ADDRESS Prof
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Curriculum Vitae
Curriculum Vitae Yilei Li Department of Applied Physics Tel: (+1) 646-462-9695 Stanford University E-mail: [email protected] 348 Via Pueblo Mall Stanford, CA 94305, USA EDUCATION • Ph.D. in Physics, Columbia University, 2014 (Advisor: Prof. Tony F. Heinz) • B.Eng. in Electrical Engineering, Hong Kong University of Science and Technology, 2010 PROFESSIONAL EXPERIENCE • Postdoc in Prof. Tony Heinz group Stanford University, 2015 April–now Columbia University, 2014 October–2015 April • Summer Research Internship in Dr. Phaedon Avouris group IBM Research, 2013 May–August HONORS AND AWARDS • Springer Prize for Outstanding Ph.D. Thesis, 2015 • Best Student Paper Award, Rank Prize Symposium, Grasmere, UK, 2014 • Townes Fellowship for Outstanding Research in Physics, Columbia University, 2014 • Academic Medal (highest distinction), Hong Kong University of Science and Technology, 2010 • University Scholarship, Hong Kong University of Science and Technology, 2006–2010 © Springer International Publishing Switzerland 2016 67 Y. Li, Probing the Response of Two-Dimensional Crystals by Optical Spectroscopy, Springer Theses, DOI 10.1007/978-3-319-25376-3 68 Curriculum Vitae INVITED TALKS AT PROFESSIONAL MEETINGS • “Magneto-optic study of monolayer transition metal dichalcogenides,” Rank Prize Symposium on 2D Materials for Optoelectronics, Plasmonics and Photonics, Grasmere, UK, 2014 • “Probing the response of atomically thin transition metal dichalcogenides by optical spectroscopy,” IGERT and Surface Interactions Symposium Series, Columbia University, New York, USA, 2014 • “Valley splitting and polarization by the Zeeman effect in monolayer MoSe2 ,” The 9th International Conference on Computational Physics, Singapore, 2015 • “2D materials beyond graphene: optical properties of atomically thin transition metal dichalcogenide crystals,” Conference on Lasers and Electro-Optics (CLEO Europe), Munich, Germany, 2015 (Presented in place of Prof. -
Nanoscale Carbon Materials Research Wins the 2008 Julius Springer Prize for Applied Physics 1 October 2008
Nanoscale carbon materials research wins the 2008 Julius Springer Prize for Applied Physics 1 October 2008 Dr. Phaedon Avouris of IBM and Professor Tony encouraged by having a broad set of talks, like we Heinz of Columbia University were presented with had here today at the forum." the 2008 Julius Springer Prize for Applied Physics on 27 September 2008 during a day-long forum at Other potential applications include photovoltaics, Harvard University, attended by luminaries of the sensors and light emitters, and uses in medicine. field. The Julius Springer Prize for Applied Physics The current, work, however, is science research. recognizes researchers who have made an Specific applications are difficult to foresee at this outstanding and innovative contribution to the field stage. of applied physics. The forum was sponsored by the scientific publisher Springer. Avouris added, "The main motivator for research is always curiosity." Avouris and Heinz were honored for their pioneering work on the electrical and optical Phaedon Avouris is an IBM Fellow and manager of properties of nanoscale carbon materials. Carbon Nanoscience and Nanotechnology at IBM's nanotubes, first reported in 1991, and graphene, Research Division at the Watson Research Center which was even more recently discovered in 2004, in Yorktown Heights, NY. have attracted a vibrant community of researchers intent on characterizing these new materials. Tony Heinz is the David M. Rickey Professor in the Departments of Physics and Electrical Engineering Carbon nanotubes and graphene show promise for at Columbia University. Previously, he also worked a number of applications. One of the most exciting at IBM's Research Division at the Watson Research possibilities is that these materials could integrate Center. -
NSF US-EU Workshop on 2D Layered Materials and Devices
NSF US-EU Workshop on 2D Layered Materials and Devices April 22-24, 2015, Arlington, VA, USA Workshop Final Report Submitted to the NSF by: Anupama Kaul, University of Texas, El Paso, TX, U.S.A. James Hwang, Lehigh University, PA, U.S.A. http://engineering.utep.edu/useu2dworkshop/ Disclaimer: The views expressed are those of the authors and do not necessarily reflect the views of the National Science Foundation 1 NSF US EU Workshop on 2D Layered Materials and Devices Sponsorship: NSF, UTEP, AFRL, and STARnet Workshop Organizing Committee and Break-out leaders Organizing Committee US Workshop Chair and Co-chair US Workshop Chair: Professor Anupama B. Kaul [email protected] Associate Dean for Research and Innovation AT&T Distinguished Professor MME & ECE (joint) The University of Texas at El Paso, El Paso, TX, USA US Workshop Co-chair: Professor James Hwang [email protected] Director of Compound Semiconductor Laboratory Department of Electrical and Computer Engineering Lehigh University, Bethlehem, PA, USA EU Workshop Chair and Co-chairs EU Workshop Chair: Professor Jari Kinaret [email protected] Director of Graphene Flagship Department of Applied Physics Chalmers University of Technology, Gothenburg, Sweden, EU 2 EU Workshop Co-chair: Professor Vladimir Falko [email protected] Distinguished Professor Department of Physics- Lancaster University, England, United Kingdom, EU EU Workshop Co-chair: Professor Andras Kis [email protected] Director for Laboratory of Nanoscale Electronics and Structures, EPFL, Switzerland, EU Steering Committee Dr. Dimitris Pavlidis [email protected] Program Director, Engineering Directorate National Science Foundation, Arlington, VA, USA Dr. Wide Hogenhout [email protected] European Commission Directorate-General for Communications Networks, Content and Technology; Directorate C 'Excellence in Science' - Unit 'Flagships'; Office BU33 6/53 B-1049 Belgium, EU Program Manager Dr. -
Tony Heinz Professor of Applied Physics and of Photon Science And, by Courtesy, of Electrical Engineering Curriculum Vitae Available Online Resume Available Online
Tony Heinz Professor of Applied Physics and of Photon Science and, by courtesy, of Electrical Engineering Curriculum Vitae available Online Resume available Online CONTACT INFORMATION • Administrative Contact Stanford/Ginzton Lab May Varlaro Email [email protected] Tel (650) 725-8331 Bio BIO Tony Heinz is a Professor of Applied Physics and Photon Science at Stanford University and the Associate Laboratory Director for Energy Sciences at the SLAC National Accelerator Laboratory. Heinz received a BS degree in Physics from Stanford University and a PhD degree, also in Physics, from the University of California at Berkeley in 1982. Heinz was subsequently at the IBM Research Division in Yorktown Heights, NY until he joined Columbia University in 1995 as a Professor of Electrical Engineering and Physics. At Columbia, he served as the Chair of the Department of Electrical Engineering from 2003 until 2007. He has also served as a Scientific Director of the Columbia Nanoscale Science and Engineering Center (NSEC) and of the Energy Frontier Research Center (EFRC). He was the President of the Optical Society of America in 2012. Heinz joined Stanford University in 2015, serving as the Director of the Chemical Sciences Division at SLAC from that time until 2019. He was been the Associate Laboratory Director for Energy Sciences at SLAC, including the Material Science, Chemical Science, Computer Science, and the Applied Energy Divisions at SLAC. ACADEMIC APPOINTMENTS • Professor, Applied Physics • Professor, Photon Science Directorate • Professor -
Imaging-Based Spectrometer-Less Optofluidic Biosensors Based On
ARTICLE https://doi.org/10.1038/s41467-021-23257-y OPEN Imaging-based spectrometer-less optofluidic biosensors based on dielectric metasurfaces for detecting extracellular vesicles Yasaman Jahani 1,6, Eduardo R. Arvelo1,6, Filiz Yesilkoy 2, Kirill Koshelev 3,4, Chiara Cianciaruso 5, ✉ Michele De Palma 5, Yuri Kivshar 3 & Hatice Altug 1 1234567890():,; Biosensors are indispensable tools for public, global, and personalized healthcare as they provide tests that can be used from early disease detection and treatment monitoring to preventing pandemics. We introduce single-wavelength imaging biosensors capable of reconstructing spectral shift information induced by biomarkers dynamically using an advanced data processing technique based on an optimal linear estimator. Our method achieves superior sensitivity without wavelength scanning or spectroscopy instruments. We engineered diatomic dielectric metasurfaces supporting bound states in the continuum that allows high-quality resonances with accessible near-fields by in-plane symmetry breaking. The large-area metasurface chips are configured as microarrays and integrated with micro- fluidics on an imaging platform for real-time detection of breast cancer extracellular vesicles encompassing exosomes. The optofluidic system has high sensing performance with nearly 70 1/RIU figure-of-merit enabling detection of on average 0.41 nanoparticle/µm2 and real- time measurements of extracellular vesicles binding from down to 204 femtomolar solutions. Our biosensors provide the robustness of spectrometric approaches while substituting complex instrumentation with a single-wavelength light source and a complementary-metal- oxide-semiconductor camera, paving the way toward miniaturized devices for point-of-care diagnostics. 1 Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland. -
An Optofluidic Nanoplasmonic Biosensor for Direct Detection Of
pubs.acs.org/NanoLett An Optofluidic Nanoplasmonic Biosensor for Direct Detection of Live Viruses from Biological Media Ahmet A. Yanik,†,‡ Min Huang,†,‡ Osami Kamohara,†,‡ Alp Artar,†,‡ Thomas W. Geisbert,§,| John H. Connor,*,†,| and Hatice Altug*,†,‡ † Photonics Center and ‡ Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, United States and § The National Emerging Infectious Diseases Laboratories (NEIDL) and | Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts 02218, United States ABSTRACT Fast and sensitive virus detection techniques, which can be rapidly deployed at multiple sites, are essential to prevent and control future epidemics and bioterrorism threats. In this Letter, we demonstrate a label-free optofluidic nanoplasmonic sensor that can directly detect intact viruses from biological media at clinically relevant concentrations with little to no sample preparation. Our sensing platform is based on an extraordinary light transmission effect in plasmonic nanoholes and utilizes group-specific antibodies for highly divergent strains of rapidly evolving viruses. So far, the questions remain for the possible limitations of this technique for virus detection, as the penetration depths of the surface plasmon polaritons are comparable to the dimensions of the pathogens. Here, we demonstrate detection and recognition of small enveloped RNA viruses (vesicular stomatitis virus and pseudotyped Ebola) as well as large enveloped DNA viruses (vaccinia virus) within a dynamic -
Book of Abstracts
BOOK OF ABSTRACTS Organised by Sponsored by Welcome to NyNa 2017 The aim of NyNA 2017 is to bring together scientists working in the field of analytical nanoscience and nanotechnology to show their recent findings with interest for various applications. The Organising Committee wants to thank you for being part of this exciting event. The Institut Català de Nanociència i Nanotecnologia is a Severo Ochoa Centre of Excellence committed to bringing nanotechnology closer to industrial applications and society. This event is a unique opportunity to create enduring links and work together to bring benefit to society as a whole. Diagnostics, safety and security, environmental monitoring and other industrial applications are just some of the many fields that could benefit from our joint efforts. Let’s make it happen! Organising committee ICREA Prof. CSIC Research Prof. ICREA Prof. Arben Merkoçi Laura Lechuga Jordi Arbiol Chair Co-Chair Co-Chair Catalan Institute of Catalan Institute of Catalan Institute of Nanoscience and Nanoscience and Nanoscience and Nanotechnology (ICN2) Nanotechnology (ICN2) Nanotechnology (ICN2) Scientific programme committee Dr. Agustín Costa Dr. Alberto Escarpa Dr. Alfredo Sanz-Medel University of Oviedo University of Alcalá University of Oviedo Dr. Ángel Ríos Dr. Arben Merkoci Dr. Cristina González University of Castilla-La Mancha Institute of Nanoscience and University of Alcalá Nanotechnology (ICN2) Dr. Encarnación Dr. F. Xavier Rius Dr. José Manuel Lorenzo Universidad Rovira i Virgili Pingarrón Autonomous University of Complutense University of Madrid Madrid Dr. Juan Ramón Castillo Dr. María Cruz Moreno Dr. María Jesús University of Zaragoza Complutense University of Almendral Madrid University of Salamanca Dr. -
2021 MRS Fall Meeting Call for Papers (PDF)
Symposium BI01: Developing an Open Source Introductory Textbook for the Materials Community The materials community is one of the few in science that does not have an open access textbook for the introduction of our discipline. This symposium is focussed on addressing this need and developing an efficient and continuing process to create a high quality open source electronic textbook that will be vetted by our society along with the other materials societies such as TMS, ACeRs, and ASM. We are planning on inviting top practitioners as well as emerging, young researchers in each of the foundational areas of materials science and engineering. The main outcomes of this symposium will be to identify small editorial boards for each area and to develop a plan to write the first set of chapters. The vision is to create a server based publishing platform to permit continual updating of the chapters with editorial board oversight. New chapters can be added and expanded as time goes on. An instructor will be able to choose the sections they want and produce a pdf for their students at no cost. The goal of this symposium is to work towards developing a sophomore level text that covers the fundamental topics that apply to all areas of materials essential to an introductory text. We expect experienced materials educators to set the scope and depth of the material in each area during planned working sessions and then to identify early career materials scientists and engineers to lead the effort for writing and editing the text, examples, worked problems, and other digital content for each topical area. -
TASSA 08 Program Final No Abstracts.Indd
TASSA ANNUAL CONFERENCE 11-13 APRIL, 2008 HARVARD UNIVERSITY, BOSTON, MA TURKISH-AMERICAN SCIENTISTS AND SCHOLARS ASSOCIATION TURKISH AMERICAN SCIENTISTS AND SCHOLARS ASSOCIATION Conference Theme: Innovati on as Driver for Social Transformati on and Economic Growth 1526 18th Street, NW, Washington, D.C. 20036 www.tassausa.org z [email protected] TASSA 2008 ANNUAL CONFERENCE ORGANIZING COMMITTEE Mehmet Toner, Conference Chair Banu Onaral, Conference Co-Chair, TASSA President Süleyman Gökoğlu, TASSA Past-President Aylin Sagay, Executive Director Hande Özdinler, Membership Committee Chair Yaman Yener, Conference Local Committee Chair Gokhan Hotamisligil, Local Committee Selim Unlu, Local Committee Poster Committee Aziz Uluğ Fikri Avcı Murat Çokol Metin Sitti Murat Eron Ali Özdoğan Kenan Gündoğdu Hasan Ayaz TASSA’08 Conference IT Committee Yalçın Sert Hasan Ayaz We appreciate the support of our local crew of volunteers. Copyright 2008, TASSA All rights reserved. No parts of this publicati on shall be processed/adapted, reproduced, stored in a retrieval system, circulated, re-sold, rent, lent, represented, performed, recorded, transmitt ed with cord/cordless or any technical, digital and/or electronic devices without prior writt en permission from the author(s)/right holders subject to Arti cle 52 of Law No. 4110 amended by Law No. 5846 for Intellectual and Arti sti c Works. Contents were reproduced from author-provided text and presentati on materials. Trade names or manufacturers’ names are used in this report for identi fi cati on only. This usage does not consti tute an offi cial endorsement, either expressed or implied, by the Turkish American Scienti sts and Scholars Associati on. Available electronically at: htt p://www.tassausa.org TURKISH-AMERICAN SCIENTISTS AND SCHOLARS ASSOCIATION TURKISH AMERICAN SCIENTISTS AND SCHOLARS ASSOCIATION ANNUAL CONFERENCE THE JOSEPH B. -
Heinz CV 2021
TONY F. HEINZ Professor of Applied Physics and Photon Science Stanford University Tel. 650-723-1810 348 Via Pueblo Mall, Stanford, CA 94305 E-mail: [email protected] Education B.S. Physics (with Distinction), Stanford University, 1978 Ph.D., Physics, University of California, Berkeley, 1982 Professional Experience Stanford University and SLAC National Accelerator Laboratory: Professor of Applied Physics, Photon Science, and, by courtesy, of Electrical Eng., Stanford, 2015 - Director, Chemical Science Division, 2015 – 2019, SLAC Associate Laboratory Director for Energy Sciences, 2017 -, SLAC Columbia University: Professor of Physics and Electrical Engineering, 1995 - 2000, David Rickey Professor, 2001 – 2014 Chair, Dept. of Electrical Engineering, 2003 - 2007 IBM Research Division, T. J. Watson Research Center, Yorktown Heights, NY: Research Staff, 1983 – 87; Dept. Manager, 1987 – 93; Senior Department Manager, 1993 - 95 Honors Levine Award for Outstanding Studies in Physics, Stanford University, 1978 National Science Foundation Graduate Fellow, UC Berkeley, 1978 - 81 IBM Graduate Fellow, University of California, Berkeley, 1982 - 83 IBM Outstanding Technical Achievement Award, 1992, and Invention Award, 1994 International Commission for Optics Prize; Ernst Abbe Medal, 1995 Alexander von Humboldt Research Award, Germany, 1996 Great Teacher Award, Columbia University, 2005 Julius Springer Prize for Applied Physics (with Phaedon Avouris), 2008 Frank Isakson Prize, American Physical Society, 2014 Gordon and Betty Moore Foundation EQiPS -
2010-2011 Fiscal Year
Boston University Department of Electrical & Computer Engineering Annual Report 2010– 2011 © 2011, Boston University Production: Rachel Harrington Content: Rachel Harrington, ECE staff, and ECE faculty Cover: Top photo- Team members of The Shipless Skippers, Nathaniel Wilkie, Abigail Bonnice, and Joseph Beckenbach (pictured from left), show their research during ECE Day ’11. Bottom photo - Associate Professor Siddharth Ramachandran works in a photonics laboratory with Roman Barankov (left) and Dr. Damian N. Schimpf. This report provides a description of the instructional and research activities of the Department of Electrical & Computer Engineering at Boston University during the 2010 – 2011 academic year. Instructional activities are reported from the Fall 2010 through Summer 2011 semesters while scholarly activities and budget information are reported from July 1, 2010 to June 30, 2011. Boston University’s policies provide for equal opportunity and affirmative action in employment and admission to all programs of the University. For more information or to download this report as a PDF, please visit our website at www.bu.edu/ece. Message From the Chair This was another suc- computing, from programming languages to scripting languages cessful year for Boston Uni- and embedded computing. We also added a freshman course versity’s ECE Department – a on Electronic Control of Robots as part of our Introduction to year that saw many changes Engineering series within the College of Engineering. For more while the Department main- advanced students, we introduced two new courses, Electric En- tained its focus on steady ergy Systems: Adapting to Renewable Resources and Sensors in improvement for its research Space, that leverage renewed interest in electric energy systems and education missions. -
Hatice Altug: Diagnosing Disease - IEEE - the Institute
Hatice Altug: Diagnosing Disease - IEEE - The Institute Home (/) / People (/people) / Profiles (/people/profiles) Hatice Altug: Diagnosing Disease Portable biosensor detects viruses By AMANDA DAVIS 5 March 2012 When it comes to fighting off disease, early detection is key. But the technology for diagnosing some diseases can be expensive and unwieldy, and the process can be time-consuming. That’s where IEEE Member Hatice Altug and her research team at Boston University come in. They are working to develop a portable biosensor that eventually will help diagnose common human ailments such as food poisoning or swine flu faster and more easily. An assistant professor of electrical and computer engineering at the school, Altug was recently recognized by Photo: Boston University U.S. president Barack Obama for her work on the sensor. In 2011, she was one of the recipients of the Presidential Early Career Award for Science and Engineers, an honor bestowed by the federal government on science and engineering professionals in the initial stages of their careers. She was cited for “advancing the frontiers of proteomics [the study of proteins] to enable the discovery of protein biomarkers for detection of disease, drugs, and environmental monitoring, and for innovative educational and outreach activities that have helped students at all levels.” The 33-year-old Altug received her Ph.D. in applied sciences from Stanford University in 2006, after getting her bachelor’s degree in physics in 2000 from Bilkent University, in Ankara, Turkey. IN THE LIGHT To diagnose a patient’s illness, doctors often take a sample of bodily fluid, send it to a laboratory, and wait for a technician’s analysis.