositol-1,4,5-Trisphosphate Receptor in Plants
    Title Comparative Genomic View of The Inositol-1,4,5-Trisphosphate Receptor in Plants Author(s) Mikami, Koji Journal of Plant Biochemistry & Physiology, 02(02) Citation https://doi.org/10.4172/2329-9029.1000132 Issue Date 2014-9-15 Doc URL http://hdl.handle.net/2115/57862 Type article File Information comparative-genomic-view-of-the-inositoltrisphosphate-receptor.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP Mikami, J Plant Biochem Physiol 2014, 2:3 Plant Biochemistry & Physiology http://dx.doi.org/10.4172/2329-9029.1000132 HypothesisResearch Article OpenOpen Access Access Comparative Genomic View of The Inositol-1,4,5-Trisphosphate Receptor in Plants Koji Mikami* Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate 041 - 8611, Japan Abstract 2+ Terrestrial plants lack inositol-1,4,5-trisphosphate (IP3) receptor regulating transient Ca increase to activate 2+- cellular Ca dependent physiological events. To understand an evolutional route of the loss of the IP3 receptor gene, conservation of the IP3 receptor gene in algae was examined in silico based on the accumulating information of genomes and expression sequence tags. Results clearly demonstrated that the lack of the gene was observed in Rhodophyta, Chlorophyta except for Volvocales and Streptophyta. It was therefore hypothesized that the plant IP3 receptor gene was eliminated from the genome at multiple occasions; after divergence of Chlorophyta and Rhodophyta and of Chlorophyta and Charophyta. Keywords: Alga; Ca2+; Comparative genomics; Gene; Inositol-1,4,5- was probably lost from lineages of red algae and green algae except for trisphosphate receptor Volvocales (Figure 1).
    [Show full text]
  • "Phycology". In: Encyclopedia of Life Science
    Phycology Introductory article Ralph A Lewin, University of California, La Jolla, California, USA Article Contents Michael A Borowitzka, Murdoch University, Perth, Australia . General Features . Uses The study of algae is generally called ‘phycology’, from the Greek word phykos meaning . Noxious Algae ‘seaweed’. Just what algae are is difficult to define, because they belong to many different . Classification and unrelated classes including both prokaryotic and eukaryotic representatives. Broadly . Evolution speaking, the algae comprise all, mainly aquatic, plants that can use light energy to fix carbon from atmospheric CO2 and evolve oxygen, but which are not specialized land doi: 10.1038/npg.els.0004234 plants like mosses, ferns, coniferous trees and flowering plants. This is a negative definition, but it serves its purpose. General Features Algae range in size from microscopic unicells less than 1 mm several species are also of economic importance. Some in diameter to kelps as long as 60 m. They can be found in kinds are consumed as food by humans. These include almost all aqueous or moist habitats; in marine and fresh- the red alga Porphyra (also known as nori or laver), an water environments they are the main photosynthetic or- important ingredient of Japanese foods such as sushi. ganisms. They are also common in soils, salt lakes and hot Other algae commonly eaten in the Orient are the brown springs, and some can grow in snow and on rocks and the algae Laminaria and Undaria and the green algae Caulerpa bark of trees. Most algae normally require light, but some and Monostroma. The new science of molecular biology species can also grow in the dark if a suitable organic carbon has depended largely on the use of algal polysaccharides, source is available for nutrition.
    [Show full text]
  • Rike Bacteria Protozoa Chromista Plantae
    Svenska art projekt et Forskningsprioriteringar 2017 2017-03-21 RIKE UNDERRIKE INFRARIKE ÖVERSTAM DIVISION/STAM Ordning KLASS UNDERKLASS INFRAKLASS ÖVERORDNING Underordning "Infraordning" Familj SUBDIVISION/UNDERSTAM INFRASTAM ÖVERKLASS Överfamilj Underfamilj Forskningsprioritet Forskningsprioritet: 1= Mycket hög; 2= Hög; 3. Medelhög; 4= Låg; 5= Mycket låg BACTERIA 5 CYANOBACTERIA 5 PROTOZOA 5 EBRIOPHYCEAE 5 CILIOPHORA 5 FORAMINIFERA 5 CHOANOZOA 5 CHOANOFLAGELLIDA 5 MESOMYCETOZOEA 5 MYZOZOA 5 ELLOBIOPSEA 5 DINOPHYCEAE 5 EUGLENOZOA 5 EUGLENOPHYCEAE 5 Euglenales 5 Eutreptiales (syn. Sphenomonadales) 5 CERCOZOA 5 ASCETOSPOREA 5 PHYTOMYXEA (syn. PLASMODIOPHOROMYCETES) 5 LABYRINTHISTA ( syn. LABYRINTHULOMYCOTA) 5 APICOMPLEXA 5 PERCOLOZOA 5 HETEROLOBOSEA 5 Acrasida (syn. Acrasiomycetes) 5 SARCOMASTIGOPHORA 5 MYCETOZOA 3 DICTYOSTELIOMYCETES 5 MYXOMYCETES 3 PROTOSTELIOMYCETES 3 CHROMISTA CRYPTOPHYTA 5 HETEROKONTOPHYTA PHAEOPHYCEAE 3 Övriga klasser 5 BACILLARIOPHYTA 5 HAPTOPHYTA 5 HYPHOCHYTRIOMYCOTA 5 OOMYCOTA 3 PLANTAE BILIPHYTA RHODOPHYTA 2 VIRIDIPLANTAE CHLOROPHYTA CHLOROPHYTA CHLOROPHYCEAE Chaetophorales 3 Microsporales 3 1 Svenska art projekt et Forskningsprioriteringar 2017 2017-03-21 RIKE UNDERRIKE INFRARIKE ÖVERSTAM DIVISION/STAM Ordning KLASS UNDERKLASS INFRAKLASS ÖVERORDNING Underordning "Infraordning" Familj SUBDIVISION/UNDERSTAM INFRASTAM ÖVERKLASS Överfamilj Underfamilj Forskningsprioritet Oedogoniales 4 Övriga ordningar 5 ULVOPHYCEAE 3 TREBOUXIOPHYCEAE Prasiolales 3 Microthamniales 3 Övriga ordningar 5 PEDINOPHYCEAE 5 PRASINOPHYCEAE
    [Show full text]