Physiological Basis of Smut Infectivity in the Early Stages of Sugar Cane Colonization
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fungal Endophytes from the Aerial Tissues of Important Tropical Forage Grasses Brachiaria Spp
University of Kentucky UKnowledge International Grassland Congress Proceedings XXIII International Grassland Congress Fungal Endophytes from the Aerial Tissues of Important Tropical Forage Grasses Brachiaria spp. in Kenya Sita R. Ghimire International Livestock Research Institute, Kenya Joyce Njuguna International Livestock Research Institute, Kenya Leah Kago International Livestock Research Institute, Kenya Monday Ahonsi International Livestock Research Institute, Kenya Donald Njarui Kenya Agricultural & Livestock Research Organization, Kenya Follow this and additional works at: https://uknowledge.uky.edu/igc Part of the Plant Sciences Commons, and the Soil Science Commons This document is available at https://uknowledge.uky.edu/igc/23/2-2-1/6 The XXIII International Grassland Congress (Sustainable use of Grassland Resources for Forage Production, Biodiversity and Environmental Protection) took place in New Delhi, India from November 20 through November 24, 2015. Proceedings Editors: M. M. Roy, D. R. Malaviya, V. K. Yadav, Tejveer Singh, R. P. Sah, D. Vijay, and A. Radhakrishna Published by Range Management Society of India This Event is brought to you for free and open access by the Plant and Soil Sciences at UKnowledge. It has been accepted for inclusion in International Grassland Congress Proceedings by an authorized administrator of UKnowledge. For more information, please contact [email protected]. Paper ID: 435 Theme: 2. Grassland production and utilization Sub-theme: 2.2. Integration of plant protection to optimise production -
Biotechnology Volume 13 Number 51, 17 December, 2014 ISSN 1684-5315
African Journal of Biotechnology Volume 13 Number 51, 17 December, 2014 ISSN 1684-5315 ABOUT AJB The African Journal of Biotechnology (AJB) (ISSN 1684-5315) is published weekly (one volume per year) by Academic Journals. African Journal of Biotechnology (AJB), a new broad-based journal, is an open access journal that was founded on two key tenets: To publish the most exciting research in all areas of applied biochemistry, industrial microbiology, molecular biology, genomics and proteomics, food and agricultural technologies, and metabolic engineering. Secondly, to provide the most rapid turn-around time possible for reviewing and publishing, and to disseminate the articles freely for teaching and reference purposes. All articles published in AJB are peer- reviewed. Submission of Manuscript Please read the Instructions for Authors before submitting your manuscript. The manuscript files should be given the last name of the first author Click here to Submit manuscripts online If you have any difficulty using the online submission system, kindly submit via this email [email protected]. With questions or concerns, please contact the Editorial Office at [email protected]. Editor-In-Chief Associate Editors George Nkem Ude, Ph.D Prof. Dr. AE Aboulata Plant Breeder & Molecular Biologist Plant Path. Res. Inst., ARC, POBox 12619, Giza, Egypt Department of Natural Sciences 30 D, El-Karama St., Alf Maskan, P.O. Box 1567, Crawford Building, Rm 003A Ain Shams, Cairo, Bowie State University Egypt 14000 Jericho Park Road Bowie, MD 20715, USA Dr. S.K Das Department of Applied Chemistry and Biotechnology, University of Fukui, Japan Editor Prof. Okoh, A. I. N. -
Molecular Phylogeny of Ustilago and Sporisorium Species (Basidiomycota, Ustilaginales) Based on Internal Transcribed Spacer (ITS) Sequences1
Color profile: Disabled Composite Default screen 976 Molecular phylogeny of Ustilago and Sporisorium species (Basidiomycota, Ustilaginales) based on internal transcribed spacer (ITS) sequences1 Matthias Stoll, Meike Piepenbring, Dominik Begerow, Franz Oberwinkler Abstract: DNA sequence data from the internal transcribed spacer (ITS) region of the nuclear rDNA genes were used to determine a phylogenetic relationship between the graminicolous smut genera Ustilago and Sporisorium (Ustilaginales). Fifty-three members of both genera were analysed together with three related outgroup genera. Neighbor-joining and Bayesian inferences of phylogeny indicate the monophyly of a bipartite genus Sporisorium and the monophyly of a core Ustilago clade. Both methods confirm the recently published nomenclatural change of the cane smut Ustilago scitaminea to Sporisorium scitamineum and indicate a putative connection between Ustilago maydis and Sporisorium. Overall, the three clades resolved in our analyses are only weakly supported by morphological char- acters. Still, their preferences to parasitize certain subfamilies of Poaceae could be used to corroborate our results: all members of both Sporisorium groups occur exclusively on the grass subfamily Panicoideae. The core Ustilago group mainly infects the subfamilies Pooideae or Chloridoideae. Key words: basidiomycete systematics, ITS, molecular phylogeny, Bayesian analysis, Ustilaginomycetes, smut fungi. Résumé : Afin de déterminer la relation phylogénétique des genres Ustilago et Sporisorium (Ustilaginales), responsa- bles du charbon chez les graminées, les auteurs ont utilisé les données de séquence de la région espaceur transcrit interne (ITS) des gènes nucléiques ADNr. Ils ont analysé 53 membres de ces genres, ainsi que trois genres apparentés. Les liens avec les voisins et l’inférence bayésienne de la phylogénie indiquent la monophylie d’un genre Sporisorium bipartite et la monophylie d’un clade Ustilago central. -
<I>Ustilago-Sporisorium-Macalpinomyces</I>
Persoonia 29, 2012: 55–62 www.ingentaconnect.com/content/nhn/pimj REVIEW ARTICLE http://dx.doi.org/10.3767/003158512X660283 A review of the Ustilago-Sporisorium-Macalpinomyces complex A.R. McTaggart1,2,3,5, R.G. Shivas1,2, A.D.W. Geering1,2,5, K. Vánky4, T. Scharaschkin1,3 Key words Abstract The fungal genera Ustilago, Sporisorium and Macalpinomyces represent an unresolved complex. Taxa within the complex often possess characters that occur in more than one genus, creating uncertainty for species smut fungi placement. Previous studies have indicated that the genera cannot be separated based on morphology alone. systematics Here we chronologically review the history of the Ustilago-Sporisorium-Macalpinomyces complex, argue for its Ustilaginaceae resolution and suggest methods to accomplish a stable taxonomy. A combined molecular and morphological ap- proach is required to identify synapomorphic characters that underpin a new classification. Ustilago, Sporisorium and Macalpinomyces require explicit re-description and new genera, based on monophyletic groups, are needed to accommodate taxa that no longer fit the emended descriptions. A resolved classification will end the taxonomic confusion that surrounds generic placement of these smut fungi. Article info Received: 18 May 2012; Accepted: 3 October 2012; Published: 27 November 2012. INTRODUCTION TAXONOMIC HISTORY Three genera of smut fungi (Ustilaginomycotina), Ustilago, Ustilago Spo ri sorium and Macalpinomyces, contain about 540 described Ustilago, derived from the Latin ustilare (to burn), was named species (Vánky 2011b). These three genera belong to the by Persoon (1801) for the blackened appearance of the inflores- family Ustilaginaceae, which mostly infect grasses (Begerow cence in infected plants, as seen in the type species U. -
AR TICLE Asexual and Sexual Morphs of Moesziomyces Revisited
IMA FUNGUS · 8(1): 117–129 (2017) doi:10.5598/imafungus.2017.08.01.09 ARTICLE Asexual and sexual morphs of Moesziomyces revisited Julia Kruse1, 2, Gunther Doehlemann3, Eric Kemen4, and Marco Thines1, 2, 5 1Goethe University, Department of Biological Sciences, Institute of Ecology, Evolution and Diversity, Max-von-Laue-Str. 13, D-60486 Frankfurt am Main, Germany; corresponding author e-mail: [email protected] 2Biodiversität und Klima Forschungszentrum, Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, D-60325 Frankfurt am Main, Germany 3Botanical Institute and Center of Excellence on Plant Sciences (CEPLAS), University of Cologne, BioCenter, Zülpicher Str. 47a, D-50674, Köln, Germany 4Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829 Köln, Germany 5Integrative Fungal Research Cluster (IPF), Georg-Voigt-Str. 14-16, D-60325 Frankfurt am Main, Germany Abstract: Yeasts of the now unused asexually typified genus Pseudozyma belong to the smut fungi (Ustilaginales) Key words: and are mostly believed to be apathogenic asexual yeasts derived from smut fungi that have lost pathogenicity on ecology plants. However, phylogenetic studies have shown that most Pseudozyma species are phylogenetically close to evolution smut fungi parasitic to plants, suggesting that some of the species might represent adventitious isolations of the phylogeny yeast morph of otherwise plant pathogenic smut fungi. However, there are some species, such as Moesziomyces plant pathogens aphidis (syn. Pseudozyma aphidis) that are isolated throughout the world and sometimes are also found in clinical pleomorphic fungi samples and do not have a known plant pathogenic sexual morph. In this study, it is revealed by phylogenetic Ustilaginomycotina investigations that isolates of the biocontrol agent Moesziomyces aphidis are interspersed with M. -
Estimation of Yield Loss in Sugarcane (Saccharum Spp.) Due to Effects of Smut Disease in Some Selected Sugarcane Genotypes Under Sudan Conditions
Journal Of Agricultural Research ISSN: 2455-7668 ESTIMATION OF YIELD LOSS IN SUGARCANE (SACCHARUM SPP.) DUE TO EFFECTS OF SMUT DISEASE IN SOME SELECTED SUGARCANE GENOTYPES UNDER SUDAN CONDITIONS Marchelo-d’Ragga, P.W. 1* 1 * Author, Philip Wani Marchelo- d’Ragga, Associate Professor, Dept. of Agricultural Sciences, College of Natural Recourses and Environmental Studies, University of Juba, P.O. Box 82 Juba, Republic of South Sudan. [email protected]; Cell phone: +211 (0) 92 823 1001; (0) 95 680 2458; (0) 92 000 8616 ABSTRACT This study was conducted at Sugarcane Research Centre, Guneid, (Latitude 150 N, longitude 330 E) in 2008/2009 cropping season. The objective was to estimate the amounts of losses (field and factory) incurred on sugarcane by the effects of smut disease of sugarcane caused by Ustilago scitaminea (Syd.). Replicated cane stalk samples were taken from each of three cane categories namely, whip-bearing canes from diseased stools (WBC-DS), apparently healthy looking canes from diseased stools (AHC-DS) and healthy canes from healthy stools (HC-HS) from some selected sugarcane genotypes. Results showed significant reductions of 5%, 4%, 5% and 40% for brix, sucrose content (pol %), estimated recoverable sugar (ERS) and stalk weight at (P=0.05), respectively in comparison to healthy canes. Fibre content of whip bearing cane stalks was significantly higher by 7% to that of HC-HS and AHC-DS; this is detrimental and responsible for losses in ERS. Moisture content and purity were however, found to be unaffected by the disease. This study has showed that, smut disease incurs losses to most cane yield parameters both in the field and factory. -
Downloaded from by IP: 199.133.24.106 On: Mon, 18 Sep 2017 10:43:32 Spatafora Et Al
UC Riverside UC Riverside Previously Published Works Title The Fungal Tree of Life: from Molecular Systematics to Genome-Scale Phylogenies. Permalink https://escholarship.org/uc/item/4485m01m Journal Microbiology spectrum, 5(5) ISSN 2165-0497 Authors Spatafora, Joseph W Aime, M Catherine Grigoriev, Igor V et al. Publication Date 2017-09-01 DOI 10.1128/microbiolspec.funk-0053-2016 License https://creativecommons.org/licenses/by-nc-nd/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California The Fungal Tree of Life: from Molecular Systematics to Genome-Scale Phylogenies JOSEPH W. SPATAFORA,1 M. CATHERINE AIME,2 IGOR V. GRIGORIEV,3 FRANCIS MARTIN,4 JASON E. STAJICH,5 and MEREDITH BLACKWELL6 1Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331; 2Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907; 3U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598; 4Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1136 Interactions Arbres/Microorganismes, Laboratoire d’Excellence Recherches Avancés sur la Biologie de l’Arbre et les Ecosystèmes Forestiers (ARBRE), Centre INRA-Lorraine, 54280 Champenoux, France; 5Department of Plant Pathology and Microbiology and Institute for Integrative Genome Biology, University of California–Riverside, Riverside, CA 92521; 6Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803 and Department of Biological Sciences, University of South Carolina, Columbia, SC 29208 ABSTRACT The kingdom Fungi is one of the more diverse INTRODUCTION clades of eukaryotes in terrestrial ecosystems, where they In 1996 the genome of Saccharomyces cerevisiae was provide numerous ecological services ranging from published and marked the beginning of a new era in decomposition of organic matter and nutrient cycling to beneficial and antagonistic associations with plants and fungal biology (1). -
A Higher-Level Phylogenetic Classification of the Fungi
mycological research 111 (2007) 509–547 available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/mycres A higher-level phylogenetic classification of the Fungi David S. HIBBETTa,*, Manfred BINDERa, Joseph F. BISCHOFFb, Meredith BLACKWELLc, Paul F. CANNONd, Ove E. ERIKSSONe, Sabine HUHNDORFf, Timothy JAMESg, Paul M. KIRKd, Robert LU¨ CKINGf, H. THORSTEN LUMBSCHf, Franc¸ois LUTZONIg, P. Brandon MATHENYa, David J. MCLAUGHLINh, Martha J. POWELLi, Scott REDHEAD j, Conrad L. SCHOCHk, Joseph W. SPATAFORAk, Joost A. STALPERSl, Rytas VILGALYSg, M. Catherine AIMEm, Andre´ APTROOTn, Robert BAUERo, Dominik BEGEROWp, Gerald L. BENNYq, Lisa A. CASTLEBURYm, Pedro W. CROUSl, Yu-Cheng DAIr, Walter GAMSl, David M. GEISERs, Gareth W. GRIFFITHt,Ce´cile GUEIDANg, David L. HAWKSWORTHu, Geir HESTMARKv, Kentaro HOSAKAw, Richard A. HUMBERx, Kevin D. HYDEy, Joseph E. IRONSIDEt, Urmas KO˜ LJALGz, Cletus P. KURTZMANaa, Karl-Henrik LARSSONab, Robert LICHTWARDTac, Joyce LONGCOREad, Jolanta MIA˛ DLIKOWSKAg, Andrew MILLERae, Jean-Marc MONCALVOaf, Sharon MOZLEY-STANDRIDGEag, Franz OBERWINKLERo, Erast PARMASTOah, Vale´rie REEBg, Jack D. ROGERSai, Claude ROUXaj, Leif RYVARDENak, Jose´ Paulo SAMPAIOal, Arthur SCHU¨ ßLERam, Junta SUGIYAMAan, R. Greg THORNao, Leif TIBELLap, Wendy A. UNTEREINERaq, Christopher WALKERar, Zheng WANGa, Alex WEIRas, Michael WEISSo, Merlin M. WHITEat, Katarina WINKAe, Yi-Jian YAOau, Ning ZHANGav aBiology Department, Clark University, Worcester, MA 01610, USA bNational Library of Medicine, National Center for Biotechnology Information, -
Molecular Variation of Sporisorium Scitamineum in Mainland China Revealed by RAPD and SRAP Markers
Molecular Variation of Sporisorium scitamineum in Mainland China Revealed by RAPD and SRAP Markers Y. Que, L. Xu, J. Lin, and R. Chen, Key Lab of Sugarcane Genetic Improvement, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian Province, China; and M. P. Grisham, United States Department of Agriculture–Agricul- tural Research Service, Sugarcane Research Unit, Houma, LA 70360 Abstract Que, Y., Xu, L., Lin, J., Chen, R., and Grisham, M. P. 2012. Molecular variation of Sporisorium scitamineum in mainland China revealed by RAPD and SRAP markers. Plant Dis. 96:1519-1525. Sugarcane smut caused by Sporisorium scitamineum occurs world- showed that, whereas the molecular variation of S. scitamineum was wide, causing serious losses in sugar yield and quality. To study the associated with geographic origin, there was no evidence of co-evolu- molecular variation of S. scitamineum, 23 S. scitamineum isolates col- tion between sugarcane and the pathogen. The results of RAPD, SRAP, lected from the six primary sugarcane production areas in mainland or RAPD-SRAP combined analysis also did not provide any infor- China (Guangxi, Yunnan, Guangdong, Hainan, Fujian, and Jiangxi mation about race differentiation of S. scitamineum. This suggests that provinces) were assessed by random amplified polymorphic DNA the mixture of spores from sori collected from different areas should be (RAPD) and sequence-related amplified polymorphism (SRAP) mark- used in artificial inoculations for resistance breeding and selection. ers. The results of RAPD, SRAP, and RAPD-SRAP combined analysis Sugarcane smut, caused by Sporisorium scitamineum (Basi- The researchers concluded from the results that the fungus mi- onym: Ustilago scitaminea) (25,33), occurs worldwide and is one grated from Asia to other continents, probably through movement of the most prevalent fungal diseases of sugarcane in China. -
Sequencing Abstracts Msa Annual Meeting Berkeley, California 7-11 August 2016
M S A 2 0 1 6 SEQUENCING ABSTRACTS MSA ANNUAL MEETING BERKELEY, CALIFORNIA 7-11 AUGUST 2016 MSA Special Addresses Presidential Address Kerry O’Donnell MSA President 2015–2016 Who do you love? Karling Lecture Arturo Casadevall Johns Hopkins Bloomberg School of Public Health Thoughts on virulence, melanin and the rise of mammals Workshops Nomenclature UNITE Student Workshop on Professional Development Abstracts for Symposia, Contributed formats for downloading and using locally or in a Talks, and Poster Sessions arranged by range of applications (e.g. QIIME, Mothur, SCATA). 4. Analysis tools - UNITE provides variety of analysis last name of primary author. Presenting tools including, for example, massBLASTer for author in *bold. blasting hundreds of sequences in one batch, ITSx for detecting and extracting ITS1 and ITS2 regions of ITS 1. UNITE - Unified system for the DNA based sequences from environmental communities, or fungal species linked to the classification ATOSH for assigning your unknown sequences to *Abarenkov, Kessy (1), Kõljalg, Urmas (1,2), SHs. 5. Custom search functions and unique views to Nilsson, R. Henrik (3), Taylor, Andy F. S. (4), fungal barcode sequences - these include extended Larsson, Karl-Hnerik (5), UNITE Community (6) search filters (e.g. source, locality, habitat, traits) for 1.Natural History Museum, University of Tartu, sequences and SHs, interactive maps and graphs, and Vanemuise 46, Tartu 51014; 2.Institute of Ecology views to the largest unidentified sequence clusters and Earth Sciences, University of Tartu, Lai 40, Tartu formed by sequences from multiple independent 51005, Estonia; 3.Department of Biological and ecological studies, and for which no metadata Environmental Sciences, University of Gothenburg, currently exists. -
New Smut Fungi (Ustilaginomycetes) from Mexico, and the Genus Lundquistia
Fungal Diversity New smut fungi (Ustilaginomycetes) from Mexico, and the genus Lundquistia Kálmán Vánky* Herbarium Ustilaginales Vánky (HUV), Gabriel-Biel-Str. 5, D-72076 Tübingen, Germany Vánky, K. (2004). New smut fungi (Ustilaginomycetes) from Mexico, and the genus Lundquistia. Fungal Diversity 17: 159-190. The genus Lundquistia is emended and widened. Twelve new species of smut fungi are described from Mexico: Lundquistia mexicana on Andropogon gerardii and Schizachyrium mexicanum, Entyloma aldamae on Aldama dentata, E. siegesbeckiae on Siegesbeckia orientalis, Jamesdicksonia festucae on Festuca tolucensis, Macalpinomyces tuberculatus on Bouteloua curtipendula, Sporisorium dacryoideum on Aristida adscensionis, S. ustilaginiforme on Muhlenbergia pulcherrima, Tilletia brefeldii on Muhlenbergia filiculmis, T. gigacellularis on Bouteloua filiformis, T. microtuberculata on Muhlenbergia pulcherrima, Ustilago circumdata on Muhlenbergia montana, and U. panici-virgati on Panicum virgatum. New combinations proposed: Lundquistia dieteliana, L. duranii and L. panici-leucophaei, with its three new synonyms, Ustilago bonariensis, Sorosporium lindmanii and L. fascicularis. Key words: Lundquistia, new combinations, new species, synonyms, taxonomy. Introduction The smut fungi of Mexico are relatively well-known, especially due to over 30 years of investigation by Prof. Ruben Durán (Washington State University, Pullman, USA). Numerous papers have been published by Durán, alone or in collaboration, in which many new species, a new genus and also the nuclear behaviour of the basidia and basidiospores of many North American smut fungi have been described (Durán and Fischer, 1961; Durán and Safeeulla, 1965, 1968; Durán, 1968, 1969, 1970, 1971, 1972, 1979, 1980, 1982, 1983; Durán and Cromarty, 1974, 1977; Cordas and Durán, 1976[1977]). Durán's work culminated in the publication of the profusely illustrated book Ustilaginales of Mexico (1987), containing 128 taxa of which 14 were new species. -
Iodiversity of Australian Smut Fungi
Fungal Diversity iodiversity of Australian smut fungi R.G. Shivas'* and K. Vanky2 'Queensland Department of Primary Industries, Plant Pathology Herbarium, 80 Meiers Road, Indooroopilly, Queensland 4068, Australia 2 Herbarium Ustilaginales Vanky, Gabriel-Biel-Str. 5, D-72076 Tiibingen, Germany Shivas, R.G. and Vanky, K. (2003). Biodiversity of Australian smut fungi. Fungal Diversity 13 :137-152. There are about 250 species of smut fungi known from Australia of which 95 are endemic. Fourteen of these endemic species were first collected in the period culminating with the publication of Daniel McAlpine's revision of Australian smut fungi in 1910. Of the 68 species treated by McAlpine, 10 were considered to be endemic to Australia at that time. Only 23 of the species treated by McAlpine have names that are currently accepted. During the following eighty years until 1990, a further 31 endemic species were collected and just 11 of these were named and described in that period. Since 1990, 50 further species of endemic smut fungi have been collected and named in Australia. There are 115 species that are restricted to either Australia or to Australia and the neighbouring countries of Indonesia, New Zealand, Papua New Guinea and the Philippines . These 115 endemic species occur in 24 genera, namely Anthracoidea (1 species), Bauerago (1), Cintractia (3), Dermatosorus (1), Entyloma (3), Farysporium (1), Fulvisporium (1), Heterotolyposporium (1), Lundquistia (1), Macalpinomyces (4), Microbotryum (2), Moreaua (20), Pseudotracya (1), Restiosporium (5), Sporisorium (26), Thecaphora (2), Tilletia (12), Tolyposporella (1), Tranzscheliella (1), Urocystis (2), Ustanciosporium (1), Ustilago (22), Websdanea (1) and Yelsemia (2). About a half of these local and regional endemic species occur on grasses and a quarter on sedges.