Discrete Ultrahigh-Pressure Domains in the Western Gneiss Region, Norway: Implications for Formation and Exhumation

Total Page:16

File Type:pdf, Size:1020Kb

Discrete Ultrahigh-Pressure Domains in the Western Gneiss Region, Norway: Implications for Formation and Exhumation J. metamorphic Geol., 2005, 23, 45–61 doi:10.1111/j.1525-1314.2005.00561.x Discrete ultrahigh-pressure domains in the Western Gneiss Region, Norway: implications for formation and exhumation D. B. ROOT1 ,B.R.HACKER1 ,P.B.GANS1 ,M.N.DUCEA2 ,E.A.EIDE3 AND J. L. MOSENFELDER4 1Department of Geological Sciences, UC Santa Barbara, Santa Barbara, CA 93106, USA ([email protected]) 2Department of Geosciences, University of Arizona, Tucson, AZ 85721, USA 3Geological Survey of Norway, Leiv Erikssons vei 39, 7491 Trondheim, Norway 4Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA ABSTRACT New eclogite localities and new 40Ar/39Ar ages within the Western Gneiss Region of Norway define three discrete ultrahigh-pressure (UHP) domains that are separated by distinctly lower pressure, eclogite facies rocks. The sizes of the UHP domains range from c. 2500 to 100 km2; if the UHP culminations are part of a continuous sheet at depth, the Western Gneiss Region UHP terrane has minimum dimensions of c. 165 · 50 · 5 km. 40Ar/39Ar mica and K-feldspar ages show that this outcrop pattern is the result of gentle regional-scale folding younger than 380 Ma, and possibly 335 Ma.The UHP and intervening high-pressure (HP) domains are composed of eclogite-bearing orthogneiss basement overlain by eclogite-bearing allochthons. The allochthons are dominated by garnet amphibolite and pelitic schist with minor quartzite, carbonate, calc-silicate, peridotite, and eclogite. Sm/Nd core and rim ages of 992 and 894 Ma from a 15-cm garnet indicate local preservation of Precambrian metamorphism within the allochthons. Metapelites within the allochthons indicate near-isothermal decompression following (U)HP metamorphism: they record upper amphibolite facies recrystallization at 12–17 kbar and c. 750 °C during exhumation from mantle depths, followed by a low-pressure sillimanite + cordierite overprint at c. 5 kbar and c. 750 °C. New 40Ar/39Ar hornblende ages of 402 Ma document that this decompression from eclogite-facies conditions at 410–405 Ma to mid-crustal depths occurred in a few million years. The short timescale and consistently high temperatures imply adiabatic exhumation of a UHP body with minimum dimensions of 20–30 km. 40Ar/39Ar muscovite ages of 397–380 Ma show that ) this extreme heat advection was followed by rapid cooling (c. 30 °C Myr 1), perhaps because of continued tectonic unroofing. Key words: 40Ar/39Ar; cordierite; eclogite; Norway; thermobarometry; ultrahigh pressure. chthonous schists and gneisses –including their P–T– INTRODUCTION time paths. Geochronology, petrology and structural The Scandinavian Caledonides, formed during the geology are used to demonstrate that the UHP rocks Silurian continental collision of Baltica and Laurentia, are exposed in three separate antiformal domains, contain one of the world’s largest ultrahigh-pressure separated by high-pressure (HP) rocks, that in aggre- (UHP) terranes in the Western Gneiss Region gate define a UHP terrane with minimum average (WGR) of Norway. Metamorphic pressures in this dimensions of c. 165 · 50 · 5 km. The distribution of c. 50 000 km2 basement culmination in the core of the eclogites suggests that the allochthons and basement Caledonian orogen reached c. 40 kbar, producing were juxtaposed prior to the UHP–HP metamorphism coesite on a regional scale. Understanding the genesis and shared the same subduction and exhumation his- and exhumation of these remarkable rocks sheds light tory. New 40Ar/39Ar ages in conjunction with existing on numerous large-scale geodynamic and geochemical geochronology show that the rocks were exhumed processes, including continental collisions and the from UHP mantle depths to shallow crustal levels in 5– recycling of continental material into the mantle. 10 Myr. This study addresses two important issues regarding the formation and exhumation of the UHP rocks in the NEW UHP ECLOGITES AND THE SIZE AND SHAPE WGR: (i) the size, shape, and structure of the UHP OF THE UHP DOMAINS terrane; and (ii) the structural and petrological rela- tionship between the UHP rocks and overlying allo- The UHP rocks of Norway are exposed in the coastal reaches of the Western Gneiss Region (WGR), Present address: D. B. Root, Department of Mineral Sciences, between Nordfjord in the south to Fjørtoft in the north National Museum of Natural History, Washington, DC 20560-0119, (Fig. 1); high-pressure rocks extend over a much USA. greater area to the north, east and south (Cuthbert Ó 2005 Blackwell Publishing Ltd 45 46 D. B. ROOT ET AL. o B380 o Fj rtoft H402 Asp y 80 B397 Nordo yane UHP domain K350 Trondheim 70 Enge 10 Flemso ya 62o H403 N B397 K370 20 10 B390 Brattvåg Vigra Bergen 55 M>380 20 60o N 85 65 80 o o Godo ya 5 E 10 E 75 o Rem yholmen K380 30 Runde 25 40 Hareidlandet 60 45 30 M<380 75 25 30 30 50 Soro yane 30 M378 35 M374 35 o 15 Nerlands ya 80 40 Ulsteinvik K345 30 60 10 75 45 15 40 M380 UHP domain 80 40 55 M>380 80 60 K355 60 80 o 60 50 Sands ya 80 85 70 15 60 80 75 55 Kvamso ya M384 Voksa 30 50 50 75 Furo ya 80 M<383 80 80 45 M380 45 10 70 45 30 20 50 65 B375 65 Drage 10 65 30 35 M<380 25 40 M369 line of section 70 25 45 Nordfjord – 80 60 60 Devonian molasse 70 Saltaneset Allochthons 50 Stadlandet 85 o 62 N Flatraket 45 UHP domain Ulsteinvik-area eclogite 5oE Western Gneiss Complex M387 UHP eclogites M389 70 M389 M385 (this study) M385 M401 60 HP eclogites Verpeneset 40 39 M404 M>380 M389 Ar/ Ar age M390 M383 M409 50 (M389 – this study) M409 M>390 0 10 km N SW NE Nordfjord – Stadlandet UHP domain Soro yane UHP domain 5 km 0 km Fig. 1. Map of the study area, showing the ultrahigh-pressure domains exposed in culminations beneath the high-pressure domains. 40Ar/39Ar ages denoted as B, biotite; H, hornblende; K, K-feldspar (from Hacker et al., 2004); M, muscovite; ages from this study are in italics. Other ages from Chauvet & Dallmeyer (1992); Andersen et al. (1998) and Lux (1985). Geology based in part on Tveten et al. (1998a,b) and Krabbendam & Wain (1997). Ó 2005 Blackwell Publishing Ltd ULTRAHIGH-PRESSURE DOMAINS IN THE WESTERN GNEISS REGION, NORWAY 47 et al., 2000; Walsh & Hacker, 2004). Most of the UHP–HP terrane consists of continental orthogneisses (a) overlain locally by chiefly paragneisses. Dispersed Quartz eclogites blocks that make up only c. 1 vol.% of the terrane contain nearly all the evidence of former ultrahigh pressures, in the form of coesite, diamond and other high-pressure minerals. Both the eclogites and the host gneisses experienced a strong amphibolite facies recrystallization and deformation following the UHP event. Although the eclogites locally survived Coesite this overprint, nearly all UHP minerals and structures that might have existed in the host gneisses were 25 µm obliterated and replaced by amphibolite-facies para- geneses, gently E- and W-plunging lineations, and N- and S-dipping foliations isoclinally folded about shallowly E- and W-plunging axes (Fig. 1). 10 000 It was in the Nordfjord–Stadlandet region where (b) UHP eclogites were first recognized, based on the presence of coesite (Smith, 1984). Since then, c. 30 465 Quartz rim eclogite localities containing either coesite or poly- crystalline quartz pseudomorphs after coesite have 206 been identified, delineating a c. 2500 km2 region named the Nordfjord–Stadlandet UHP domain (Wain, 520 465 1997; Cuthbert et al., 2000). UHP eclogites were sub- Counts 356 270 sequently identified more than 125 km to the north on 205 Coesite Fjørtoft (Terry et al., 2000a) and >50 km to the east (Walsh & Hacker, 2004), suggesting that the Norwe- gian UHP terrane might approach 10 000 km2. To evaluate the size and structure of the UHP ter- 0 rane, this study focused on the Sorøyane (the ÔSouth- 0Raman shift (cm–1) 1000 ern IslandsÕ, from Kvamsøya to Runde), that lie between the Nordfjord–Stadlandet and Fjørtoft UHP Fig. 2. (a) Relict coesite in core of polycrystalline quartz inclusion within garnet, eclogite R9824C, Runde; transmitted, domains (Fig. 1). Eclogites are reasonably widespread plane-polarized light image. (b) Raman spectrum from quartz in the study area, permitting the boundaries of the rim and coesite core of same inclusion; peak at 525 cm)1 is UHP terrane to be mapped on the basis of the presence diagnostic of coesite. or absence of coesite or coesite pseudomorphs. This study identified seven new UHP eclogites (Fig. 1) by the discovery of polycrystalline quartz inclusions c. 100 km2 (Fig. 1). The delineation of these UHP within garnet and omphacite. Relict coesite (Fig. 2) domains based on the observation of coesite or relict was identified in the core of one such inclusion from an coesite in eclogites is limited by two main factors: eclogite on Runde (Fig. 1). Conventional thermobar- eclogites must be present, coesite must have formed, ometry is impossible in most of these eclogites because and it must be preserved. Unfortunately, eclogites are of the absence of phengite and kyanite, but Krogh uncommon in certain rock types and the formation Ravna (in Carswell et al., 2003a) reported a pressure of and preservation of coesite require favourable cir- 32 kbar at 795 °C from eclogite on the nearby island of cumstances that did not always occur. Despite this Furøya (Fig. 1), and the presence of former coesite limitation, the geochronological data presented below requires pressures of at least 28 kbar in all the other show that these three UHP domains are likely con- UHP eclogites.
Recommended publications
  • Fylkesmannen Si Fråsegn
    Sakshandsamar: Vår dato Vår referanse Dag Endre Stedje - 57643150, E-post: [email protected] 20.09.2016 2016/2542- /421.3 Oddgeir Aardal - 57643077, E-post: [email protected] Dykkar dato Dykkar referanse Anne C. F. Eide - 57643011, E-post: [email protected] 30.06.2016 Arnt Erik Nordheim – 57643168, E-post: [email protected] Selje kommune Kommunehuset 6740 Selje Fråsegn til offentleg ettersyn av arealdelen til kommuneplanen for Selje kommune, med framlegg til konsekvensutgreiing Vi viser til oversending innstempla her 30.06.2016, og til avtale om lenging av høyringsfristen til 20.09.2016. Oppsummering Det generelle inntrykket vårt er at det i all hovudsak er gjort eit omfattande og grundig arbeid med revisjonen av arealdelen til kommuneplanen. Den mest sentrale delen av kommuneplanrevisjonen gjeld bruken av overskotsmassar frå Stad skipstunnel, m.a. til nye store næringsområde på fylling i sjøen. Overskotsmassane er ein ressurs, og vi tolkar det slik at kommunen legg stor vekt på å bruke dei tilgjengelege massane til samfunnsnyttige formål. Vi stiller likevel spørsmål ved omfanget av, og storleiken på, nye fyllingsareal. Konsekvensutgreiinga som gjeld arealbruken basert på overskotsmassane er etter vår vurdering ikkje grundig nok. I planframlegget er det m.a. berre i liten grad gjort alternativvurderingar når det gjeld plasseringa av konkret arealbruk eller disponering av massane. I konsekvensutgreiinga elles synest vi det generelt er gjort mange gode vurderingar og tilrådingar, og vi ser det som positivt at fleire konfliktfylte innspel til endra arealbruk ikkje er tekne med i planframlegget. Fylkesmannen fremjar nokre motsegner mot planframlegget med konsekvensutgreiing. Fleire av motsegnene er knytte til manglande eller mangelfulle konsekvensutgreiingar, spesielt når det gjeld bruken av massane frå Stad skipstunnel.
    [Show full text]
  • From the Early Paleozoic Platforms of Baltica and Laurentia to the Caledonide Orogen of Scandinavia and Greenland
    44 by David G. Gee1, Haakon Fossen2, Niels Henriksen3, and Anthony K. Higgins3 From the Early Paleozoic Platforms of Baltica and Laurentia to the Caledonide Orogen of Scandinavia and Greenland 1 Department of Earth Sciences, Uppsala University, Villavagen Villavägen 16, Uppsala, SE-752 36, Sweden. E-mail: [email protected] 2 Department of Earth Science, University of Bergen, Allégaten 41, N-5007, Bergen, Norway. E-mail: [email protected] 3 The Geological Survey of Denmark and Greenland, Øster Voldgade 10, Dk 1350 Copenhagen, Denmark. E-mail: [email protected], [email protected] The Caledonide Orogen in the Nordic countries is exposed in Norway, western Sweden, westernmost Fin- Introduction land, on Svalbard and in northeast Greenland. In the The Caledonide Orogen is preserved on both sides of the North mountains of western Scandinavia, the structure is dom- Atlantic Ocean, in the mountains of western Scandinavia and north- inated by E-vergent thrusts with allochthons derived eastern Greenland; it continues northwards from northern Norway, across the Barents Shelf and Svalbard to the edge of the Eurasian from the Baltoscandian platform and margin, from out- Basin (Figure 1). The orogen is notable for its thrust systems, board oceanic (Iapetus) terranes and with the highest E-vergent in Scandinavia and W-vergent in Greenland. The width of the orogen, prior to Cenozoic opening of the North Atlantic, was in thrust sheets having Laurentian affinities. The other the order of at least 700–800 km, the deformation fronts on both side of this bivergent orogen is well exposed in north- sides of the orogen being defined by thrusts that, in the Devonian, eastern Greenland, where W-vergent thrust sheets probably reached substantially further onto the foreland platforms than they do today.
    [Show full text]
  • The Terrane Concept and the Scandinavian Caledonides: a Synthesis
    The terrane concept and the Scandinavian Caledonides: a synthesis DAVID ROBERTS Roberts , D. 1988: The terrane concept and the Scandinavian Caledonides: a synthesis. Nor. geol . unders . Bull. 413. 93-99. A revised terrane map is presented for the Scandinavian Caledcnldes. and an outline is given of the principal suspect and exot ic terranes and terrane-complexe s identified outboa rd from the Baltoscand ian miogeocline. The outermost part of the Baltoscandian continental margin is itself suspect , in the terrane sense. since the true palaeogeographical location s of rocks now represented in the Seve and serey-seuano Nappes, while inferred, are not known. The orogen -internal exotic terranes embrace the oceanic/eugeoclinal elements of the Caledonides, represented by the mag­ matosed imentary assemblages of the Koli Nappes, including ophiolite fragments and island arc products. Even more exot ic terranes occur in the highest parts of the tectonostratigraphy, inclu­ ding units which are thought possibly to derive from the Laurentian side of lapetus . D. Roberts. Norges geologiske uruierseketse, Postboks 3006. Lade, N-7002 Trondbeim , Norway . Introduction Project 233 has been to prepare a preliminary Earlier in this decade much of the research terrane map' at 1:5 M scale (Roberts et al. effort in the Caledonides of Scandinavia was 1986) for a larger, circum-Atlantic compilation. channelled through the highly successfu l IGCP This map, much simplified, is really one of Project 27 The Caledonide Orogen ' (Gee & palaeo-environments (marginal basins, vol­ Sturt 1985). An important aspect of the collabo­ canic arc comp lexes, overstep sequences , rative work in this project was that of map etc.), and not of terranes in the true sense.
    [Show full text]
  • Compilation, References, Kimberlite, Diamond
    Ontario Geological Survey Open File Report 6067 A Compilation of References for Kimberlite, Diamond and Related Topics 2001 ONTARIO GEOLOGICAL SURVEY Open File Report 6067 A Compilation of References for Kimberlite, Diamond and Related Topics by R.P. Sage and T. Gareau 2001 Parts of this publication may be quoted if credit is given. It is recommended that reference to this publication be made in the following form: Sage, R.P.and Gareau, T.2001. A compilation of references for kimberlite, diamond and related topics; Ontario Geological Survey, Open File Report 6067, 101p. e Queen’s Printer for Ontario, 2001 e Queen’s Printer for Ontario, 2001. Open File Reports of the Ontario Geological Survey are available for viewing at the Mines Library in Sudbury, at the Mines and Minerals Information Centre in Toronto, and at the regional Mines and Minerals office whose district includes the area covered by the report (see below). Copies can be purchased at Publication Sales and the office whose district includes the area covered by the report. Al- though a particular report may not be in stock at locations other than the Publication Sales office in Sudbury, they can generally be obtained within 3 working days. All telephone, fax, mail and e-mail orders should be directed to the Publica- tion Sales office in Sudbury. Use of VISA or MasterCard ensures the fastest possible service. Cheques or money orders should be made payable to the Minister of Finance. Mines and Minerals Information Centre (MMIC) Tel: (416) 314-3800 Macdonald Block, Room M2-17 1-800-665-4480(toll free inside Ontario) 900 Bay St.
    [Show full text]
  • WEST NORWEGIAN FJORDS UNESCO World Heritage
    GEOLOGICAL GUIDES 3 - 2014 RESEARCH WEST NORWEGIAN FJORDS UNESCO World Heritage. Guide to geological excursion from Nærøyfjord to Geirangerfjord By: Inge Aarseth, Atle Nesje and Ola Fredin 2 ‐ West Norwegian Fjords GEOLOGIAL SOCIETY OF NORWAY—GEOLOGICAL GUIDE S 2014‐3 © Geological Society of Norway (NGF) , 2014 ISBN: 978‐82‐92‐39491‐5 NGF Geological guides Editorial committee: Tom Heldal, NGU Ole Lutro, NGU Hans Arne Nakrem, NHM Atle Nesje, UiB Editor: Ann Mari Husås, NGF Front cover illustrations: Atle Nesje View of the outer part of the Nærøyfjord from Bakkanosi mountain (1398m asl.) just above the village Bakka. The picture shows the contrast between the preglacial mountain plateau and the deep intersected fjord. Levels geological guides: The geological guides from NGF, is divided in three leves. Level 1—Schools and the public Level 2—Students Level 3—Research and professional geologists This is a level 3 guide. Published by: Norsk Geologisk Forening c/o Norges Geologiske Undersøkelse N‐7491 Trondheim, Norway E‐mail: [email protected] www.geologi.no GEOLOGICALSOCIETY OF NORWAY —GEOLOGICAL GUIDES 2014‐3 West Norwegian Fjords‐ 3 WEST NORWEGIAN FJORDS: UNESCO World Heritage GUIDE TO GEOLOGICAL EXCURSION FROM NÆRØYFJORD TO GEIRANGERFJORD By Inge Aarseth, University of Bergen Atle Nesje, University of Bergen and Bjerkenes Research Centre, Bergen Ola Fredin, Geological Survey of Norway, Trondheim Abstract Acknowledgements Brian Robins has corrected parts of the text and Eva In addition to magnificent scenery, fjords may display a Bjørseth has assisted in making the final version of the wide variety of geological subjects such as bedrock geol‐ figures . We also thank several colleagues for inputs from ogy, geomorphology, glacial geology, glaciology and sedi‐ their special fields: Haakon Fossen, Jan Mangerud, Eiliv mentology.
    [Show full text]
  • (Microsoft Powerpoint
    Sæterdrift på Hareidlandet Sæterdrift på Hareidlandet Sæterdrift på Hareidlandet Sæterdrift på Hareidlandet Sæterdrift på Hareidlandet Sæterdrift på Hareidlandet Sæterdrift på Hareidlandet Sæterdrift på Hareidlandet generelt og om Risesætra spesielt. Sæterdrift slik ein kjenner det med kinning og ysting mv. på sætra, har det truleg ikkje vore på Hareidlandet. Sæterdrift på Hareidlandet Fra gammalt av har det vore slik at skulle ein få nok fôr til å kome seg gjennom vinteren med heile buskapen, måtte ein skaffe høy der ein kunne. Utløer eller sommarfjøsar i utmarka / på fjellet var vanleg. Der hesja ein og lagra høyet til ein kunne få det til gards på vinterføre. Då hadde ein også rom til det heime på låven. Sauer og geiter vart sett i utmarka på beite så tidleg på våren som råd var og seinare sendt til fjells. Etter kvart kom også kyrne ut. Fjellbeite var vanleg også for desse. Då måtte ein til fjells for å mjølke to gongar for dag. Sæterdrift på Hareidlandet Sæterdrift på Hareidlandet Litt frå bygdebøkene: Ulstein kommune Flø - sommarfjøsar ved Brørevatnet Ulstein – Dei fleste bruka hadde sommarfjøs på fjellet. På nordsida av Lisjevatnet vart det kring 1920 sett opp ei barakke, som dei kjøpte frå E. verket. (Brunesætra) På Ulstein måtte dei gjete buskapet når den var i fjellet, då dei lett kunne gå seg utfor fjellet. Det var vanleg med to gjetarar. 10 bruk slo seg i lag og veksla om dette. Osnes hadde buskapen i Årdalen, mellom Skeidshornet og Breifjellet. Sæterdrift på Hareidlandet Gardane rundt Ulsteinvik har truleg hatt sommarbeite fremst i Holsekerdalen Saunes – Nord- aust for Notten og Nattasætra Strandabøen – Nattasætra (nedlagt bruk) Botnen og Garshol hadde sel på Fjelle i Honnhola, der dei hadde kjøpt eit bruk.
    [Show full text]
  • Hareidlandet Ei Øykommune Utanom Det Vanlege
    HAREIDLANDET EI ØYKOMMUNE UTANOM DET VANLEGE INTENSJONSAVTALE MELLOM ULSTEIN OG HAREID 7. JULI 2016 INTENSJONSAVTALE OM NY KOMMUNE MELLOM ULSTEIN OG HAREID INNHALD Innhald .................................................................................................................................................................... 1 Kap.1 - Innleiing ...................................................................................................................................................... 2 Kap.2 - Visjon og mål .............................................................................................................................................. 2 Kap.3 - Samfunnsutvikling ...................................................................................................................................... 3 Kap. 4 - Gode og likeverdige tenester ..................................................................................................................... 4 Kap.5 - Fordeling av oppgåver ................................................................................................................................ 5 Kap.6 - Eit levande lokaldemokrati ......................................................................................................................... 6 Kap.7 - Kommunesenter ......................................................................................................................................... 6 Kap.8 - Kommunenavn og kommunevåpen...........................................................................................................
    [Show full text]
  • Kartlegging Av Naturtyper I Ulstein Kommune I 2008
    AREAL- OG MILJØVERNAVDELINGA Kartlegging av naturtyper i Ulstein kommune i 2008 Rapport 2009:03 Utførende konsulent: Kontaktperson/prosjektansvarlig: ISBN 978-82-7430-196-6 (nett) Dag Holtan Dag Holtan ISBN 978-82-7430-168-9 (papir E-post: [email protected] utgave) ISSN 0801-9363 Oppdragsgiver: Kontaktperson hos oppdragsgiver: År: Møre og Romsdal fylke Kjell Lyse 2009 Referanse: Holtan, D. 2009: Kartlegging av naturtyper i Ulstein kommune i 2008. Møre og Romsdal fylke, areal- og miljøvernavdelinga. Rapport 2009: 3. 137 sider med kart. Referat: Det er gjennomført kartlegging av naturtyper i Ulstein kommune på Sunnmørskysten. Av i alt 48 avgrensede naturtypelokaliteter er 4 vurdert som svært viktige for det biologiske mangfoldet (A), 22 som viktige (B) og 22 som lokalt viktige (C). Disse er fordelte på 15 ulike naturtyper. De største naturverdiene er knyttet til hovednaturtypene havstrand, kystlynghei, fuktige nordberg og skog. Av rødlistearter ble det i 2008 funnet enkelte sopper. For øyeblikket er det kjent 11 rødlistede karplanter, 11 sopper og 4 lavarter i kommunen. I tillegg kommer en del viltarter som ikke er med i denne rapporten. Emneord: Ulstein Naturtyper Rødlistearter Verdisetting Fagansvarlig: For administrasjonen: ___________________________________ ___________________________________ Ulf Lucasen (seksjonssjef) Jon Ivar Eikeland (direktør areal- og miljøvernavdelinga) Forsidebilde Østersjørør vokser på Osnessanden, og er listet som sterkt truet (EN) i rødlista. Dette er eneste kjente lokalitet nord for Rogaland, og forekomsten er akutt truet av ferdsel. Foto: Dag Holtan ©. 2 Forord Dag Holtan har utført kartlegging av naturtyper i Ulstein kommune i Møre og Romsdal. Oppdraget omfatter kartlegging og avgrensning av naturtyper med artsinformasjon (unntatt vilt), ved både egne feltundersøkelser og innsamling og systematisering av eksisterende informasjon.
    [Show full text]
  • Unraveling the Geologic History of the Avalon Terrane in MA Erin Nevens
    Undergraduate Review Volume 2 Article 12 2006 Unraveling the Geologic History of the Avalon Terrane in MA Erin Nevens Follow this and additional works at: http://vc.bridgew.edu/undergrad_rev Part of the Geology Commons Recommended Citation Nevens, Erin (2006). Unraveling the Geologic History of the Avalon Terrane in MA. Undergraduate Review, 2, 56-66. Available at: http://vc.bridgew.edu/undergrad_rev/vol2/iss1/12 This item is available as part of Virtual Commons, the open-access institutional repository of Bridgewater State University, Bridgewater, Massachusetts. Copyright © 2006 Erin Nevens 56 Unraveling the Geologic History ofthe Avalon Terrane in MA BY ERIN NEYENS Erin Nevens wrote this piece under the Abstract mentorship of Dr. Michael Krol. "PO-. ield and petrographic analysis of rocks at Black Rock Beach in Co­ 10_.. hasset, MA record at least two phases of metamorphism and mag­ matic activity and three episodes ofdeformation. The earliest phase of metamorphism and deformation are recorded by mafic gneiss xenoliths. These xenoliths preserve a mylonitic texture, which represents de­ velopment in a ductile deformation environment. The xenoliths occur as large blocks that were later incorporated into the intruding magma of the Dedham granodiorite. Following crystallization, the Dedham granodiorite experienced an episode of plastic deformation. This event resulted in the development of a weak foliation defined by aligned feldspar porphyroclasts. Quartz and feldspar microstructures indicate deformation occurred between 350-450"C. A second phase of magmatic activity was associated with the intrusion ofseveral 1·2 me· ter wide porphyritic basalt dikes that cross-cut both the xenoliths and grano­ diorite,.and resulted in the brittle cataclasis of the Dedham granodiorite, The basalt dikes were emplaced during a time ofcrustal extension and subsequently experienced a late-stage hydrothermal alteration.
    [Show full text]
  • THE STRATIGRAPHY and GEOCHEMISTRY of the GRANITE GNEISSES, BROKEN HILL, N.S.W. by IAN D. BLUCHER Department of Mining and Minera
    THE STRATIGRAPHY AND GEOCHEMISTRY OF THE . GRANITE GNEISSES, BROKEN HILL, N.S.W. by IAN D. BLUCHER Department of Mining and Mineral Sciences, w.s. & L.B. Robinson University College, University of New South Wales. MARCH, 1983. This thesis contains no material which has been accepted for the award of any other degree or diploma in any Tertiary Institution; nor does it contain any material previously published or written by any other person except where due reference and acknowledgement is made in the text. I.D. BLUCHER. ACKNOWLEDGEMENTS I would like to thank my supervisors Ors. K.D. Tuckwell and P.C. Rickwood for their advice and help during the preparation of this thesis. The analytical expertise of both Dr. T. Hughes of Melbourne University and The Zinc Corporation, Limited assay laboratory is greatly appreciated. The financial support provided by the Broken Hill Mining Managers' Association, the geological staff of both The Zinc Corporation, Limited and North Broken Hill Limited for specimens, maps and helpful discussions and the technical expertise of Mr. J. Vaughan, Mrs. K. Goldie, Ms. J. Gray and Mrs. J. Day all contributed to the successful completion of this study. Abstract The Granite gneisses located at Broken Hill have been examined in order to establish their internal stratigraphy, the significance of any chemical trends present and also an origin for these gneisses. Mineralogically these gneisses,which are chemically indistinguish­ able from one another can be divided into garnet-bearing or garnet-absent, quartz-feldspar-biotite gneisses, and an aplitic-textured quartz-feldspar­ rich fels. The first two gneiss types may in places be rich in feldspar augen and grade vertically into augen-poor or layered gneisses.
    [Show full text]
  • Geology of New Gold Discoveries in the Coffee Creek Area, White Gold District, West-Central Yukon
    Geology of new gold discoveries in the Coffee Creek area, White Gold district, west-central Yukon Alan J. Wainwright1, Adam T. Simmons, Craig S. Finnigan, Tim R. Smith and Robert L. Carpenter Kaminak Gold Corp. Wainwright, A.J., Simmons, A.T., Finnigan, C.S., Smith, T.R. and Carpenter, R.L., 2011. Geology of new gold discoveries in the Coffee Creek area, White Gold District, west-central Yukon. In: Yukon Exploration and Geology 2010, K.E. MacFarlane, L.H. Weston and C. Relf (eds.), Yukon Geological Survey, p. 233-247. abstraCt A new widespread, structurally controlled gold mineralizing system has been identified during the 2010 exploration drilling program at the Coffee Project, west-central Yukon. The Coffee Creek area is underlain by a sequence of shallowly to moderately south to southwest-dipping Paleozoic metamorphic rocks that are considered to be part of the Yukon-Tanana terrane and are intruded by the Cretaceous Coffee Creek granite along a west to northwest-trending contact. During the 2010 drilling program, structurally controlled gold mineralization was discovered in all major lithological units underlying the Coffee property. Importantly, these mineralized zones correspond to a number of discrete structural corridors. The gold zones are steeply dipping and characterized by extensive silicification in addition to sericite and clay alteration accompanied by variable As-Ag-Sb-Ba-Mo enrichment. Polyphase breccias of both hydrothermal and tectonic origin, in addition to andesite- dacite dykes, are common within the gold-bearing structural corridors. The dominant sulphide is pyrite, although trace arsenopyrite, chalcopyrite and stibnite are observed locally. The similarity of breccia textures and alteration/sulphide mineralogy between all gold zones currently defined on the Coffee property implies a common mineralizing event.
    [Show full text]
  • Actually Consists of 2 Cleavages
    Types of foliations • Crenulation Cleavage- – Actually consists of 2 cleavages – The first may be a slaty cleavage or schistosity that becomes microfolded – Fold axial planes typically form at high angle to the σ1 of the second compressional phase 1 Progressive development (a → c) of a crenulation cleavage for both asymmetric (top) and symmetric (bottom) situations. From Spry (1969) Metamorphic Textures. Pergamon. Oxford. 2 Figure 23.24a. Symmetrical crenulation cleavages in amphibole-quartz-rich schist. Note concentration of quartz in hinge areas. From Borradaile et al. (1982) Atlas of Deformational and Metamorphic Rock Fabrics. Springer-Verlag. 3 Figure 23.24b. Asymmetric crenulation cleavages in mica-quartz-rich schist. Note horizontal compositional layering (relict bedding) and preferential dissolution of quartz from one limb of the folds. From Borradaile et al. (1982) Atlas of Deformational and Metamorphic Rock Fabrics. Springer-Verlag. 4 Figure 23.25. Stages in the development of crenulation cleavage as a function of temperature and intensity of the second deformation. From Passchier and Trouw (1996) Microtectonics. Springer-Verlag. Development of S2 micas depends upon T and the intensity of the second deformation 5 Types of lineations a. Preferred orientation of elongated mineral aggregates b. Preferred orientation of elongate minerals c. Lineation defined by platy minerals d. Fold axes (especially of crenulations) e. Intersecting planar elements. Figure 23.26. Types of fabric elements that define a lineation. From Turner and Weiss (1963) Structural 6 Analysis of Metamorphic Tectonites. McGraw Hill. Analysis of Deformed Rocks • If two or more geometric elements are present, we can add a numeric subscript to denote the chronological sequence in which they were developed and superimposed- • Deformational events: D1 D2 D3 … • Metamorphic events: M1 M2 M3 … • Foliations: So S1 S2 S3 … • Lineations: Lo L1 L2 L3 … • Plot on a metamorphism-deformation-time plot showing the crystallization of each mineral 7 Deformation vs.
    [Show full text]