2. Theoretical Foundation 19 2.1 Modeling Knowledge Organization Systems
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Firefly Genomes Illuminate Parallel Origins of Bioluminescence in Beetles
Firefly genomes illuminate parallel origins of bioluminescence in beetles The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Fallon, Timothy R. et al. "Firefly genomes illuminate parallel origins of bioluminescence in beetles." eLife 7 (2018): e36495 © 2019 The Author(s) As Published 10.7554/elife.36495 Publisher eLife Sciences Publications, Ltd Version Final published version Citable link https://hdl.handle.net/1721.1/124645 Terms of Use Creative Commons Attribution 4.0 International license Detailed Terms https://creativecommons.org/licenses/by/4.0/ RESEARCH ARTICLE Firefly genomes illuminate parallel origins of bioluminescence in beetles Timothy R Fallon1,2†, Sarah E Lower3,4†, Ching-Ho Chang5, Manabu Bessho-Uehara6,7,8, Gavin J Martin9, Adam J Bewick10, Megan Behringer11, Humberto J Debat12, Isaac Wong5, John C Day13, Anton Suvorov9, Christian J Silva5,14, Kathrin F Stanger-Hall15, David W Hall10, Robert J Schmitz10, David R Nelson16, Sara M Lewis17, Shuji Shigenobu18, Seth M Bybee9, Amanda M Larracuente5, Yuichi Oba6, Jing-Ke Weng1,2* 1Whitehead Institute for Biomedical Research, Cambridge, United States; 2Department of Biology, Massachusetts Institute of Technology, Cambridge, United States; 3Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States; 4Department of Biology, Bucknell University, Lewisburg, United States; 5Department of Biology, University of Rochester, Rochester, United States; 6Department of Environmental Biology, -
Behavioral Ecology Symposium '97: Lloyd
Behavioral Ecology Symposium ’97: Lloyd 261 ON RESEARCH AND ENTOMOLOGICAL EDUCATION II: A CONDITIONAL MATING STRATEGY AND RESOURCE- SUSTAINED LEK(?) IN A CLASSROOM FIREFLY (COLEOPTERA: LAMPYRIDAE; PHOTINUS) JAMES E. LLOYD Department of Entomology and Nematology, University of Florida, Gainesville 32611 ABSTRACT The Jamaican firefly Photinus pallens (Fabricius) offers many opportunities and advantages for students to study insect biology in the field, and do research in taxon- omy and behavioral ecology; it is one of my four top choices for teaching. The binomen may hide a complex of closely related species and an interesting taxonomic problem. The P. pallens population I observed gathers in sedentary, flower-associated swarms which apparently are sustained by the flowers. Males and females remained together on the flowers for several hours before overt sexual activity began, and then pairs cou- pled quickly and without combat or display. Males occasionally joined and left the swarm, some flying and flashing over an adjacent field in a manner typical of North American Photinus species. Key Words: Lampyridae, Photinus, mating behavior, ecology RESUMEN La luciérnaga jamaiquina Photinus pallens (Fabricius) brinda muchas oportunida- des y ventajas a estudiantes para el estudio de la biología de los insectos en el campo y para la investigación sobre taxonomía y también sobre ecología del comportamiento; es una de las cuatro opciones principales elegidas para mi enseñanza. Este nombre bi- nomial puede que incluya un complejo de especies cercanamente relacionadas, que es un problema taxonómico interesante. La población de P. pallens que observé se reune en grupos sedentarios asociados con flores los cuales son aparentemente mantenidos por dichas flores. -
4. Elateroidea
4. Elateroidea Introduction, Phylogeny labrum in the larva, and Brachypsectridae were considered to be even more diffi cult to separate on adult features. The superfamily Cantharoidea was John F. Lawrence, Ladislav Bocak, Milada Bocakova, considered to be the most likely group to be merged Rolf G. Beutel and Jyrki Muona with Elateroidea. Lawrence & Newton (1982) followed Crowson The constitution of Elateriformia has varied over in considering Artematopodidae, Brachypsec- time, as discussed in detail by Beutel & Leschen tridae, Elateroidea and Cantharoidea to form a (2005) (see 1–14). The series was fi rst proposed by monophylum, and Lawrence (1988) formally rec- Crowson (1960) for his Dascilliformia (Crowson ognized an expanded Elateroidea to include all of 1955) minus the family Dascillidae (which was these groups. The position of Rhinorhipus Lawrence combined with Scarabaeoidea to form the series at the base of the elateroid clade was considered to Scarabaeiformia) and the families Eucinetidae, be tentative because of lack of information on the Clambidae and Scirtidae, which were placed in a larva, combined with the fact that there are six free superfamily Eucinetoidea. This classifi cation was Malpighian tubules (instead of four as in all other also used in Crowson (1981) except that a series Euci- members of the group). Furthermore, in clado- netiformia was recognized and Rhipiceridae was grams produced by Lawrence et al. (1995), Rhinor- added to Scarabaeiformia-Dascilloidea, based on hipus usually formed a clade with Dascillus Latreille Crowson (1971). In all of Crowson’s classifi cations, (Dascillidae), Sandalus Knoch (Rhipiceridae) and the superfamily Elateroidea included Perothopidae, Dystaxia LeConte (Buprestidae or Schizopodidae) Eucnemidae, Throscidae, Cebrionidae, Elateridae, and was never placed within the elateroid-cantha- and Cerophytidae, although the last was omitted in roid group. -
I Museu De Zoologia Da Universidade De São Paulo Felipe Francisco Barbosa Revisão Taxonômica E Filogenia Do Gênero Balgus Fl
Museu de Zoologia da Universidade de São Paulo Felipe Francisco Barbosa Revisão taxonômica e filogenia do gênero Balgus Fleutiaux, 1920 (Coleoptera, Elateridae, Thylacosterninae) São Paulo 2015 i Felipe Francisco Barbosa Revisão taxonômica e filogenia do gênero Balgus Fleutiaux, 1920 (Coleoptera, Elateridae, Thylacosterninae) Dissertação apresentada ao Museu de Zoologia da Universidade de São Paulo, para a obtenção do título de Mestre no Programa de Pós-Graduação em Sistemática, Taxonomia Animal e Biodiversidade Orientadora: Prof. Dra. Cleide Costa São Paulo 2015 ii Autorizo a reprodução e divulgação total ou parcial deste trabalho, por qualquer meio convencional ou eletrônico, para fins de estudo e pesquisa, desde que citada a fonte. Exceto quando informado, todas as figuras do presente trabalho pertencem ao autor da presente dissertação. I authorize the reproduction and dissemination of this work in part or entirely, by any means, conventional or electronic, for study and research, provided the source is cited. Except as noted, all figures in this work belong to the author of this dissertation. iii FICHA CATALOGRÁFICA Barbosa, Felipe Francisco Revisão taxonômica e filogenia do gênero Balgus Fleutiaux, 1920 (Coleoptera, Elateridae, Thylacosterninae) / Felipe Francisco Barbosa; orientadora Cleide Costa. – São Paulo, SP: 2015. xviii + 124 p. Dissertação (Mestrado) – Programa de Pós-graduação em Sistemática, Taxonomia Animal e Biodiversidade, Museu de Zoologia, Universidade de São Paulo, 2015. 1. Balgus - Revisão taxonômica. 2. Thylacosterninae -
Gene35923.Pdf
This article was published in an Elsevier journal. The attached copy is furnished to the author for non-commercial research and education use, including for instruction at the author’s institution, sharing with colleagues and providing to institution administration. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Gene 400 (2007) 104–113 www.elsevier.com/locate/gene The evolutionary process of bioluminescence and aposematism in cantharoid beetles (Coleoptera: Elateroidea) inferred by the analysis of 18S ribosomal DNA ⁎ Reiko Sagegami-Oba a, Naoki Takahashi b,1, Yuichi Oba a, a Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan b Institute of Biological Control, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan Received 26 March 2007; received in revised form 27 May 2007; accepted 1 June 2007 Available online 13 June 2007 Received by T. Gojobori Abstract Cantharoid beetles are distinctive for their leathery soft elytra and conspicuous color or bioluminescence, and many of the members are equipped with chemical defenses. Thus, the vivid coloration of Cantharidae and Lycidae and the bioluminescence in Lampyridae and Phengodidae appear to be aposematic signals. However, the evolutionary aspect of their aposematism is not well understood, because the classification of the families remains controversial. -
Firefly Genomes Illuminate the Origin and Evolution of Bioluminescence
bioRxiv preprint doi: https://doi.org/10.1101/237586; this version posted December 21, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Title: Firefly genomes illuminate the origin and evolution of bioluminescence Authors: Timothy R. Fallon1,2*, Sarah E. Lower3*, Ching-Ho Chang4, Manabu Bessho-Uehara5,6, Gavin J. Martin7, Adam J. Bewick8, Megan Behringer9, Humberto J. Debat10, Isaac Wong4, John C. Day11, Anton Suvorov7, Christian J. Silva4,12, David W. Hall8, Robert J. Schmitz8, David R. Nelson13, Sara Lewis14, Shuji Shigenobu15, Seth M. Bybee7, Amanda M. Larracuente4, Yuichi Oba5 & Jing-Ke Weng1,2 1Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA. 2Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA. 3Department of Molecular Biology & Genetics, Cornell University, Ithaca, New York 14850, USA. 4Department of Biology, University of Rochester, Rochester, New York 14627, USA. 5Department of Environmental Biology, Chubu University, Kasugai, Aichi 487-8501, Japan. 6Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464- 8601, Japan. 7Department of Biology, Brigham Young University, Provo, Utah 84602, USA. 8Department of Genetics, University of Georgia, Athens, Georgia 30602, USA. 9Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, Arizona 85287, USA. 10Center of Agronomic Research National Institute of Agricultural Technology, Córdoba, Argentina. 11Centre for Ecology and Hydrology (CEH) Wallingford, Wallingford, Oxfordshire, UK. 12Department of Plant Sciences, University of California Davis, Davis, California, USA. 13Department of Microbiology Immunology and Biochemistry, University of Tennessee HSC, Memphis 38163, USA. 14Department of Biology, Tufts University, Medford, Massachusetts 02155, USA. -
Firefly Genomes Illuminate Parallel Origins of Bioluminescence
RESEARCH ARTICLE Firefly genomes illuminate parallel origins of bioluminescence in beetles Timothy R Fallon1,2†, Sarah E Lower3,4†, Ching-Ho Chang5, Manabu Bessho-Uehara6,7,8, Gavin J Martin9, Adam J Bewick10, Megan Behringer11, Humberto J Debat12, Isaac Wong5, John C Day13, Anton Suvorov9, Christian J Silva5,14, Kathrin F Stanger-Hall15, David W Hall10, Robert J Schmitz10, David R Nelson16, Sara M Lewis17, Shuji Shigenobu18, Seth M Bybee9, Amanda M Larracuente5, Yuichi Oba6, Jing-Ke Weng1,2* 1Whitehead Institute for Biomedical Research, Cambridge, United States; 2Department of Biology, Massachusetts Institute of Technology, Cambridge, United States; 3Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States; 4Department of Biology, Bucknell University, Lewisburg, United States; 5Department of Biology, University of Rochester, Rochester, United States; 6Department of Environmental Biology, Chubu University, Kasugai, Japan; 7Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan; 8Monterey Bay Aquarium Research Institute, Moss Landing, United States; 9Department of Biology, Brigham Young University, Provo, United States; 10Department of Genetics, University of Georgia, Athens, United States; 11Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, United States; 12Center of Agronomic Research, National Institute of Agricultural Technology, Co´rdoba, Argentina; 13Centre for Ecology and Hydrology (CEH), Wallingford, United Kingdom; 14Department of Plant Sciences, -
Information to Users
INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. University Microfilms International A Bell & Howell Information Company 300 North Zeeb Road. Ann Arbor. Ml 48106-1346 USA 313/761-4700 800/521-0600 Order Number 9130523 A revision of the Leptolycini (Coleoptera:Lycidae) with a discussion of paedomorphosis Miller, Richard Stuart, Ph.D. The Ohio State University, 1991 Copyright ©1991 by Miller, Richard Stuart. -
Firefly Genomes Illuminate Parallel Origins of Bioluminescence in Beetles
1 Firefly genomes illuminate parallel origins of bioluminescence in beetles 2 Authors: 3 Timothy R. Fallon1,2,*, Sarah E. Lower3,*, Ching- Ho Chang4, Manabu Bessho-Uehara5,6, 4 Gavin J. Martin7, Adam J. Bewick8, Megan Behringer9, Humberto J. Debat10, Isaac 5 Wong4, John C. Day11, Anton Suvorov7, Christian J. Silva4,12, Kathrin F. Stanger-Hall13, 6 David W. Hall8, Robert J. Schmitz8, David R. Nelson14, Sara M. Lewis15, Shuji 7 Shigenobu16, Seth M. Bybee7, Amanda M. Larracuente4, Yuichi Oba5, Jing -Ke Weng1,2,† 8 Affiliations: 9 1Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA. 10 2Department of Biology, Massachusetts Institute of Technology, Cambridge, 11 Massachusetts 02139, USA. 12 3Department of Molecular Biology & Genetics, Cornell University, Ithaca, New York 13 14850, USA. 14 4Department of Biology, University of Rochester, Rochester, New York 14627, USA. 15 5Department of Environmental Biology, Chubu University, Kasugai, Aichi 487-8501, 16 Japan. 17 6Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464- 18 8601, Japan. 19 7Department of Biology, Brigham Young University, Provo, Utah 84602, USA. 20 8Department of Genetics, University of Georgia, Athens, Georgia 30602, USA. 21 9Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, 22 Arizona 85287, USA. 23 10Center of Agronomic Research National Institute of Agricultural Technology, Córdoba, 24 Argentina. 25 11Centre for Ecology and Hydrology (CEH) Wallingford, Wallingford, Oxfordshire, UK. 26 12Department of Plant Sciences, University of California Davis, Davis, California, USA. 27 13Department of Plant Biology, University of Georgia, Athens, Georgia 30602, USA. 28 14Department of Microbiology Immunology and Biochemistry, University of Tennessee 29 HSC, Memphis 38163, USA. -
Biological Names and Taxonomies on the Semantic Web - Managing the Change in Scientific Conception
This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail. Author(s): Jouni Tuominen, Nina Laurenne, and Eero Hyvonen Title: Biological Names and Taxonomies on the Semantic Web - Managing the Change in Scientific Conception Year: 2011 Version: Post print Please cite the original version: Jouni Tuominen, Nina Laurenne, and Eero Hyvonen. Biological Names and Taxonomies on the Semantic Web - Managing the Change in Scientific Conception. In The Semantic Web: Research and Applications: 8th Extended Semantic Web Conference, ESWC 2011, Heraklion, Crete, Greece, May 29 - June 2, 2011, Proceedings, Part II, Grigoris Antoniou, Marko Grobelnik, Elena Simperl, Bijan Parsia, Dimitris Plexousakis, Pieter De Leenheer, and Jeff Pan (editors), Lecture Notes in Computer Science, volume 6644, pages 255-269, ISBN 978-3-642-21063-1, Springer-Verlag, June 2011. DOI: 10.1007/978-3-642-21064-8_18 Rights: © 2011 Springer-Verlag Berlin Heidelberg. Reprinted with permission. This is an Author Accepted / Post Print -version of the publication "Jouni Tuominen, Nina Laurenne, and Eero Hyvonen. Biological Names and Taxonomies on the Semantic Web - Managing the Change in Scientific Conception. In The Semantic Web: Research and Applications: 8th Extended Semantic Web Conference, ESWC 2011, Heraklion, Crete, Greece, May 29 - June 2, 2011, Proceedings, Part II, Grigoris Antoniou, Marko Grobelnik, Elena Simperl, Bijan Parsia, Dimitris Plexousakis, Pieter De Leenheer, and Jeff Pan (editors), Lecture Notes in Computer Science, volume 6644, pages 255-269, ISBN 978-3-642-21063-1, Springer-Verlag, June 2011. DOI: 10.1007/978-3-642-21064-8_18" This publication is included in the electronic version of the article dissertation: Tuominen, Jouni. -
Sinopyrophorinae, a New Subfamily of Elateridae (Coleoptera, Elateroidea)
A peer-reviewed open-access journal ZooKeysSinopyrophorinae, 864: 79–97 (2019) a new subfamily of Elateridae (Coleoptera, Elateroidea) with the first ... 79 doi: 10.3897/zookeys.864.26689 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Sinopyrophorinae, a new subfamily of Elateridae (Coleoptera, Elateroidea) with the first record of a luminous click beetle in Asia and evidence for multiple origins of bioluminescence in Elateridae Wen-Xuan Bi1,2*, Jin-Wu He1*, Chang-Chin Chen3, Robin Kundrata4, Xue-Yan Li1 1 State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China 2 Room 401, No. 2, Lane 155, Lianhua South Road, Shanghai, 201100, China 3 NPS office, Tianjin New Wei San Industrial Company, Ltd., Tianjing, China 4 Department of Zoology, Faculty of Science, Palacky University, 17. listopadu 50, 77146, Olomouc, Czech Republic Corresponding author: Xue-Yan Li ([email protected]), Wen-Xuan Bi ([email protected]) Academic editor: Hume Douglas | Received 15 May 2018 | Accepted 15 May 2019 | Published 17 July 2019 http://zoobank.org/AA8F1ECD-15EF-4EC7-9F32-6AA081370598 Citation: Bi W-X, He J-W, Chen C-C, Kundrata R, Li X-Y (2019) Sinopyrophorinae, a new subfamily of Elateridae (Coleoptera, Elateroidea) with the first record of a luminous click beetle in Asia and evidence for multiple origins of bioluminescence in Elateridae. ZooKeys 864: 79–97. https://doi.org/10.3897/zookeys.864.26689 Abstract The new subfamily Sinopyrophorinae within Elateridae is proposed to accommodate a bioluminescent species, Sinopyrophorus schimmeli Bi & Li, gen. et sp.