4. Elateroidea

Total Page:16

File Type:pdf, Size:1020Kb

4. Elateroidea 4. Elateroidea Introduction, Phylogeny labrum in the larva, and Brachypsectridae were considered to be even more diffi cult to separate on adult features. The superfamily Cantharoidea was John F. Lawrence, Ladislav Bocak, Milada Bocakova, considered to be the most likely group to be merged Rolf G. Beutel and Jyrki Muona with Elateroidea. Lawrence & Newton (1982) followed Crowson The constitution of Elateriformia has varied over in considering Artematopodidae, Brachypsec- time, as discussed in detail by Beutel & Leschen tridae, Elateroidea and Cantharoidea to form a (2005) (see 1–14). The series was fi rst proposed by monophylum, and Lawrence (1988) formally rec- Crowson (1960) for his Dascilliformia (Crowson ognized an expanded Elateroidea to include all of 1955) minus the family Dascillidae (which was these groups. The position of Rhinorhipus Lawrence combined with Scarabaeoidea to form the series at the base of the elateroid clade was considered to Scarabaeiformia) and the families Eucinetidae, be tentative because of lack of information on the Clambidae and Scirtidae, which were placed in a larva, combined with the fact that there are six free superfamily Eucinetoidea. This classifi cation was Malpighian tubules (instead of four as in all other also used in Crowson (1981) except that a series Euci- members of the group). Furthermore, in clado- netiformia was recognized and Rhipiceridae was grams produced by Lawrence et al. (1995), Rhinor- added to Scarabaeiformia-Dascilloidea, based on hipus usually formed a clade with Dascillus Latreille Crowson (1971). In all of Crowson’s classifi cations, (Dascillidae), Sandalus Knoch (Rhipiceridae) and the superfamily Elateroidea included Perothopidae, Dystaxia LeConte (Buprestidae or Schizopodidae) Eucnemidae, Throscidae, Cebrionidae, Elateridae, and was never placed within the elateroid-cantha- and Cerophytidae, although the last was omitted in roid group. error from the 1981 work. In cladograms produced by Beutel (1995) and Lawrence & Newton (1982) followed Crowson’s based on larval characters, Elateroidea (sensu lato) classifi cation in most respects. They did not defi ne was always monophyletic, but this was true of series as such, but considered all Eucinetiformia, neither Elateroidea (sensu stricto) nor Cantharoidea. Scarabaeiformia and Elateriformia as belonging to Most cantharoid families plus Brachypsec- an “Elateriform lineage”. Although Scarabaeoidea tridae formed a clade sister to Cerophytidae + was tentatively included in this “lineage”, some Throscidae + Eucnemidae, while Cantharidae doubt was expressed about the relationship formed a clade with Artematopodidae and Elat- of the group to Dascilloidea. The families nor- eridae. The non-monophyly of the Cantharoidea mally included in Elateroidea and Cantharoidea, was also supported by Bocakova et al. (2007) in plus the Artematopodidae and Brachypsectridae cladograms based on nuclear and mitochondrial were considered to form a monophyletic group. gene sequences. While Elateroidea (sensu lato) was In the fi rst cladistic analysis of Elateriformia, strongly supported in all cladograms, the soft-bod- Lawrence (1988) excluded Scarabaeoidea alto- ied groups usually placed in Cantharoidea never gether, while Eucinetoidea were included as an formed a monophyletic group. The major clusters outgroup in some analyses. The monophyly of were formed by 1) Lampyridae (including Ototreti- Elateroidea + Cantharoidea + Artematopodidae + nae) + Cantharidae, 2) Elateridae (including Drilidae Brachypsectridae was confi rmed in analyses based and usually Omalisidae) + Phengodidae (including on both adult and larval characters, with the family Rhagophthalmidae), 3) Lycidae and 4) Eucnemi- Rhinorhipidae (known from adult characters only) dae. The positions of the genera Drilonius, Telegeusis, at the base of this clade. Trixagus and sometimes Omalisus varied with type Elateroidea was restricted by Crowson (1955) of alignment and analysis: 1) Drilonius, Telegeusis to those taxa the adults of which have more or less and Trixagus formed a clade with Chelonariidae rounded procoxae with concealed trochantins, no and outside Elateroidea; 2) Drilonius and Telegeusis transverse metakatepisternal suture, contiguous formed a clade sister to Elateroidea and Trixagus was metacoxae, hind wing with an apically truncate sister to Elateroidea minus Drilonius and Telegeusis; wedge cell, acutely projecting hind pronotal 3) Drilonius was in Eucnemidae, Telegeusis sister to angles, head without a distinct frontoclypeal Elateroidea minus Eucnemidae, and Trixagus sister suture, trilobate aedeagus with freely articulated to Lycidae; or 4) Drilonius and Telegeusis formed a parameres, and 4 free Malpighian tubules, while clade sister to remaining elateroids, and Trixagus larvae lack a free labrum or epicranial stem and and Omalisus formed a clade within Eucnemidae. have simple, non-channeled mandibles. Artema- Similar results were published by Sagegami-Oba topodidae (then in Dryopoidea) were considered et al. (2007) and Bocak et al. (2008). to be separable from elateroids on little more The Elateroidea, as here delimited, exhibit than exposed trochantins in the adult and a free several major evolutionary trends which deserve 36 John F. Lawrence, Ladislav Bocak, Milada Bocakova, Rolf G. Beutel and Jyrki Muona further mention: 1) development of a type of defen- Leptolycinae (Lycidae) is not a result of the long evo- sive behavior known as “clicking” in adults of the lutionary history, but a consequence of relatively families Cerophytidae, Eucnemidae, Throscidae recent modifi ed function of the endocrine system. and Elateridae, 2) reduction in sclerotization These events potentially led to homoplasious mod- of the cuticle, often accompanied by chemical ifi cations of morphology. The resulting similarity defense mechanisms and aposematic color patterns of soft-bodied or neotenic lineages is therefore dif- in adults of various families formerly included in fi cult to interpret in morphology based analyses. Cantharoidea, and 3) retention of larval features Crowson (1972) postulated that some neoten- (neoteny) in adults of at least some of these families; ous groups, specifi cally the Southeast Asian lycid 4) the evolution of bioluminescence in both adults genera Duliticola and Lyropaeus, are members of and larvae; 5) the occurrence of an elateroid type of primitively neotenous lineages and that fully meta- ecdysis associated with biforous spiracles and the morphosed winged forms re-developed from neo- loss of the spiracular closing apparatus in larvae; tenic ancestors. Similar scenarios of evolutionary and 6) consolidation of the larval maxillae and ‘re-imaginalisation’ were proposed for Lycidae by labium to form a maxillolabial complex. Kazantsev (2005), and equally for the closely related The cuticular and muscular modifi cations which Lampyridae by Cicero (1988). Bocak et al. (2008) make the clicking maneuver possible have been hypothesized that soft-bodiedness represents a discussed by Evans (1972, 1973) for Elateridae, fi rst level of incomplete metamorphosis. Soft-bod- but precursors of these conditions are exhibited ied adults of both sexes are known in Telegeusidae, by members of various families of Dascilloidea, Omethidae, Cantharidae, Lycidae, Lampyridae, Buprestoidea and Byrrhoidea. The evolution of a Phengodidae, Rhagophthalmidae, Drilidae, and pro-mesothoracic interlocking device involving Omalisidae. Some adult females within these projections and concavities or crenulate edges at families are neotenic, i. e., they maintain appar- the posterior end of the prothorax, anterior ends of ently juvenile features resulting in incomplete the elytra, scutellum and/or mesanepisterna, com- metamorphosis and, in extreme cases, the lack of bined with a mesoventral cavity for reception of the adult stages. The neotenic development of females prosternal process, allow these beetles to combine is obligatory in all Omalisidae, Drilidae, Phengodi- mobility with structural integrity, by the unlock- dae and Rhagophthalmidae, and in many lineages ing or locking of this device. The transformation of Lampyridae and Lycidae. The modifi cations of this condition to form the clicking mechanism include females with vestigial wings, but adult- involves the enlargement of the prothorax, increase like thorax (Omalisidae, Lampyridae part), wing- in the mass of the M4 muscle (Larsén 1966), reduc- less females (Lampyridae part) or females with only tion of the size of the exposed portion of the pro- mouthparts and head adult-like (Drilidae, Lampy- coxa, enclosure of the trochantin and (except in ridae part). Lineages affected by neoteny to the Cerophytidae) its fusion to the notum, enlarge- highest degree are found in Lycidae where females ment and deepening of the mesoventral cavity lack both pupal and adult stages and retain a larvae- combined with the formation of a prosternal rest like morphology after the last ecdysis (Wong 1996). and an oblique slide at the anterior end of the cav- Some neotenic lycids reach body sizes of fi ve centi- ity. Based on the topology given by Bocakova et al. meters and more and are frequently referred to as (2007), this condition could have arisen indepen- ‘trilobite larvae’ due to their appearance (Gravely dently from three to fi ve times in the Elateroidea. 1915; Mjöberg 1925). The corresponding males are Vahtera et al. (2009), however, suggested that, given regularly fully metamorphosed and only seldom the complexity of the clicking mechanism, it could brachelytrous (Alyculus
Recommended publications
  • John C. Abbott Section of Integrative Biology 1
    John C. Abbott Section of Integrative Biology (512) 232-5833, office 1 University Station #L7000 (512) 232-1896, lab The University of Texas at Austin (512) 475-6286, fax Austin, Texas 78712 USA [email protected] http://www.sbs.utexas.edu/jcabbott http://www.odonatacentral.org PROFESSIONAL PREPARATION Stroud Water Research Center, Philadelphia Academy of Sciences Postdoc, 1999 University of North Texas Biology/Ecology Ph.D., 1999 University of North Texas Biology/Ecology M.S., 1998 Texas A&M University Zoology/Entomology B.S., 1993 Texas Academy of Mathematics and Science, University of North Texas 1991 APPOINTMENTS 2006-present Curator of Entomology, Texas Natural Science Center 2005-present Senior Lecturer, School of Biological Sciences, UT Austin 1999-2005 Lecturer, School of Biological Sciences, University of Texas at Austin 2004-present Environmental Science Institute, University of Texas 2000-present Research Associate, Texas Memorial Museum, Texas Natural History Collections 1999 Research Scientist, Stroud Water Research Center, Philadelphia Academy of Natural Sciences 1997-1998 Associate Faculty, Collin County Community College (Plano, Texas) 1997-1998 Teaching Fellow, University of North Texas PUBLICATIONS Fleenor, S.B., J.C. Abbott, E. Wang. 2011. Seasonal appearance, diel flight activity, and geographic distribution of male Telegeusis texensis Fleenor and Taber (Coleoptera: Telegeusidae). The Coleopterists Bulletin. 65: 345-349. Abbott, J.C. 2011. The female of Leptobasis melinogaster González-Soriano (Odonata: Coenagrionidae). International Journal of Odonatology. 14: 171-174. Abbott, J.C. and T.D. Hibbitts. 2011. Cordulegaster sarracenia n. sp. (Odonata: Cordulegastridae) from east Texas and western Louisiana, with a key to adult Cordulegastridae of the New World.
    [Show full text]
  • Water Beetles
    Ireland Red List No. 1 Water beetles Ireland Red List No. 1: Water beetles G.N. Foster1, B.H. Nelson2 & Á. O Connor3 1 3 Eglinton Terrace, Ayr KA7 1JJ 2 Department of Natural Sciences, National Museums Northern Ireland 3 National Parks & Wildlife Service, Department of Environment, Heritage & Local Government Citation: Foster, G. N., Nelson, B. H. & O Connor, Á. (2009) Ireland Red List No. 1 – Water beetles. National Parks and Wildlife Service, Department of Environment, Heritage and Local Government, Dublin, Ireland. Cover images from top: Dryops similaris (© Roy Anderson); Gyrinus urinator, Hygrotus decoratus, Berosus signaticollis & Platambus maculatus (all © Jonty Denton) Ireland Red List Series Editors: N. Kingston & F. Marnell © National Parks and Wildlife Service 2009 ISSN 2009‐2016 Red list of Irish Water beetles 2009 ____________________________ CONTENTS ACKNOWLEDGEMENTS .................................................................................................................................... 1 EXECUTIVE SUMMARY...................................................................................................................................... 2 INTRODUCTION................................................................................................................................................ 3 NOMENCLATURE AND THE IRISH CHECKLIST................................................................................................ 3 COVERAGE .......................................................................................................................................................
    [Show full text]
  • Methodologies for Monitoring Fireflies in Hong Kong
    40 Methodologies for monitoring fireflies Methodologies for monitoring fireflies in Hong Kong Yiu Vor 31E, Tin Sam Tsuen, Kam Sheung Road, Yuen Long, N.T., Hong Kong. Email: [email protected] ABSTRACT record fireflies qualitatively and quantitatively, including: In total 241 field visits to 47 different sites in Hong Kong a. Malaise traps. Ten traps were set for a general were conducted specifically for firefly survey, from 2009 insects study in 2014 and small quantity of fireflies to 2020. Various methods were used to record fireflies were collected; qualitatively and quantitatively. Local restrictedness of 29 species of Hong Kong fireflies are listed. Methods b. Quadrat count and point count. Used in high for accessing the population of different firefly species visibility areas with concentration of flying fireflies are discussed and recommended according to their displaying light at night. Area of the quadrats was distribution characteristic, flash and flight, and habitat. measured by visual estimation, measuring tape Using photography and videography to assist counting or a Leica DISTO DXT Laser Distance meter. The fireflies is introduced. Current limitations and further observer stand along the margins of the quadrat actions are proposed. to counts the number of fireflies displaying light ; or stand at the centre of the quadrat and count the Key words: Fireflies, Lampyridae, Rhagophthalmidae, number of fireflies displaying light in a 360 degree Hong Kong, local restrictedness, accessing population perspective – point count. c. Transect count. This was usually done by walking INTRODUCTION slowly along a road, a trail or a path; fireflies occurring on both sides of the path were counted.
    [Show full text]
  • Four New Records to the Rove-Beetle Fauna of Portugal (Coleoptera, Staphylinidae)
    Boletín Sociedad Entomológica Aragonesa, n1 39 (2006) : 397−399. FOUR NEW RECORDS TO THE ROVE-BEETLE FAUNA OF PORTUGAL (COLEOPTERA, STAPHYLINIDAE) Pedro Martins da Silva1*, Israel de Faria e Silva1, Mário Boieiro1, Carlos A. S. Aguiar1 & Artur R. M. Serrano1,2 1 Centro de Biologia Ambiental, Faculdade de Ciências da Universidade de Lisboa, R. Ernesto de Vasconcelos, Ed. C2-2ºPiso, Campo Grande, 1749-016 Lisboa. 2 Departamento de Biologia Animal da Faculdade de Ciências da Universidade de Lisboa, R. Ernesto de Vasconcelos, Ed. C2- 2ºPiso, Campo Grande, 1749-016 Lisboa. * Corresponding author: [email protected] Abstract: In the present work, four rove beetle records - Ischnosoma longicorne (Mäklin, 1847), Thinobius (Thinobius) sp., Hesperus rufipennis (Gravenhorst, 1802) and Quedius cobosi Coiffait, 1964 - are reported for the first time to Portugal. The ge- nus Thinobius Kiesenwetter is new for Portugal and Hesperus Fauvel is recorded for the first time from the Iberian Peninsula. The distribution of Quedius cobosi Coiffait, an Iberian endemic, is now extended to Western Portugal. All specimens were sam- pled in cork oak woodlands, in two different localities – Alcochete and Grândola - using two distinct sampling techniques. Key word: Coleoptera, Staphylinidae, New records, Iberian Peninsula, Portugal. Resumo: No presente trabalho são apresentados quatro registos novos de coleópteros estafilinídeos para Portugal - Ischno- soma longicorne (Mäklin, 1847), Thinobius (Thinobius) sp., Hesperus rufipennis (Gravenhorst, 1802) e Quedius cobosi Coiffait, 1964. O género Hesperus Fauvel é registado pela primeira vez para a Península Ibérica e o género Thinobius Kiesenwetter é novidade para Portugal. A distribuição conhecida de Quedius cobosi Coiffait, um endemismo ibérico, é também ampliada para o oeste de Portugal.
    [Show full text]
  • Nansei Islands Biological Diversity Evaluation Project Report 1 Chapter 1
    Introduction WWF Japan’s involvement with the Nansei Islands can be traced back to a request in 1982 by Prince Phillip, Duke of Edinburgh. The “World Conservation Strategy”, which was drafted at the time through a collaborative effort by the WWF’s network, the International Union for Conservation of Nature (IUCN), and the United Nations Environment Programme (UNEP), posed the notion that the problems affecting environments were problems that had global implications. Furthermore, the findings presented offered information on precious environments extant throughout the globe and where they were distributed, thereby providing an impetus for people to think about issues relevant to humankind’s harmonious existence with the rest of nature. One of the precious natural environments for Japan given in the “World Conservation Strategy” was the Nansei Islands. The Duke of Edinburgh, who was the President of the WWF at the time (now President Emeritus), naturally sought to promote acts of conservation by those who could see them through most effectively, i.e. pertinent conservation parties in the area, a mandate which naturally fell on the shoulders of WWF Japan with regard to nature conservation activities concerning the Nansei Islands. This marked the beginning of the Nansei Islands initiative of WWF Japan, and ever since, WWF Japan has not only consistently performed globally-relevant environmental studies of particular areas within the Nansei Islands during the 1980’s and 1990’s, but has put pressure on the national and local governments to use the findings of those studies in public policy. Unfortunately, like many other places throughout the world, the deterioration of the natural environments in the Nansei Islands has yet to stop.
    [Show full text]
  • The Evolution and Genomic Basis of Beetle Diversity
    The evolution and genomic basis of beetle diversity Duane D. McKennaa,b,1,2, Seunggwan Shina,b,2, Dirk Ahrensc, Michael Balked, Cristian Beza-Bezaa,b, Dave J. Clarkea,b, Alexander Donathe, Hermes E. Escalonae,f,g, Frank Friedrichh, Harald Letschi, Shanlin Liuj, David Maddisonk, Christoph Mayere, Bernhard Misofe, Peyton J. Murina, Oliver Niehuisg, Ralph S. Petersc, Lars Podsiadlowskie, l m l,n o f l Hans Pohl , Erin D. Scully , Evgeny V. Yan , Xin Zhou , Adam Slipinski , and Rolf G. Beutel aDepartment of Biological Sciences, University of Memphis, Memphis, TN 38152; bCenter for Biodiversity Research, University of Memphis, Memphis, TN 38152; cCenter for Taxonomy and Evolutionary Research, Arthropoda Department, Zoologisches Forschungsmuseum Alexander Koenig, 53113 Bonn, Germany; dBavarian State Collection of Zoology, Bavarian Natural History Collections, 81247 Munich, Germany; eCenter for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, 53113 Bonn, Germany; fAustralian National Insect Collection, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT 2601, Australia; gDepartment of Evolutionary Biology and Ecology, Institute for Biology I (Zoology), University of Freiburg, 79104 Freiburg, Germany; hInstitute of Zoology, University of Hamburg, D-20146 Hamburg, Germany; iDepartment of Botany and Biodiversity Research, University of Wien, Wien 1030, Austria; jChina National GeneBank, BGI-Shenzhen, 518083 Guangdong, People’s Republic of China; kDepartment of Integrative Biology, Oregon State
    [Show full text]
  • A Faunal Survey of the Elateroidea of Montana by Catherine Elaine
    A faunal survey of the elateroidea of Montana by Catherine Elaine Seibert A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Entomology Montana State University © Copyright by Catherine Elaine Seibert (1993) Abstract: The beetle family Elateridae is a large and taxonomically difficult group of insects that includes many economically important species of cultivated crops. Elaterid larvae, or wireworms, have a history of damaging small grains in Montana. Although chemical seed treatments have controlled wireworm damage since the early 1950's, it is- highly probable that their availability will become limited, if not completely unavailable, in the near future. In that event, information about Montana's elaterid fauna, particularity which species are present and where, will be necessary for renewed research efforts directed at wireworm management. A faunal survey of the superfamily Elateroidea, including the Elateridae and three closely related families, was undertaken to determine the species composition and distribution in Montana. Because elateroid larvae are difficult to collect and identify, the survey concentrated exclusively on adult beetles. This effort involved both the collection of Montana elateroids from the field and extensive borrowing of the same from museum sources. Results from the survey identified one artematopid, 152 elaterid, six throscid, and seven eucnemid species from Montana. County distributions for each species were mapped. In addition, dichotomous keys, and taxonomic and biological information, were compiled for various taxa. Species of potential economic importance were also noted, along with their host plants. Although the knowledge of the superfamily' has been improved significantly, it is not complete.
    [Show full text]
  • Epuraeosoma, a New Genus of Histerinae and Phylogeny of the Family Histeridae (Coleoptera, Histeroidea)
    ANNALES ZOOLOGIO (Warszawa), 1999, 49(3): 209-230 EPURAEOSOMA, A NEW GENUS OF HISTERINAE AND PHYLOGENY OF THE FAMILY HISTERIDAE (COLEOPTERA, HISTEROIDEA) Stan isław A dam Śl ip iń s k i 1 a n d S ław om ir Ma zu r 2 1Muzeum i Instytut Zoologii PAN, ul. Wilcza 64, 00-679 Warszawa, Poland e-mail: [email protected] 2Katedra Ochrony Lasu i Ekologii, SGGW, ul. Rakowiecka 26/30, 02-528 Warszawa, Poland e-mail: [email protected] Abstract. — Epuraeosoma gen. nov. (type species: E. kapleri sp. nov.) from Malaysia, Sabah is described, and its taxonomic placement is discussed. The current concept of the phylogeny and classification of Histeridae is critically examined. Based on cladistic analysis of 50 taxa and 29 characters of adult Histeridae a new hypothesis of phylogeny of the family is presented. In the concordance with the proposed phylogeny, the family is divided into three groups: Niponiomorphae (incl. Niponiinae), Abraeomorphae and Histeromorphae. The Abraeomorphae includes: Abraeinae, Saprininae, Dendrophilinae and Trypanaeinae. The Histeromorphae is divided into 4 subfamilies: Histerinae, Onthophilinae, Chlamydopsinae and Hetaeriinae. Key words. — Coleoptera, Histeroidea, Histeridae, new genus, phylogeny, classification. Introduction subfamily level taxa. Óhara provided cladogram which in his opinion presented the most parsimonious solution to the Members of the family Histeridae are small or moderately given data set. large beetles which due to their rigid and compact body, 2 Biology and the immature stages of Histeridae are poorly abdominal tergites exposed and the geniculate, clubbed known. In the most recent treatment of immatures by antennae are generally well recognized by most of entomolo­ Newton (1991), there is a brief diagnosis and description of gists.
    [Show full text]
  • Wireworms' Management
    Insects 2013, 4, 117-152; doi:10.3390/insects4010117 OPEN ACCESS insects ISSN 2075-4450 www.mdpi.com/journal/insects Review :LUHZRUPV¶Management: An Overview of the Existing Methods, with Particular Regards to Agriotes spp. (Coleoptera: Elateridae) Fanny Barsics *, Eric Haubruge and François J. Verheggen Department of Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liege. 2, Passage des Déportés, 5030 Gembloux, Belgium; E-Mails: [email protected] (E.H.); [email protected] (F.J.V.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +3281-62-26-63; Fax: +3281-62-23-12. Received: 19 October 2012; in revised form: 13 December 2012 / Accepted: 26 December 2012 / Published: 25 January 2013 Abstract: Wireworms (Coleoptera: Elateridae) are important soil dwelling pests worldwide causing yield losses in many crops. The progressive restrictions in the matter of efficient synthetic chemicals for health and environmental care brought out the need for alternative management techniques. This paper summarizes the main potential tools that have been studied up to now and that could be applied together in integrated pest management systems and suggests guidelines for future research. Keywords: wireworms; click beetles; Agriotes; integrated pest management 1. Introduction Wireworms are the larvae of click beetles (Coleoptera: Elateridae). They consist of more than 9,000 species distributed worldwide, [1] and some are important pests of a wide variety of crops, such as potato, cereals, carrot, sugar beet, sugarcane and soft fruits (e.g., [2±6]). In Europe, damages due to wireworm infestation are mainly attributed to the genus Agriotes Eschscholtz, as witnessed by the numerous studies aiming at their management.
    [Show full text]
  • Insects of Larose Forest (Excluding Lepidoptera and Odonates)
    Insects of Larose Forest (Excluding Lepidoptera and Odonates) • Non-native species indicated by an asterisk* • Species in red are new for the region EPHEMEROPTERA Mayflies Baetidae Small Minnow Mayflies Baetidae sp. Small minnow mayfly Caenidae Small Squaregills Caenidae sp. Small squaregill Ephemerellidae Spiny Crawlers Ephemerellidae sp. Spiny crawler Heptageniiidae Flatheaded Mayflies Heptageniidae sp. Flatheaded mayfly Leptophlebiidae Pronggills Leptophlebiidae sp. Pronggill PLECOPTERA Stoneflies Perlodidae Perlodid Stoneflies Perlodid sp. Perlodid stonefly ORTHOPTERA Grasshoppers, Crickets and Katydids Gryllidae Crickets Gryllus pennsylvanicus Field cricket Oecanthus sp. Tree cricket Tettigoniidae Katydids Amblycorypha oblongifolia Angular-winged katydid Conocephalus nigropleurum Black-sided meadow katydid Microcentrum sp. Leaf katydid Scudderia sp. Bush katydid HEMIPTERA True Bugs Acanthosomatidae Parent Bugs Elasmostethus cruciatus Red-crossed stink bug Elasmucha lateralis Parent bug Alydidae Broad-headed Bugs Alydus sp. Broad-headed bug Protenor sp. Broad-headed bug Aphididae Aphids Aphis nerii Oleander aphid* Paraprociphilus tesselatus Woolly alder aphid Cicadidae Cicadas Tibicen sp. Cicada Cicadellidae Leafhoppers Cicadellidae sp. Leafhopper Coelidia olitoria Leafhopper Cuernia striata Leahopper Draeculacephala zeae Leafhopper Graphocephala coccinea Leafhopper Idiodonus kelmcottii Leafhopper Neokolla hieroglyphica Leafhopper 1 Penthimia americana Leafhopper Tylozygus bifidus Leafhopper Cercopidae Spittlebugs Aphrophora cribrata
    [Show full text]
  • Current Classification of the Families of Coleoptera
    The Great Lakes Entomologist Volume 8 Number 3 - Fall 1975 Number 3 - Fall 1975 Article 4 October 1975 Current Classification of the amiliesF of Coleoptera M G. de Viedma University of Madrid M L. Nelson Wayne State University Follow this and additional works at: https://scholar.valpo.edu/tgle Part of the Entomology Commons Recommended Citation de Viedma, M G. and Nelson, M L. 1975. "Current Classification of the amiliesF of Coleoptera," The Great Lakes Entomologist, vol 8 (3) Available at: https://scholar.valpo.edu/tgle/vol8/iss3/4 This Peer-Review Article is brought to you for free and open access by the Department of Biology at ValpoScholar. It has been accepted for inclusion in The Great Lakes Entomologist by an authorized administrator of ValpoScholar. For more information, please contact a ValpoScholar staff member at [email protected]. de Viedma and Nelson: Current Classification of the Families of Coleoptera THE GREAT LAKES ENTOMOLOGIST CURRENT CLASSIFICATION OF THE FAMILIES OF COLEOPTERA M. G. de viedmal and M. L. els son' Several works on the order Coleoptera have appeared in recent years, some of them creating new superfamilies, others modifying the constitution of these or creating new families, finally others are genera1 revisions of the order. The authors believe that the current classification of this order, incorporating these changes would prove useful. The following outline is based mainly on Crowson (1960, 1964, 1966, 1967, 1971, 1972, 1973) and Crowson and Viedma (1964). For characters used on classification see Viedma (1972) and for family synonyms Abdullah (1969). Major features of this conspectus are the rejection of the two sections of Adephaga (Geadephaga and Hydradephaga), based on Bell (1966) and the new sequence of Heteromera, based mainly on Crowson (1966), with adaptations.
    [Show full text]
  • Coleoptera, Elateroidea) from the Palaearctic Region
    Insect Systematics & Evolution (2016) DOI 10.1163/1876312X-47022140 brill.com/ise Asiopsectra gen. n., a second genus of the family Brachypsectridae (Coleoptera, Elateroidea) from the Palaearctic Region Alexey V. Kovaleva,b,* and Alexander G. Kirejtshukb,c aAll-Russian Institute of Plant Protection, Podbelsky Roadway 3, 196608 Saint Petersburg, Pushkin, Russia bZoological Institute of the Russian Academy of Sciences, Universitetskaya Emb. 1, 199034 Saint Petersburg, Russia cCNRS UMR 7205, Muséum National d'Histoire Naturelle, CP 50, Entomologie, 45, rue Buffon, F-75005 Paris, France *Corresponding author, e-mail: [email protected] Abstract A new genus of the family Brachypsectridae with two new species, Asiopsectra luculenta gen. et sp. n. (type species) from the Middle East (Iran) and A. mirifica sp. n. from Middle Asia (Tajikistan) are described. The genus Asiopsectra gen. n., in contrast to the genus Brachypsectra, is characterized by the 12-segmented bilamellate antennae, the very large and subcontiguous antennal fossae, the strongly raised supra-antennal keels, the very narrow mandibles, the presence of small “window” punctures on the elytra, the lack of keels along the posterior pronotal angles, and only a small patch of excretory hairs at the posterior edge of abdominal ventrite 5. A revised diagnosis for the family Brachypsectridae is given. Keywords Coleoptera; Elateroidea; Brachypsectridae; new taxa; Palaearctic Introduction The infraorder Elateriformia includes many families whose members manifest many similar trends of structural transformations making it difficult both to define family attribution of some groups, and to divide this enormous group into distinct subgroups with reasonable taxonomic significance of different ranks (Lawrence 1988; Lawrence et al.
    [Show full text]