The Soils of RAINFOR Project

Total Page:16

File Type:pdf, Size:1020Kb

The Soils of RAINFOR Project Biogeosciences Discuss., 6, 3851–3921, 2009 Biogeosciences www.biogeosciences-discuss.net/6/3851/2009/ Discussions BGD © Author(s) 2009. This work is distributed under 6, 3851–3921, 2009 the Creative Commons Attribution 3.0 License. Biogeosciences Discussions is the access reviewed discussion forum of Biogeosciences The soils of RAINFOR Project C. A. Quesada et al. Soils of amazonia with particular reference to the rainfor sites Title Page Abstract Introduction C. A. Quesada1,2, J. Lloyd1, L. O. Anderson3, N. M. Fyllas1, M. Schwarz4,*, and C. I. Czimczik4,** Conclusions References 1 School of Geography, University of Leeds, LS2 9JT, Leeds, UK Tables Figures 2Institito Nacional de Pesquisas da Amazonia,ˆ Avenida Andre´ Araujo,´ 2936, Aleixo, CEP 69060-001, Manaus, AM, Brazil J I 3School of Geography and the Environment, University of Oxford, South Parks Road, Oxford, OX1 3QY, England, UK J I 4Max-Planck-Institut fuer Biogeochemie, Postfach 100164, 07701, Jena, Germany *now at: Fieldwork Assistance, Postfach 101022, 07710 Jena, Germany Back Close ** now at: Department of Earth System Science, University of California, 2103 Croul Hall, Full Screen / Esc Irvine, CA, 92697-3100, USA Received: 18 December 2008 – Accepted: 10 February 2009 – Published: 8 April 2009 Printer-friendly Version Correspondence to: C. A. Quesada ([email protected]) Interactive Discussion Published by Copernicus Publications on behalf of the European Geosciences Union. 3851 Abstract BGD The tropical forests of Amazonia occur on a wide variety of different soil types reflecting a rich diversity of geologic and geomorphologic conditions. We here review the existing 6, 3851–3921, 2009 literature about the main soil groups of Amazonia, describing their genesis, geographi- 5 cal patterns and principal chemical, physical and morphologic characteristics. Original The soils of data is also presented with profiles of exchangeable cations, carbon and particle size RAINFOR Project fraction illustrated for the principal soil types, also emphasizing the high diversity exist- ing within the main soil groups when possible. Maps of geographic distribution of soils C. A. Quesada et al. occurring under forest vegetation are also introduced, and to contextualize soils into an 10 evolutionary framework, a scheme of soil development is proposed having as its basis a chemical weathering index. We identify a continuum of soil evolution in Amazonia Title Page with soil properties varying predictably along this pedogenetic gradient. Abstract Introduction Conclusions References 1 Introduction Tables Figures 1.1 Soil diversity in Amazonia J I 15 Tropical soils can arise from an extremely wide variety of parent materials, climatic conditions, biotic interactions, landforms, geomorphic elements and soil age. Many J I of these factors vary more widely in the tropics than in the temperate zone (Sanchez, Back Close 1976; Richter and Babbar, 1991). Amazonia itself comprises a vast and heterogeneous region, with many of these factors, especially parent materials; landforms, geology and Full Screen / Esc 20 geomorphologic history varying widely (Sombroek, 1966, 2000; Irion, 1978). On the other hand, factors such as soil temperature and soil moisture regimes are common Printer-friendly Version to many Amazonian soils (Sanchez, 1976; van Wambeke, 1978). In the early days of soil science in Amazonia, Marbut and Manifold (1926) observed at least six different Interactive Discussion groups of soils occurring commonly in the region and suggested that many soils oc- 25 curring in the tropics had little or no morphological differences from those observed for 3852 temperate zone soils. Sanchez (1976) and Richter and Babbar (1991) argued against the old misconception that tropical soils are invariably ancient, lateritic and intensively BGD weathered, demonstrating that tropical soils are very diverse, encompassing all dif- 6, 3851–3921, 2009 ferent taxa, from the lowest to the highest pedogenetic levels. Indeed, Sanchez and 5 Buol (1975) had by this time already found that soils previously mapped as Ferralsols in the Peruvian Amazon actually were Ultisols, Alfisols and Inceptsols (Acrisols, Lu- The soils of visols/Lixisols and Cambisols in the World Reference Base soil classification system: RAINFOR Project IUSS Working Group WRB, 2006), and suggested that ancient Ferralsols may actually be confined to areas of the Guyana and Brazilian shields. Sombroek (1966) also re- C. A. Quesada et al. 10 ported a large diversity of soils in his studies of the Brazilian Amazon, describing a high diversity of “latosols”, “kaolinitic latossolic sands”, “podzols”, “lithosols”, ground water Title Page laterites, hydromorphic grey podzolics, “Regosols”, Gleysols, saline and alkali soils, Indian black earths and terras roxas estruturadas (equivalent to present day Nitisols) Abstract Introduction plus other minor and uncommon soil groups not properly identified. Conclusions References 15 Richter and Babbar (1991) gave an analysis of available soil surveys up to that time, comparing results from the FAO World Soil Map (1988) and the Brazilian Soil Survey for Tables Figures Amazonia (EMBRAPA, 1981), also giving estimated coverage areas for each different soil order. They estimated that Ferralsols covered 0.391 of Brazilian Amazonia, with J I Acrisols covering 0.323, Gleysols and Plinthosols 0.063 and 0.069, respectively, and 20 with Arenosols covering 0.044, Leptosols 0.045, Podzols 0.028, and Cambisols 0.013 J I of the area with Fluvisols and Nitisols covering less than 0.010. They also indicated Back Close that there was a considerable bias towards the dominance of Ferralsols in the FAO map which was related to the methodology used by the FAO system; Ferralsols being Full Screen / Esc mapped on the basis of estimates of climate and vegetation data instead of empirical 25 soil analysis. Printer-friendly Version Much of the soil diversity in Amazonia has originated from the considerable differ- ences in geology and geomorphology that occur across the area. Interestingly, much Interactive Discussion early work on this subject was actually undertaken by limnologists interested in rea- sons for observed variations in the elemental composition of river waters within the 3853 Basin. Based on such observations, Fittkau (1971) divided the Amazon Basin into four regions, as shown in Fig. 1. He considered the characteristically low levels of chemical BGD elements (especially calcium) found in the waters of the core area of Central Amazonia 6, 3851–3921, 2009 (Sub-region IV in Fig. 1) to reflect the already low soil fertility of this region (Aubert 5 and Tavernier, 1972) this being associated with the lack of geological activity in recent times. In addition, it was argued that the sediments deposited in this area would also The soils of have had a very low nutrient content, such as for the sands derived from the ancient RAINFOR Project Guyana shield, which is about 1700 million years old (Fittkau et al., 1975). High to- pographic stability combined with continuous hot and wet weather has also already C. A. Quesada et al. 10 resulted in a deep weathering and leaching of parent material with lack of erosion over the generally flat topography eliminating bedrock as a source of nutrients for this part Title Page of Amazonia. Nevertheless, Fittkau (1971) found the natural waters of his peripheral sub-regions Abstract Introduction (Northern, Western and Peripheral Amazonia in Fig. 1) to be significantly richer in Conclusions References 15 chemical elements than the central Amazon Basin with the waters of Western Periph- eral Amazonia being considerably enriched. Not surprisingly, these are also the areas Tables Figures in the Amazon Basin where relatively fertile soils occur, this particularly being the case close to the Andes where topography plays an important role in the maintenance of J I soil fertility through erosion of the soil surface and exposition of the underlying parent 20 material (Jordan and Herrera, 1981). J I The soils of Fittkau’s Central Amazonian sub-region IV are mainly derived from rocks Back Close and sediments from the middle Tertiary with a high probability of belonging to the end of the Cretaceous and thus likely to have experienced more or less continuous weath- Full Screen / Esc ering for more than 20 million years (Irion, 1978). Included in this sub-region, are the 25 Cretaceous-Tertiary sediments, derived from the erosion of the Guyana and Brazilian Printer-friendly Version shields, known as the Barreiras formation (Herrera et al., 1978). These ancient, pre- Cambrian Guyana and Brazilian shields, with their series of igneous and metamorphic Interactive Discussion rocks, are placed to the north and south of the lower Amazon River, encompassing Fittkau’s regions I and II, respectively. 3854 Between these shields and the Amazon River (Fittkau’s region IV) occur strips of Palaeozoic sediments in which Devonian shales are represented to an appreciable ex- BGD tent (Irion, 1978). By contrast, western Amazonian soils (Fittkau’s region III) mostly 6, 3851–3921, 2009 consist of pre-Andine sediments from the Cretaceous-Tertiary period uplifted in the 5 Pliocene. Thus this formation probably commenced between 1 and 2 million years ago. For instance, at the neighbourhood of Acre state, Brazil, a number of fresh water The soils of and marine sediments occur as a result of the Andean orogeny and fluctuations of the RAINFOR Project sea level during warmer climates (Irion, 1978; Kronberg et al., 1989, 1998). Also, the western Amazon
Recommended publications
  • Depolymerization and Mineralization – Investigating N Availability by a Novel N Tracing Model
    SOIL Discuss., doi:10.5194/soil-2016-11, 2016 Manuscript under review for journal SOIL Published: 3 March 2016 c Author(s) 2016. CC-BY 3.0 License. Depolymerization and mineralization – investigating N availability by a novel 15N tracing model Louise C. Andresen1, Anna-Karin Björsne1, Samuel Bodé2, Leif Klemedtsson1, Pascal Boeckx2 and Tobias Rütting1 5 1Department of Earth Sciences, University of Gothenburg, Gothenburg, 405 30, Sweden 2Isotope Bioscience Laboratory, ISOFYS, Ghent University, Ghent, 9000, Belgium Correspondence to: Louise C. Andresen ([email protected]) Abstract. Depolymerization of soil organic matter such as proteins and peptides into monomers (e.g. amino acids) is currently thought to be the rate limiting step for N availability in terrestrial N cycles. The mineralization of free amino acids 10 (FAA), liberated by depolymerization of peptides, is an important fraction of the total N mineralization. Accurate assessment of peptide depolymerization and FAA mineralization rates is important in order to gain a better understanding of the N cycle dynamics. Due to the short time span, soil disturbance and unnatural high FAA content during the first few hours after the labelling with the traditional 15N pool dilution experiments, analytical models might overestimate peptide depolymerization rate. In this paper, we present an extended numerical 15N tracing model Ntrace which incorporates the FAA pool and related 15 N processes in order to 1) provide a more robust and coherent estimation of production and mineralization rates of FAAs; 2) and 2) suggest an amino acid N use efficiency (NUEFAA) for soil microbes, which is a more realistic estimation of soil microbial NUE compared to the NUE estimated by analytical methods.
    [Show full text]
  • Changes in Soil Properties in a Fluvisol (Calcaric) Amended with Coal Fly Ash A
    Changes in soil properties in a fluvisol (calcaric) amended with coal fly ash A. Riehl, F. Elsass, J. Duplay, F. Huber, M. Trautmann To cite this version: A. Riehl, F. Elsass, J. Duplay, F. Huber, M. Trautmann. Changes in soil properties in a fluvisol (calcaric) amended with coal fly ash. Geoderma, Elsevier, 2010, 155 (1-2), pp.67-74. 10.1016/j.geoderma.2009.11.025. halsde-00546980 HAL Id: halsde-00546980 https://hal.archives-ouvertes.fr/halsde-00546980 Submitted on 30 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Geoderma 155 (2010) 67–74 Contents lists available at ScienceDirect Geoderma journal homepage: www.elsevier.com/locate/geoderma Changes in soil properties in a fluvisol (calcaric) amended with coal fly ash A. Riehl a, F. Elsass b, J. Duplay a,⁎, F. Huber a, M. Trautmann c a Laboratoire d'Hydrologie et de Géochimie de Strasbourg, UMR 7517 CNRS, 1 rue Blessig 67084 Strasbourg Cedex, France b Institut National de Recherche Agronomique, route de Saint-Cyr 78026Versailles, France c UMS 830 UDS/CNRS, Laboratoire d'Analyses des Sols et des Formations Superficielles, 3 rue de l'Argonne 67083 Strasbourg Cedex, France article info abstract Article history: Fluidized bed combustion ash (FBC) is a by-product from coal-fired power stations used for many decades in Received 25 March 2009 concrete, cement and brick manufacturing and more recently for trace metal immobilization and pesticide Received in revised form 17 November 2009 retention in soils.
    [Show full text]
  • Soil Properties, and Soil Organic Carbon Stocks of Tropical Andosol Under Different Land Uses
    Open Journal of Soil Science, 2013, 3, 153-162 153 http://dx.doi.org/10.4236/ojss.2013.33018 Published Online July 2013 (http://www.scirp.org/journal/ojss) Soil Properties, and Soil Organic Carbon Stocks of Tropical Andosol under Different Land Uses Girma Abera*, Endalkachew Wolde-Meskel School of Plant and Horticultural Sciences, Hawassa University, Hawassa, Ethiopia. Email: *girmajibat2006 @yahoo.com Received December 21st, 2012; revised April 21st, 2013; accepted April 29th, 2013 Copyright © 2013 Girma Abera, Endalkachew Wolde-Meskel. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. ABSTRACT Land use effect of tropical Andosol, with two from crop lands (Site 1 and Site 2) and one from Agroforestry coffee plantation (Site 3) was explored under laboratory conditions to understand their physical, chemical and biological prop- erties and soil organic carbon (SOC) stocks from the rift valley of Ethiopia. Site 3 that acquired less cultivation than others exhibited better aggregate size fraction (AF, 55%), higher aggregate stability (AS, 91%), and greater active mi- crobial biomass (AMB), reflecting better soil structure development. Comparatively, higher total carbon (TC), organic carbon (OC) and total nitrogen (TN) concentrations were recorded in bulk soils and microaggregate fractions of Site 2 and Site 3 than in intensively cultivated Site 1. As expected, microaggregate fractions displayed greater OC and TN than bulk soils across all land uses. Site 1 revealed higher metabolic quotient (qCO2) and lower SOC stock (2.1 Mg·ha−1), suggesting microbial stress, while micro nutrients deficiencies were observed with the alkaline soil (Site 2).
    [Show full text]
  • Effect of Soil Chiseling on Soil Structure and Root Growth for a Clayey Soil Under No-Tillage
    Geoderma 259–260 (2015) 149–155 Contents lists available at ScienceDirect Geoderma journal homepage: www.elsevier.com/locate/geoderma Effect of soil chiseling on soil structure and root growth for a clayey soil under no-tillage Márcio Renato Nunes a,⁎, José Eloir Denardin b, Eloy Antônio Pauletto c, Antônio Faganello b, Luiz Fernando Spinelli Pinto c a University of São Paulo, “Luiz de Queiroz” College of Agriculture, Avenida Pádua Dias, 11, CEP 13418-900 Piracicaba, São Paulo, Brazil b Embrapa Trigo, Rodovia BR 285, km. 294, P.O. Box 451, CEP 99001-970 Passo Fundo, Rio Grande do Sul, Brazil c Federal University of Pelotas, Department of Soil Science, Campus Universitário s/n, P.O. Box 354, 96010-900 Pelotas, Rio Grande do Sul, Brazil article info abstract Article history: Soil chiseling under no-tillage (NT) promotes root growth in depth. This practice, however, might affect soil ag- Received 11 November 2014 gregation. This study evaluated the chiseling effects on the aggregation of a Ferralic Nitisol (Rhodic), under NT, in Received in revised form 2 June 2015 humid subtropical climate region. The treatments carried out consisted of the time that soil was kept under NT Accepted 3 June 2015 after chiseling: continuous NT for 24 months after chiseling in September 2009; continuous NT for 18 months Available online xxxx after chiseling in March 2010; continuous NT for 12 months after chiseling in September 2010; continuous NT for 6 months after chiseling in March 2011; NT in newly chiseling soil in September 2011; continuous NT without Keywords: Soil physical attributes chiseling (control).
    [Show full text]
  • (AM), BRAZIL Comissão
    936 Cira Hortensia Pérez Garcia et al. Comissão 2.3 - Mineralogia do solo CHEMICAL PROPERTIES AND MINERALOGY OF SOILS WITH PLINTHITE AND PETROPLINTHITE IN IRANDUBA (AM), BRAZIL(1) Cira Hortensia Pérez Garcia(2), Hedinaldo Narciso Lima(3), Francisco Weliton Rocha Silva(4), Afrânio Ferreira Neves Junior(5), Wenceslau Geraldes Teixeira(6), Rodrigo Santana Macedo(7) & Sérgio Guimarães Tavares(8) SUMMARY Large areas of Plinthosols with ferruginous materials such as plinthite and/or petroplinthite are fairly common in the Brazilian Amazon basin. This work was carried out to investigate the chemical behavior, mineralogical composition and weathering stage of four representative soil profiles with plinthite and petroplinthite, in Iranduba, AM (Central Amazon). Three well-drained soil profiles at high elevations were studied (P1, Plinthic Vetic Ferralsol; P2 and P3, Vetic Endopetric Plinthosol) and a contrasting poorly drained soil (P4 Haplic Plinthosol), located at low elevation. After profile descriptions, soil samples were collected from each horizon, air-dried, sieved (2 mm), and analyzed for particle-size distribution, pH, exchangeable cations (Al3+, Ca2+, Mg2+, K+, and Na+), as well as available P and total organic carbon (TOC) content. The minerals present in the clay and sand fractions, as well as in the ferruginous materials were identified by X-ray Diffraction (XRD). The weathering stage of these soils was assessed by means of Ki and Kr indexes, and the amounts of free and amorphous Fe and Al oxides by using dithionite citrate bicarbonate (DBC) and ammonium oxalate dissolution procedures, respectively. The results showed that all soils were extremely unfertile, with pH levels ranging between strong and moderate acidity, very low sum of bases and organic matter content, and of available P.
    [Show full text]
  • Fate of Organic Carbon in Paddy Soils – Results of Alisol and Andosol Incubation with 13C Marker
    Geophysical Research Abstracts Vol. 18, EGU2016-17404, 2016 EGU General Assembly 2016 © Author(s) 2016. CC Attribution 3.0 License. Fate of organic carbon in paddy soils – results of Alisol and Andosol incubation with 13C marker Pauline Winkler (1), Chiara Cerli (2), Sabine Fiedler (3), Susanne Woche (4), Sri Rahayu Utami (5), Reinhold Jahn (1), Karsten Kalbitz (6), and Klaus Kaiser (1) (1) Soil Science, Martin Luther University Halle-Wittenberg, Germany, (2) Earth Surface Science, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, The Netherlands, (3) Soil Science, Johannes Gutenberg University Mainz, Germany, (4) Soil Science, Leibniz University Hannover, Germany, (5) Faculty of Agriculture, Brawijaya University, Malang, Indonesia, (6) Soil Science & Site Ecology, TU Dresden, Germany For a better understanding of organic carbon (OC) decomposition in paddy soils an incubation experiment was performed. Two soil types with contrasting mineralogy (Alisol and Andosol) were exposed to 8 anoxic–oxic cycles over 1 year. Soils received rice straw marked with 13C (228 at the beginning of each cycle. A second set of samples without straw addition was used as control. Headspacesh of the incubation vessels were regularly analysed for CO2 and CH4. In soil solutions, redox potential, pH, dissolved organic C (DOC), and Fe2+ were measured after each anoxic and each oxic phase. Soils were fractionated by density at the end of the experiment and the different fractions were isotopically analysed. Samples of genuine paddy soils that developed from the test soils were used as reference. During anoxic cycles, soils receiving rice straw released large amounts of CO2 and CH4, indicating strong micro- bial activity.
    [Show full text]
  • Integrated Evaluation of Petroleum Impacts to Soil
    Integrated Evaluation of Petroleum Impacts to Soil Randy Adams, D. Marín, C. Avila, L. de la Cruz, C. Morales, and V. Domínguez Universidad Juárez Autónoma de Tabasco, Villahermosa, Mexico [email protected] 1.00 0.90 0.80 0.70 0.60 R2 = 0.9626 0.50 0.40 1-IAFcorr 0.30 0.20 0.10 0.00 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 Conc. hidrocarburos (mg/Kg) Actual Modelo BACKGROUND U J A T •Clean-up criteria for petroleum contaminated soils developed in US in 60’s and 70’s on drilling cuttings •1% considered OK – no or only slight damage to crops, only lasts one growing season •Bioassays confirmed low toxicity of residual oil •Subsequenty used as a basis for clean-up criteria for hydrocarbons in soils in many countries does not consider kind of hydrocarbons does not consider kind of soil SISTEMATIC EVALUATION U J A T •Selection of light, medium, heavy and extra-heavy crudes •Selection of 5 soil types common in petroleum producing region of SE Mexico •Contamination of soil at different concentrations •Measurement of acute toxicity (Microtox), and subchronic toxicity (28 d earthworm) •Measurement of impacts to soil fertility: water repellency, soil moisure, compaction, complemented with in situ weathering experiments •Measurement of plant growth: pasture, black beans Crude Petroleum Used in Study U J A T 100% 80% 60% Aliphatics Aromatics 40% Polars + Resins Asphaltenes 20% 0% Light Crude Medium Crude Heavy Crude Extra-heavy Crude 37 ºAPI 27 ºAPI 15 ºAPI 3 ºAPI U J A T FAO: FLUVISOL VERTISOL GLEYSOL ARENOSOL ACRISOL USDA: FLUVENT
    [Show full text]
  • Sorption and Desorption of Vanadate, Arsenate and Chromate by Two Volcanic Soils of Equatorial Africa
    Article Sorption and Desorption of Vanadate, Arsenate and Chromate by Two Volcanic Soils of Equatorial Africa Sara Gonzalez-Rodriguez 1 and Maria Luisa Fernandez-Marcos 1,2,* 1 Department of Soil Science and Agricultural Chemistry, Universidad de Santiago de Compostela, 27002 Lugo, Spain; [email protected] 2 Institute of Agricultural Biodiversity and Rural Development, University of Santiago de Compostela, 27002 Lugo, Spain * Correspondence: [email protected] Abstract: Sorption of oxyanions by soils and mineral surfaces is of interest due to their role as nutrients or pollutants. Volcanic soils are variable charge soils, rich in active forms of aluminum and iron, and capable of sorbing anions. Sorption and desorption of vanadate, arsenate, and chromate by two African andosols was studied in laboratory experiments. Sorption isotherms were determined by equilibrating at 293 K soil samples with oxyanion solutions of concentrations between 0 and 100 mg L−1 V, As, or Cr, equivalent to 0−2.0 mmol V L−1, 0−1.3 mmol As L−1, and −1 0−1.9 mmol Cr L , in NaNO3; V, As, or Cr were determined by ICP-mass spectrometry in the equilibrium solution. After sorption, the soil samples were equilibrated with 0.02 M NaNO3 to study desorption. The isotherms were adjusted to mathematical models. After desorption with NaNO3, desorption experiments were carried out with a 1 mM phosphate. The sorption of vanadate and arsenate was greater than 90% of the amount added, while the chromate sorption was much lower (19–97%). The sorption by the Silandic Andosol is attributed to non-crystalline Fe and Al, while in Citation: Gonzalez-Rodriguez, S.; the Vitric Andosol, crystalline iron species play a relevant role.
    [Show full text]
  • The Soil Map of the Flemish Region Converted to the 3 Edition of the World Reference Base for Soil Resources
    Ontwikkelen en toepassen van een methodiek voor de vertaling van de Belgische bodemclassificatie van de kustpolders naar het internationale WRB systeem en generaliseren van de WRB-bodemkaart voor gans Vlaanderen naar het 1 : 250 000 schaalniveau The soil map of the Flemish region converted to the 3 rd edition of the World Reference Base for soil resources Stefaan Dondeyne, Laura Vanierschot, Roger Langohr Eric Van Ranst and Jozef Deckers Oct. 2014 Opdracht van de Vlaamse Overheid Bestek nr. BOD/STUD/2013/01 Contents Contents............................................................................................................................................................3 Acknowledgement ...........................................................................................................................................5 Abstract............................................................................................................................................................7 Samenvatting ...................................................................................................................................................9 1. Background and objectives.......................................................................................................................11 2. The soil map of Belgium............................................................................................................................12 2.1 The soil survey project..........................................................................................................................12
    [Show full text]
  • World Reference Base for Soil Resources 2014 International Soil Classification System for Naming Soils and Creating Legends for Soil Maps
    ISSN 0532-0488 WORLD SOIL RESOURCES REPORTS 106 World reference base for soil resources 2014 International soil classification system for naming soils and creating legends for soil maps Update 2015 Cover photographs (left to right): Ekranic Technosol – Austria (©Erika Michéli) Reductaquic Cryosol – Russia (©Maria Gerasimova) Ferralic Nitisol – Australia (©Ben Harms) Pellic Vertisol – Bulgaria (©Erika Michéli) Albic Podzol – Czech Republic (©Erika Michéli) Hypercalcic Kastanozem – Mexico (©Carlos Cruz Gaistardo) Stagnic Luvisol – South Africa (©Márta Fuchs) Copies of FAO publications can be requested from: SALES AND MARKETING GROUP Information Division Food and Agriculture Organization of the United Nations Viale delle Terme di Caracalla 00100 Rome, Italy E-mail: [email protected] Fax: (+39) 06 57053360 Web site: http://www.fao.org WORLD SOIL World reference base RESOURCES REPORTS for soil resources 2014 106 International soil classification system for naming soils and creating legends for soil maps Update 2015 FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2015 The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO.
    [Show full text]
  • Kaolinite Dating from Acrisol and Ferralsol
    Kaolinite dating from Acrisol and Ferralsol: A new key to understanding the landscape evolution in NW Amazonia (Brazil) Maximilien Mathian, Guilherme Taitson Bueno, Etienne Balan, Emmanuel Fritsch, Nádia Regina Do Nascimento, Madeleine Selo, Thierry Allard To cite this version: Maximilien Mathian, Guilherme Taitson Bueno, Etienne Balan, Emmanuel Fritsch, Nádia Regina Do Nascimento, et al.. Kaolinite dating from Acrisol and Ferralsol: A new key to understand- ing the landscape evolution in NW Amazonia (Brazil). Geoderma, Elsevier, 2020, 370, pp.114354. 10.1016/j.geoderma.2020.114354. hal-03047287 HAL Id: hal-03047287 https://hal.archives-ouvertes.fr/hal-03047287 Submitted on 14 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Kaolinite dating from Acrisol and Ferralsol: a new key to 2 understanding the landscape evolution in NW Amazonia (Brazil) 3 4 Maximilien Mathian1, Guilherme Taitson Bueno2, Etienne Balan1, Emmanuel Fritsch1, Nádia 5 Regina do Nascimento3, Madeleine Selo1, Thierry Allard1 6 7 1Sorbonne Université, Institut de minéralogie, de physique des matériaux et de cosmochimie, UMR 8 CNRS 7590, IRD, MNHN, Université Pierre et Marie Curie, 4 Place Jussieu, 75005, France 9 2Federal University of Goiás - UFG, Instituto de Estudos Socioambientais, Av.
    [Show full text]
  • Soils Diversity Iberian Peninsula
    SOILS DIVERSITY IN THE SOUTHWEST OF IBERIAN PENINSULA Beatriz Ramírez1; Luís Fernández-Pozo1; José Cabezas1; Rui Alexandre Castanho1*; Luís Loures2 1 Environmental Resources Analysis Research Group (ARAM). University of Extremadura. Badajoz. Spain. 2 ESAE – Portalegre Polytechnic School, Portugal and Research Centre for Spatial and Organizational Dynamics (CIEO), University of Algarve, Portugal. * Presenter | 28.04.2017 |Room 2.20 authors contacts: [email protected] | [email protected]| joca fer @unex.es | [email protected] | [email protected] INTRODUCTION An increase in the development of Digital Soil Cartography methods has been noticed in recent decades. The proposal put forward by the World Reference Base for Soil Resource (WRB) (FAO, 1998) establishes that, for the World Map Soils, a first level with 30 soils typologies and for the second 531. In Europe, the development of this mapping has been coordinated by European Soil Bureau Network (ESBN), the European Environment Agency (EEA) and also by Food and Agriculture Organization of the United Nations (FAO), identifying 26 first level soils typologies and 134 from the second level. INTRODUCTION Taking as reference the mentioned soil map, the research group have been studied the pedodiversity in the Southwest of Iberian Peninsula (Euro region Alentejo-Centro- Extremadura, EUROACE) through the use of Geographical Information Systems and diversity algorithms. The pedodiversity concept, takes its origin in ecological measures and defines, according to Ibañez et al., (1998): “the soil variability in a specific area or region, determined by its constitution, types, attributes and the conditions in which the different types of soils were formed ". The edafodiversity analysis, using diversity indexes, has allowed to approach in a quantitative and rigorous way the soils geography, and also enable to classify to the edafo-rate according to their spatial distribution typologies.
    [Show full text]