Benzodiazepine Overdose

Total Page:16

File Type:pdf, Size:1020Kb

Benzodiazepine Overdose BRITISH MEDICAL JOURNAL VOLUME 290 16 MARCH 1985 805 Br Med J (Clin Res Ed): first published as 10.1136/bmj.290.6471.805 on 16 March 1985. Downloaded from benzodiazepine dependent animals.'2 In man oral Ro 15- Benzodiazepine overdose: 1788 (200 mg) antagonises the effects of diazepam on are antagonists psychomotor performance without decreasing its bio- specific availability'3"' and reverses the benzodiazepine effects on useful? rapid eye movement sleep.'5 Given intravenously (10 mg) it immediately reverses the deep sedation induced by intravenous flunitrazepam (2 mg) and the impaired per- Benzodiazepines are remarkably non-toxic. Taken alone, formance caused by intravenous midazolam.'6 Ro 15-1788 is even large doses rarely produce serious effects. Self almost devoid of intrinsic effects in oral doses of 600 mg,'3 poisoners commonly take mixtures of drugs, however, and though it may depress stage 4 sleep.'5 Electroencephalo- benzodiazepines are included in 40% of drug overdoses in graphic frequency analysis and evoked potentials both show Britain.' Because of additive effects large doses of benzo- a stimulant effect after intravenous Ro 15-1788 (5 mg); diazepines taken with other depressants may aggravate or some people report mild anxiety and "pressure to move,"'7 precipitate respiratory failure, especially in the elderly or suggesting slight inverse agonist activity. patients with pulmonary disease; they may also add to A few clinical trials of Ro 15-1788 in benzodiazepine hypotension and occasionally lead to fatal hypothermia in overdose have been reported. In one open study nine myxoedema.2 patients (aged 22-74) in deep coma due to benzodiazepines A patient suspected of having taken benzodiazepines with responded within one to two minutes to intravenous Ro 15- other drugs producing coma may present diagnostic 1788 (2-5-10 mg).'8 They opened their eyes and responded difficulties. Furthermore, since most benzodiazepines or to pain; the electroencephalogram changed from a pattern of their metabolites are slowly eliminated, their use may coma to one of waking; respiratory rate and blood pressure considerably prolong the hospital stay of patients who have temporarily increased. The duration of benzodiazepine taken an overdose. Performance in skilled tasks (including antagonism was three to five hours and repeated administra- car driving) may be impaired for weeks after apparent tion of Ro 15-1788 was necessary to maintain the effects. recovery from benzodiazepine overdose,' and withdrawal Convulsions were precipitated in one epileptic patient who effects such as anxiety, insomnia, and rebound rapid eye had been treated for status epilepticus with diazepam, movement sleep may be similarly prolonged.3 All these phenobarbitone, and phenytoin. No other adverse effects factors increase the burden imposed on health services. were noted. Hence an antagonist which rapidly reverses benzodiazepine In two patients with coma due to diazepam overdosage effects is an interesting prospect. for sedation being treated on a ventilator the coma was Many of the effects of benzodiazepines are thought to reversed by Ro 15-1788."' The authors comment that slowly result from interaction with specific receptors forming part eliminated benzodiazepines such as diazepam may often be of the postsynaptic y-aminobutyric acid (GABA) receptor responsible for delay in extubation. In a patient in coma due complex. Occupation of these sites by benzodiazepines to liver disease and benzodiazepine overdose intravenous Ro enhances the inhibitory (hyperpolarising) effects of GABA, 15-1788 facilitated diagnosis by removing the drug induced resulting in sedative, anxiolytic, muscular relaxant, and component.'8 The use of Ro 15-1788 for immediately anticonvulsant actions.i6 Different subtypes, or states, of reversing sedation induced by midazolam for minor the GABA-benzodiazepine receptor may be concerned in operations has been described in 17 patients.20 the different effects. These sparse clinical data make it difficult to draw http://www.bmj.com/ Endogenous benzodiazepine receptor ligands, which conclusions about the therapeutic value of Ro 15-1788. It perhaps physiologically modulate anxiety, have to be appears to be safe and effective in reversing benzodiazepine discovered,8 but several synthetic compounds are known to effects. Although active treatment is rarely required for bind selectively to central high affinity benzodiazepine straightforward benzodiazepine overdose, Ro 15-1788 may receptors.90 Some are agonists: non-benzodiazepines such speed recovery, reduce after effects, and shorten hospital as zopiclone and some triazopyridazines produce classical stay. In coma due to multiple drug overdose Ro 15-1788 benzodiazepine like effects. Others, including some may avoid the necessity for artificial ventilation by removing on 30 September 2021 by guest. Protected copyright. imidazodiazepines, pyrazoloquinolines, and Pi carbolines, the benzodiazepine component of central depression-and make up a range of partial agonists and competitive for the same reason facilitate diagnosis. Drawbacks include antagonists. These have some but not all of the benzo- the precipitation of convulsions in epileptics and possibly in diazepine like actions, antagonise one or more benzodiaze- the presence of convulsant drugs such as tricyclic pine effects, or combine agonist and antagonist properties. antidepressants (which are commonly taken with benzo- Yet others are termed "inverse agonists": they bind to diazepines in suicidal patients). Withdrawal symptoms may benzodiazepine receptors but produce opposite, anxiogenic, be precipitated in patients dependent on benzodiazepines- stimulant, and convulsant effects.9 The range of activity and many who take overdoses of these drugs are likely to fall exerted by this series of benzodiazepine ligands suggests into this category. The short elimination half life of Ro 15- that the physiological control of mood may be mediated by 1788 (one to two hours) is an inconvenience; patients need endogenous anxiogenic as well as (or instead of) anxiolytic to be monitored and the drug given repeatedly, but slow substances and that the various actions of benzodiazepines release preparations may become available. may be separable. Another potential use of Ro 15-1788 is reversal Of the benzodiazepine agonist-antagonists, the most of sedation for minor surgery with short acting benzo- studied is Ro 15-1788, a synthetic imidazodiazepine which diazepines. It may also be of value in hypersomnolent states has little agonist activity and is even less toxic than such as narcolepsy. The development of an array of benzodiazepines." Ro 15-1788 is not yet generally available benzodiazepine agonist-antagonists with selective benzo- for clinical use. In animals it reverses the behavioural, diazepine like or antibenzodiazepine actions may open a biochemical, and electrophysiological effects of benzo- wider range of possibilities, including perhaps a use in diazepines, and it precipitates withdrawal signs in benzodiazepine dependence and withdrawal.2' At present, 806 BRITISH MEDICAL JOURNAL VOLUME 290 16 MARCH 1985 Br Med J (Clin Res Ed): first published as 10.1136/bmj.290.6471.805 on 16 March 1985. Downloaded from however, the greatest need is for more careful prescribing of the community and that transfer ofpatients from hospitals to benzodiazepines. hostels, sheltered housing, or care by their own families C HEATHER ASHTON would save money. Senior Lecturer in Clinical Psychopharmacology, The committee's comments on this belief are crucial to an University of Newcastle upon Tyne, Newcastle upon Tyne NE2 4HH understanding of the failure of the policy. "Savings do not accrue," the report explains, "when a hospital transfers patients elsewhere.... If the more able patients leave staff I Proudfoot A. Diagnosis and management of acute poisoning. Oxford: Blackwell Scientific Publications, 1982. levels may have to rise to compensate for the unrecorded care 2 Rogers HO, Spector RG, Trounce JR. A textbook ofclinical pharmacology. London: Hodder and Stoughton, 198 1. service these former patients provided. .. The scale of 3 Haider I, Oswald I. Late brain recovery processes after drug overdose. BrMed3r 1970;ii:318-22. reduction required is wards rather than individuals.... In 4 Sepinwall J, Cook L. Mechanism of action of the benzodiazepines: behavioral aspect. Fed Proc 1979;39:3024-31. simple terms until you have got the capital from selling all or S Braestrup C, Neilsen M. Benzodiazepine receptors. Arzneimittelforsch 1980;30:852-7. part ofa hospital site you do not have the capital for its whole 6 Toffano G, Leon A, Massotti M, Guidotti A, Costa E. GABA-modulin, a regulatory protein for GABA receptors. In: Pepeu G, Kuhar MJ, Enna SJ, eds. Receptors for neurotransmitters and or partial replacement in terms ofhostels or homes within the peptide hormones. New York: Raven Press, 1980:133-42. community." And the staff who used to work in the hospital 7 Squires RF. Benzodiazepine receptor multiplicity. Neuropharmacology 1983;22:1443-7. 8 Costa E, Corda MG, Guidotti A. On a brain polypeptide functioning as a putative effector for the should be redeployed within the community-again with no recognition sites of benzodiazepine and beta-carboline derivatives. Neuropharmacology 1983;22: 1481-92. financial saving. 9 Braestrup C, Nielsen M, Honore T, Jensen LH, Petersen EN. Benzodiazepine receptor ligands The results of closing hospitals ahead of the establishment with positive and negative
Recommended publications
  • Benzodiazepine & Alcohol Co-Ingestion
    The Journal of COLLEGIATE EMERGENCY MEDICAL SERVICES ISSN: 2576-3687 (Print) 2576-3695 (Online) Journal Website: https://www.collegeems.com Benzodiazepine & Alcohol Co-Ingestion: Implications for Collegiate-Based Emergency Medical Services David Goroff & Alexander Farinelli Keywords: alcohol, benzodiazepines, collegiate-based emergency medical services, toxicology Citation (AMA Style): Goroff D, Farinelli A. Benzodiazepine and Alcohol Co-In- gestion. J Coll Emerg Med Serv. 2018; 1(2): 19-23. https://doi.org/10.30542/ JCEMS.2018.01.02.04 Electronic Link: https://doi.org/10.30542/JCEMS.2018.01.02.04 Published Online: August 8, 2018 Published in Print: August 13, 2018 (Volume 1: Issue 2) Copyright: © 2018 Goroff & Farinelli. This is an OPEN ACCESS article distributed under the terms of the Creative Commons Attribu- tion 4.0 International (CC BY 4.0) License, which permits unrestrict- ed use, distribution, and reproduction in any medium, provided the original author and source are credited. The full license is available at: https://creativecommons.org/licenses/by/4.0/ CLINICAL REVIEW Benzodiazepine & Alcohol Co-Ingestion: Implications for Collegiate-Based Emergency Medical Services David Goroff, MS, NRP & Alexander Farinelli, BS, NRP ABSTRACT KEYWORDS: alcohol, The co-ingestion of benzodiazepines and alcohol presents a unique challenge to colle- benzodiazepines, collegiate- giate EMS providers, due to the pharmacological interaction of the two substances and based emergency medical the variable patient presentations. Given the likelihood that collegiate EMS providers services, toxicology will be called to treat a patient who has co-ingested benzodiazepines and alcohol, this Corresponding Author and review discusses the relevant pharmacology, clinical presentation, and treatment of these Author Affiliations:Listed co-ingestion patients.
    [Show full text]
  • Acute Poisoning: Understanding 90% of Cases in a Nutshell S L Greene, P I Dargan, a L Jones
    204 REVIEW Postgrad Med J: first published as 10.1136/pgmj.2004.027813 on 5 April 2005. Downloaded from Acute poisoning: understanding 90% of cases in a nutshell S L Greene, P I Dargan, A L Jones ............................................................................................................................... Postgrad Med J 2005;81:204–216. doi: 10.1136/pgmj.2004.024794 The acutely poisoned patient remains a common problem Paracetamol remains the most common drug taken in overdose in the UK (50% of intentional facing doctors working in acute medicine in the United self poisoning presentations).19 Non-steroidal Kingdom and worldwide. This review examines the initial anti-inflammatory drugs (NSAIDs), benzodiaze- management of the acutely poisoned patient. Aspects of pines/zopiclone, aspirin, compound analgesics, drugs of misuse including opioids, tricyclic general management are reviewed including immediate antidepressants (TCAs), and selective serotonin interventions, investigations, gastrointestinal reuptake inhibitors (SSRIs) comprise most of the decontamination techniques, use of antidotes, methods to remaining 50% (box 1). Reductions in the price of drugs of misuse have led to increased cocaine, increase poison elimination, and psychological MDMA (ecstasy), and c-hydroxybutyrate (GHB) assessment. More common and serious poisonings caused toxicity related ED attendances.10 Clinicians by paracetamol, salicylates, opioids, tricyclic should also be aware that severe toxicity can result from exposure to non-licensed pharmaco-
    [Show full text]
  • Benzodiazepine (Benzo) Advisory
    BENZODIAZEPINE (BENZO) ADVISORY Drug checking within the Interior Health region continues to detect benzodiazepines (benzos) in multiple drug samples in several communities across the region. Benzodiazepines have been found in a variety of substances most often sold as “down”, heroin, or fentanyl. There has been a wide range of colours and textures identified. Risk: Benzodiazepines mixed with opioids carry a high risk of overdose and can cause prolonged sedation, sleepiness, muscle relaxation, slurred speech, loss of consciousness, black outs/memory loss. Overdose Response: Responding to overdoses involving BOTH Opioids and Benzos is more complex. Naloxone does not work on Benzos, BUT naloxone will work on the opioid overdose symptoms. After giving breaths and naloxone, the person may begin breathing normally, but may not wake up. More doses of naloxone should only be given if the person is not breathing normally (less than 10 breaths a minute). If the person is breathing normally but remains unconscious, place in recovery position and stay with them until emergency services arrive. Call to action: Reinforce overdose prevention messaging: don’t use alone, start small – go low and slow, use overdose prevention services. Talk to clients about getting their drugs tested for benzodiazepines. Benzo testing is currently available at the following the locations: o ASK Wellness: Kamloops – 778-257-1292 o Supervised Consumption Service: Kelowna o UBCO Harm Reduction Program: Kelowna, Penticton, Vernon 250-864-1431 o Vernon Overdose Prevention Site: 250-503-3737 o ANKORS: Cranbrook - 250-426-3383 o ANKORS: Nelson - 250-505-5506 o MHSU Overdose Prevention Nurses - Penticton - 250-462-1050 Ensure that service providers and peer responders are aware of how to recognize and respond to overdoses involving benzos.
    [Show full text]
  • Toxicology and Overdoses Objectives Facts
    7/12/2018 #FSHP2018 #FSHP2018 Objectives • Discuss common drugs in overdoses, both legal and illegal Toxicology and Overdoses • Recognize reversal agents • Discuss administration techniques for reversal By: Kathy Moorman agents • Discuss tentative treatments for overdoses #FSHP2018 Why do we do what we do Top 9 Causes of Overdoses • Opioids • Benzodiazepines • Ethyl Alcohol • Amphetamines • Marijuana • Antihistamines • Acetaminophen • Pesticides • Anticonvulsants #FSHP2018 #FSHP2018 Facts • More than 30% of opioid overdoses also involve benzodiazepines • Every day over 115 Americans die of overdoses • Individuals who are prescribed both benzodiazepines and opioids are 10X more likely to die of an overdose. • Both opioids and benzodiazepines now have black box warnings issued by the FDA recommending they not be prescribed together. National Institute of Drug Abuse rev 3/18 #FSHP2018 #FSHP2018 1 7/12/2018 OPIOID Toxicity • Opioids include: HYDROmorphone, MORphine, What do you use to reverse opioids? meperidine, fentanyl, oxycontin and others • Answer: Naloxone • Symptoms of overdose include drowsiness, slow breathing, pinpoint pupils, cyanosis (blueish skin due to poor circulation), loss of consciousness, and death. • Due to their addictive potential and easy accessibility opioid addiction is a growing problem. • Antidote for an acute opioid overdose in the emergency room is Narcan(naloxone), which is an opioid antagonist. #FSHP2018 #FSHP2018 Naloxone (Narcan®) Benzodiazepines • Comes as a 2mg/2ml syringe or 1mg/ml vial • Can be administered
    [Show full text]
  • Benzodiazepines and Opioids
    CLINICAL BULLETIN: BENZODIAZEPINES AND OPIOIDS June 8, 2021 Visit www.bccsu.ca/opioid-use-disorder for the latest version IN THIS BULLETIN • Benzodiazepines Detected in Street Drugs • Symptoms of Benzodiazepine Overdose • How to Respond to an Opioid Overdose Involving Benzodiazepines • Management of Benzodiazepine-Opioid Withdrawal • Implications for Substance Use Disorder Treatment • Harm Reduction and Education • Additional Resources ɤ BC’s drug checking services have seen a rapid increase in benzodiazepine-positive street opioids ɤ In January 2021, benzodiazepines were detected in more than 20% of street opioid samples tested in Vancouver ɤ Vancouver Island Drug Checking Project found benzodiazepines and etizolam in 59% of expected opioid samples collected in March 2021 ɤ Benzodiazepines were detected in nearly 50% of suspected overdose deaths in January 2021, which is more than three times higher than the data reported only six months prior (16%) ɤ Opioid-benzodiazepine overdoses result in atypical and protracted overdose events that can be challenging to reverse This bulletin highlights the risks associated with the emergence of benzodiazepine-adulterated drugs in the street opioid supply and provides guidance for the care of individuals who have been exposed to benzodiazepines through the use of adulterated opioids. The scope of this bulletin is limited to individuals who have been exposed to benzodiazepines through the street opioid supply; care considerations for individuals who are prescribed benzodiazepines and those who meet the criteria for benzodiazepine use disorder is outside the scope of this document.a a Considerations for individuals prescribed benzodiazepines and those with benzodiazepine use disorder will be provided in a forthcoming document.
    [Show full text]
  • Acute Fatal Posthypoxic Leukoencephalopathy Following Benzodiazepine Overdose: a Case Report and Review of the Literature Salman Aljarallah and Fawaz Al-Hussain*
    Aljarallah and Al-Hussain BMC Neurology (2015) 15:69 DOI 10.1186/s12883-015-0320-6 CASE REPORT Open Access Acute fatal posthypoxic leukoencephalopathy following benzodiazepine overdose: a case report and review of the literature Salman Aljarallah and Fawaz Al-Hussain* Abstract Background: Among the rare neurological complications of substances of abuse is the selective cerebral white matter injury (leukoencephalopathy). Of which, the syndrome of delayed post hypoxic encephalopathy (DPHL) that follows an acute drug overdose, in addition to “chasing the dragon” toxicity which results from chronic heroin vapor inhalation remain the most commonly described syndromes of toxic leukoencephalopathy. These syndromes are reported in association with opioid use. There are very few cases in the literature that described leukoencephalopathy following benzodiazepines, especially with an acute and progressive course. In this paper, we present a patient who developed an acute severe fatal leukoencephalopathy following hypoxic coma and systemic shock induced by benzodiazepine overdose. Case presentation: A 19-year-old male was found comatose at home and brought to hospital in a deep coma, shock, hypoxia, and acidosis. Brain magnetic resonant imaging (MRI) revealed a strikingly selective white matter injury early in the course of the disease. The patient remained in a comatose state with no signs of neurologic recovery until he died few weeks later following an increase in the brain edema and herniation. Conclusion: Toxic leukoencephalopathy can occur acutely following an overdose of benzodiazepine and respiratory failure. This is unlike the usual cases of toxic leukoencephalopathy where there is a period of lucidity between the overdose and the development of white matter disease.
    [Show full text]
  • XANAX (Alprazolam) Tablets, for Oral Use, CIV Ritonavir
    HIGHLIGHTS OF PRESCRIBING INFORMATION When tapering, decrease dosage by no more than 0.5 mg every 3 days. These highlights do not include all the information needed to use XANAX Some patients may require an even slower dosage reduction. (2.3, 5.2) safely and effectively. See full prescribing information for XANAX. See the Full Prescribing Information for the recommended dosage in geriatric patients, patients with hepatic impairment, and with use with XANAX (alprazolam) tablets, for oral use, CIV ritonavir. (2.4, 2.5, 2.6) Initial U.S. Approval: 1981 --------------------- DOSAGE FORMS AND STRENGTHS --------------------- Tablets: 0.25 mg, 0.5 mg, 1 mg, and 2 mg (3) WARNING: RISKS FROM CONCOMITANT USE WITH OPIOIDS; ABUSE, MISUSE, AND ADDICTION; and ------------------------------ CONTRAINDICATIONS ------------------------------ DEPENDENCE AND WITHDRAWAL REACTIONS Known hypersensitivity to alprazolam or other benzodiazepines. (4) See full prescribing information for complete boxed warning. Concomitant use with strong cytochrome P450 3A (CYP3A) inhibitors, except ritonavir. (4, 5.5, 7.1) Concomitant use of benzodiazepines and opioids may result in profound sedation, respiratory depression, coma, and death. ----------------------- WARNINGS AND PRECAUTIONS ----------------------- Reserve concomitant prescribing for use in patients for whom Effects on Driving and Operating Machinery: Patients receiving XANAX alternative treatment options are inadequate. Limit dosages and should be cautioned against operating machinery or driving a motor durations to the minimum required. Follow patients for signs and vehicle, as well as avoiding concomitant use of alcohol and other central symptoms of respiratory depression and sedation. (5.1, 7.1) nervous system (CNS) depressant drugs. (5.4) The use of benzodiazepines, including XANAX, exposes users to Neonatal Sedation and Withdrawal Syndrome (NOWS): Use of XANAX risks of abuse, misuse, and addiction, which can lead to overdose or during pregnancy can result in neonatal sedation and neonatal withdrawal death.
    [Show full text]
  • Evidence-Based Practices in Drug and Alcohol Treatment and Recovery
    Evidence-based Practices in Drug and Alcohol Treatment and Recovery June 2016 Contents Introduction 2 Principles and goals of substance abuse treatment 4 Evaluation and determination of therapeutic service need 5 Withdrawal management services—management of acute intoxication and withdrawal 8 Alcohol 8 Benzodiazepines 9 Opioids 9 Medication-assisted therapies 9 Stimulants (cocaine and amphetamine) 10 Cannabis withdrawal 10 Hallucinogens (LSD, mescaline, psilocybin, and related drugs) 10 Phencyclidine (PCP) 11 Volatile substances (inhalants) 11 Club drugs 11 Designer drugs 11 Anabolic-androgenic steroids (AAS) 12 Interventions—substance abuse treatment and recovery 13 Psychosocial treatments 13 Somatic treatments (Psychopharmacotherapy) 14 Medication-assisted treatment (MAT) 15 Levels of care 18 Conclusion 19 References 20 ©2016 Magellan Health, Inc—Evidence-based Practices in Drug and Alcohol Treatment and Recovery 1 Introduction The use of illicit drugs, e g , marijuana, cocaine, physiological symptoms indicating that the heroin, hallucinogens, inhalants, and nonmedical individual continues using the substance despite use of prescription-type psychotherapeutic drugs, substance-related problems” (DSM-5, 2013) SUDs and alcohol is both a significant public health occur when recurrent use of the substance results problem and a challenge in the U S A national in a pathological pattern of related behaviors, e g , report, Behavioral Health Trends in the United impaired control and social impairment The 2014 States: Results from the 2014 National
    [Show full text]
  • Common Antidotes Used in the ICU
    SURIYAWUT SURIYA/SHUTTERSTOCK SURIYAWUT Common antidotes used in the ICU By Carrie L. Griffiths, PharmD, BCCCP, FCCM; Arzu Patel, BS; and Kristie A. Hertel, MSN, RN, CCRN, ACNP-BC Abstract: When ingested, some common household products can be poisonous, and, when taken improperly, both prescription and over- the-counter medications can result in overdoses. This article describes several common toxicities encountered in the ICU and their respec- tive antidotes. Keywords: acetaminophen, antidote, benzodiazepine, beta-blocker, calcium channel blocker, digoxin, digoxin immune fab, flumazenil, fomepizole, hyperinsulinemia-euglycemia therapy (HIET), naloxone, N-acetylcysteine, opioids, toxic alcohols www.nursingcriticalcare.com July l Nursing2020CriticalCare l 9 Copyright © 2020 Wolters Kluwer Health, Inc. All rights reserved. Common antidotes used in the ICU According to the 2018 National for overdose include advanced sites. That is, digoxin immune Poison Data System Annual age, metabolic disorders, and fab binds to digoxin, removing it Report, there were 2,099,751 drug interactions.4 Medications from its tissue binding sites, and human exposures to substances such as verapamil, atorvastatin, the bound drug is then pushed ranging from household cleaning omeprazole, potassium-depleting into the extracellular fluid. As products to prescription medica- diuretics, alprazolam, erythromy- a result, it is unable to exert its tions.1 In the critical care setting, cin, and tetracycline may lead to effect on its target tissues, revers- patients present with a variety of increased serum concentrations ing adverse events associated conditions, including intentional of digoxin.6,7 with overdose.7 or unintentional poisonings or Mechanism of toxicity. Adverse reactions. There have overdoses. Antidotes are used to Digoxin’s mechanism of action been reported allergic reactions counteract the toxicity of poisons.
    [Show full text]
  • Use of Flumazenil in the Treatment of Drug Overdose
    Critical Care Medicine Issue: Volume 24(2), February 1996, pp 199-206 Copyright: © Williams & Wilkins 1996. All Rights Reserved. Publication Type: [Clinical Investigation] ISSN: 0090-3493 Accession: 00003246-199602000-00004 [Clinical Investigation] Use of flumazenil in the treatment of drug overdose: A double-blind and open clinical study in 110 patients Weinbroum, Avi MD; Rudick, Valeri MD; Sorkine, Patrick MD; Nevo, Ygal MD; Halpern, Pinchas MD; Geller, Eran MD; Niv, David MD Author Information From the Departments of Anesthesiology and Critical Care Medicine (Drs. Weinbroum, Rudick, Sorkine, Nevo, and Niv), and Emergency Room (Dr. Halpern), Tel-Aviv- Elias Sourasky Medical Center and the Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel, and the Surgical Intensive Care Unit (Dr. Geller), Palo Alto Veterans Administration Medical Center and the Stanford University School of Medicine, Palo Alto, CA. This study was supported, in part, by institutional departmental funds. Address requests for reprints to: Avi Weinbroum, MD, Department of Anesthesiology and Critical Care Medicine, Tel-Aviv-Elias Sourasky Medical Center, 6 Weizman Street, Tel-Aviv 64239, Israel. Abstract Objectives: To assess the efficacy, usefulness, safety, and dosages of flumazenil required when flumazenil is used in the diagnosis of benzodiazepine-induced coma (vs. other drug-induced coma), and to reverse or prevent the recurrence of unconsciousness. Design: A two-phase study: a controlled, randomized, doubleblind study followed by a prospective, open study. Setting: An 800-bed, teaching, university-affiliated hospital. Patients: Unconscious patients (n equals 110) suspected of benzodiazepine overdose, graded 2 to 4 on the Matthew and Lawson coma scale, were treated with flumazenil, the specific benzodiazepine receptor antagonist.
    [Show full text]
  • Sedative Hypnotics Leon Gussow and Andrea Carlson
    CHAPTER 165 Sedative Hypnotics Leon Gussow and Andrea Carlson BARBITURATES three times therapeutic, the neurogenic, chemical, and hypoxic Perspective respiratory drives are progressively suppressed. Because airway reflexes are not inhibited until general anesthesia is achieved, Barbiturates are discussed in do-it-yourself suicide manuals and laryngospasm can occur at low doses. were implicated in the high-profile deaths of Marilyn Monroe, Therapeutic oral doses of barbiturates produce only mild Jimi Hendrix, Abbie Hoffman, and Margaux Hemingway as well decreases in pulse and blood pressure, similar to sleep. With toxic as in the mass suicide of 39 members of the Heaven’s Gate cult in doses, more significant hypotension occurs from direct depression 1997. Although barbiturates are still useful for seizure disorders, of the myocardium along with pooling of blood in a dilated they rarely are prescribed as sedatives, with the availability of safer venous system. Peripheral vascular resistance is usually normal or alternatives, such as benzodiazepines. Mortality from barbiturate increased, but barbiturates interfere with autonomic reflexes, poisoning declined from approximately 1500 deaths per year in which then do not adequately compensate for the myocardial the 1950s to only two fatalities in 2009.1 depression and decreased venous return. Barbiturates can precipi- Barbiturates are addictive, producing physical dependence and tate severe hypotension in patients whose compensatory reflexes a withdrawal syndrome that can be life-threatening. Whereas tol- are already maximally stimulated, such as those with heart failure erance to the mood-altering effects of barbiturates develops or hypovolemic shock. Barbiturates also decrease cerebral blood rapidly with repeated use, tolerance to the lethal effects develops flow and intracerebral pressure.
    [Show full text]
  • Poisoning with Drugs of Abuse: Identification and Management Lekhansh Shukla1, Deepak S Ghadigaonkar2, Pratima Murthy3
    INVITED ARTICLE Poisoning with Drugs of Abuse: Identification and Management Lekhansh Shukla1, Deepak S Ghadigaonkar2, Pratima Murthy3 ABSTRACT Substances of abuse include alcohol, nicotine, cannabinoids, opioids, sedatives, volatile solvents, stimulants, and hallucinogens. With the increasing prevalence of drug abuse in India, intensivists are likely to encounter more cases of intentional and accidental poisoning due to drugs of abuse. We aim to sensitize the intensivists to challenges involved in diagnosing and treating poisoning with drugs of abuse. We also aim to provide a hands-on primer that can augment the usual protocols of “approach to life-threatening poisoning”. A toxidrome approach along with urine drug testing can help in speedily arriving at a diagnosis and instituting definitive treatment. In this article, we discuss spurious alcohol poisoning (methanol poisoning), benzodiazepine, opioid, and stimulant poisoning in detail and poisoning due to other substances including newer psychoactive substances is discussed briefly. Keywords: Accidental poisoning, Benzodiazepine, Cocaine, Flumazenil, Malignant hyperthermia, Methanol, Naloxone, Opioids, Overdose, Stimulant. Indian Journal of Critical Care Medicine (2019): 10.5005/jp-journals-10071-23309 INTRODUCTION 1–3Department of Psychiatry, Centre for Addiction Medicine, National Poisoning is a common cause of accidental death and injury in Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India, accounting for 1,61,819 deaths between 2011 and 2015.1 India Pharmaceutical agents are common culprits of poisoning. Corresponding Author: Pratima Murthy, Department of Psychiatry, Pharmaceutical agents illustrate Paracelsus’s dictum, the difference Centre for Addiction Medicine, National Institute of Mental Health and between remedy and medicine is the dose; thus, the terms Neuro Sciences, Bengaluru, Karnataka, India, Phone: +91 09844094482, poisoning and overdose are used interchangeably in the literature.
    [Show full text]