Gns Science Catalogue of Publications 2016

Total Page:16

File Type:pdf, Size:1020Kb

Gns Science Catalogue of Publications 2016 GNS SCIENCE CATALOGUE OF PUBLICATIONS 2016 GNS SCIENCE Catalogue of publications October 2016 Section II and III (maps and publication post-1992) compiled by J Wright GNS Science Lower Hutt, New Zealand The Institute of Geological and Nuclear Sciences Limited, trading as GNS Science, is a Crown Research Institute, incorporated on 1 July 1992. It includes the former DSIR Geology and Geophysics (previously the New Zealand Geological Survey and the Geophysics Division, (DSIR) and the Institute of Nuclear Science. The Institute’s research focuses on geosciences in New Zealand, Antarctica and the Pacific. This catalogue lists publications available for sale from the Institute. To purchase maps and publications visit our website: www.gns.cri.nz Or contact Publications, GNS Science PO Box 30 368, Lower Hutt, New Zealand Telephone: +64 4 5704 866 Fax: +64 4 5704 679 Email: [email protected] Or Visit Dunedin: 764 Cumberland Street Telephone: +64 3 4774 050 Fax: +64 3 4775 232 Standing orders are available from Publication Sales, PO Box 30368, Lower Hutt 5040, New Zealand Payment All prices in NZ$. Postage and handling extra. Payment may be made by cash, cheque, Mastercard or Visa. Please note that prices may change without notice. The listed price is the recommended retail price. Discounts Bookseller, educational and multiple-order discount of 40% is available for most of the publications available. Please confirm with the Publications Officer. This edition was produced in October 2016 Contents Publications from the Institute of Geological and Nuclear Sciences Geological maps: Gm ......................................................................................................................................... I: 2 Geological maps: QMap .................................................................................................................................... I: 3 Interim Data Files for QMap: IDFQM ................................................................................................................ I: 3 Image Vector Data for QMaps: VDQM…………………………………………………………....................... I: 4 GNS Geological Maps: GNSGM………………………………………………………………………………. I: 4 Geophysical maps: Gpm............................................................................................................... ....................... I: 5 Monographs: Mon .............................................................................................................................................. I: 5 Coastal geophysics maps: Cgm .......................................................................................................................... I: 7 Seismic maps: Km .............................................................................................................................................. I: 7 Folios: F ............................................................................................................................................................... I: 7 Science reports: Sr .............................................................................................................................................. I: 7 Information series: Is ......................................................................................................................................... I: 35 Popular publications: Bk,GB ............................................................................................................................. I: 36 Miscellaneous Series: Ms, ................................................................................................................................ I: 37 GNS Science Data Series: ............................................................................................................................... I: 40 Popular publications: Br, GBr,Ps, GPS ............................................................................................................. I: 42 Other geological publications for sale Maps Geological maps of New Zealand 1:250 000: M250 ................................................................................ II: 1 Maps of the Antarctic region ...................................................................................................................... II: 1 Miscellaneous geological maps: Mms ...................................................................................................... II: 2 Geological maps of New Zealand 1:50 000, 1:63 360: M50, M63 .......................................................... II: 4 Late Quaternary tectonic maps: Ml ........................................................................................................... II: 6 Maps of rock types 1:100 000: Mrt ......................................................................................................... II: 6 Geological resource maps 1:250 000: Rm ................................................................................................ II: 7 Gravity maps 1:250 000: Gv .................................................................................................................... II: 8 Industrial geological maps 1:25 000: Min .................................................................................................. II: 9 Magnetic maps 1:250 000: Mg ................................................................................................................ II:10 Geological bulletins: B .................................................................................................................................... III: 1 Sedimentary basin research: Bas ..................................................................................................................... III: 2 Popular publications Books, posters: Bk, Ps .............................................................................................................................. III: 2 Brochures, guidebooks, videos: Br, Gb, V ............................................................................................... III: 2 Alpha leaflets: Al ..................................................................................................................................... III: 2 Paleontological bulletins: Pb ........................................................................................................................... III: 3 DSIR bulletins: Db .......................................................................................................................................... III: 3 New Zealand Geological Survey Records: Rec ............................................................................................................................................ III: 4 Volcanological records: Vr ...................................................................................................................... III: 4 Reports: R ................................................................................................................................................ III: 4 Mineral reports: Rm ................................................................................................................................. III: 6 Paleontology reports: Rp .......................................................................................................................... III: 8 Sedimentary reports: Rs ......................................................................................................................... III: 10 Engineering reports: Reg ........................................................................................................................ III: 10 Earth deformation reports: Red .............................................................................................................. III: 13 General reports: Rg ................................................................................................................................ III: 15 Geological memoirs: Mem ..................................................................................................................... III: 17 DSIR Geophysics Division Reports: Gr ............................................................................................................................................. III: 17 Research reports: Grr ............................................................................................................................. III: 19 Notes: Gtn .............................................................................................................................................. III: 20 Technical reports: Gtr............................................................................................................................. III: 21 New Zealand seismological reports: Gsr ....................................................................................................... III: 21 Computer analyses of New Zealand earthquake accelerograms: Es ............................................................... III: 21 DSIR Institute of Nuclear Sciences publications: Nc .................................................................................... III: 21 Institute of Geological & Nuclear Sciences geological maps Scale 1:50 000, $50 or as stated. Order # Gm1 Geology of the Christchurch urban area 1:25 000. 104p. Brown, LJ, Weeber, JH, 1992. $40 OUT OF Gm15 Geology of the Forgotten River area. 28p. PRINT Bishop, DG, 1995. $50 Gm2 Geology of the Auckland urban area. 63p. Gm16
Recommended publications
  • Schedule D Part3
    Schedule D Table D.7: Native Fish Spawning Value in the Manawatu-Wanganui Region Management Sub-zone River/Stream Name Reference Zone From the river mouth to a point 100 metres upstream of Manawatu River the CMA boundary located at the seaward edge of Coastal Coastal Manawatu Foxton Loop at approx NZMS 260 S24:010-765 Manawatu From confluence with the Manawatu River from approx Whitebait Creek NZMS 260 S24:982-791 to Source From the river mouth to a point 100 metres upstream of Coastal the CMA boundary located at the seaward edge of the Tidal Rangitikei Rangitikei River Rangitikei boat ramp on the true left bank of the river located at approx NZMS 260 S24:009-000 From confluence with Whanganui River at approx Lower Whanganui Mateongaonga Stream NZMS 260 R22:873-434 to Kaimatira Road at approx R22:889-422 From the river mouth to a point approx 100 metres upstream of the CMA boundary located at the seaward Whanganui River edge of the Cobham Street Bridge at approx NZMS 260 R22:848-381 Lower Coastal Whanganui From confluence with Whanganui River at approx Whanganui Stream opposite Corliss NZMS 260 R22:836-374 to State Highway 3 at approx Island R22:862-370 From the stream mouth to a point 1km upstream at Omapu Stream approx NZMS 260 R22: 750-441 From confluence with Whanganui River at approx Matarawa Matarawa Stream NZMS 260 R22:858-398 to Ikitara Street at approx R22:869-409 Coastal Coastal Whangaehu River From the river mouth to approx NZMS 260 S22:915-300 Whangaehu Whangaehu From the river mouth to a point located at the Turakina Lower
    [Show full text]
  • The 1934 Pahiatua Earthquake Sequence: Analysis of Observational and Instrumental Data
    221 THE 1934 PAHIATUA EARTHQUAKE SEQUENCE: ANALYSIS OF OBSERVATIONAL AND INSTRUMENTAL DATA Gaye Downes1' 2, David Dowrick1' 4, Euan Smith3' 4 and Kelvin Berryman1' 2 ABSTRACT Descriptive accounts and analysis of local seismograms establish that the epicentre of the 1934 March 5 M,7.6 earthquake, known as the Pahiatua earthquake, was nearer to Pongaroa than to Pahiatua. Conspicuous and severe damage (MM8) in the business centre of Pahiatua in the northern Wairarapa led early seismologists to name the earthquake after the town, but it has now been found that the highest intensities (MM9) occurred about 40 km to the east and southeast of Pahiatua, between Pongaroa and Bideford. Uncertainties in the location of the epicentre that have existed for sixty years are now resolved with the epicentre determined in this study lying midway between those calculated in the 1930' s by Hayes and Bullen. Damage and intensity summaries and a new isoseismal map, derived from extensive newspaper reports and from 1934 Dominion Observatory "felt reports", replace previous descriptions and isoseismal maps. A stable solution for the epicentre of the mainshock has been obtained by analysing phase arrivals read from surviving seismograms of the rather small and poorly equipped 1934 New Zealand network of twelve stations (two privately owned). The addition of some teleseismic P arrivals to this solution shifts the location of the epicentre by less than 10 km. It lies within, and to the northern end of, the MM9 isoseismal zone. Using local instrumental data larger aftershocks and other moderate magnitude earthquakes that occurred within 10 days and 50 km of the mainshock have also been located.
    [Show full text]
  • New Zealand: E&P Review
    New Zealand: E&P Review Mac Beggs, Exploration Manager 2 March 2011 Excellence in Oil & Gas, Sydney From the conference flyer - • Major opportunities and • Favourable terms and clean motivations to operate government • Prospectivity – but skewed to high risk offshore frontiers • Access to services and • Adjunct to Australian service sector skills • Major markets • Unencumbered oil export arrangements • Gas market 150-250 BCF/year • Sovereign risk New Zealand Oil & Gas Limited 2 ⎮ Outline • Regulatory framework for E&P in New Zealand • History of discovery and development • Geography of remaining prospectivity • Recent and forecast E&P activities – Onshore Taranaki fairway – Offshore Taranaki fairway – Frontier basins – Unconventional resources • Gas market overview • Concluding comments New Zealand Oil & Gas Limited 3 ⎮ Regulatory Framework for Oil & Gas E&P in New Zealand • Mineral rights to petroleum vested in the Crown, 1937 • Crown Minerals Act 1991 • Royalty and tax take provides for excellent returns to developer/producer (except for marginal and mature assets) – Royalty of 5% net revenue, or 20% accounting profit – Company tax reducing to 28% from 1 April 2011 • Administered by an agency within Ministry of Economic Development (Crown Minerals) www.crownminerals.govt.nz • High profile since change of government in late 2008 – Resources identified as a driver for economic growth – Senior Minister: Hon Gerry Brownlee (until last week) • Continuing reforms should streamline and strengthen administration New Zealand Oil & Gas Limited
    [Show full text]
  • Fluctuation in Opossum Populations Along the North Bank of the Taramakau Catchment and Its Effect on the Forest Canopy C
    212 Vol. 9 FLUCTUATION IN OPOSSUM POPULATIONS ALONG THE NORTH BANK OF THE TARAMAKAU CATCHMENT AND ITS EFFECT ON THE FOREST CANOPY C. J. PEKELHARING Forest Research Institute, New Zealand Forest Service. Christchurch (Received for publication 10 August 1979) ABSTRACT Fluctuations in density patterns of opossum populations were studied by faecal pellet counts, along the North Bank of the Taramakau catchment from 1970 to 1977. The study area contained two major vegetation associations, rata/kamahi forest and red beech forest. Variations in density patterns over the years indicated that peak population numbers in the beech forests were approxi­ mately half those in the rata/kamahi forests. The upper transitional forests above both major forest types, however, reached similar peak densities. Canopy defoliation was studied by aerial photography in 1980 and in 1973. Within 13 years over 40% of the canopy in these protection forests was defoliated. This large-scale defoliation coincided with a build-up and peaking of the opossum population. In the winter of 1974 the whole area was poisoned by air with 1080 (sodium monofluoroacetate) impregnated carrot. Approximately 85% of the opossum population was removed by this operation. The greatest decline in pellet densities was recorded in the lower and mid-forest strata. INTRODUCTION A study on the dynamics of opossum populations was initiated by Bamford in 1970 along the north bank of the Taramakau River, Westland (Bamford, 1972). Faecal pellet lines established by Forest Research Institute staff in April 1970 were remeasured in April 1974, 1975 and 1977. The area was aerially poisoned by the Forest Service in June 1974.
    [Show full text]
  • Greenpeace Deep Sea Oil Briefing
    May 2012 Out of our depth: Deep-sea oil exploration in New Zealand greenpeace.org.nz Contents A sea change in Government strategy ......... 4 Safety concerns .............................................. 5 The risks of deep-sea oil ............................... 6 International oil companies in the dock ..... 10 Where is deep-sea oil exploration taking place in New Zealand? ..................... 12 Cover: A view from an altitude of 3200 ft of the oil on the sea surface, originated by the leaking of the Deepwater Horizon wellhead disaster. The BP leased oil platform exploded April 20 and sank after burning, leaking an estimate of more than 200,000 gallons of crude oil per day from the broken pipeline into the sea. © Daniel Beltrá / Greenpeace Right: A penguin lies in oil spilt from the wreck of the Rena © GEMZ Photography 2 l Greenpeace Deep-Sea Oil Briefing l May 2012 The inability of the authorities to cope with the effects of the recent oil spill from the Rena cargo ship, despite the best efforts of Maritime New Zealand, has brought into sharp focus the environmental risks involved in the Government’s decision to open up vast swathes of the country’s coastal waters for deep-sea oil drilling. The Rena accident highlighted the devastation that can be caused by what in global terms is actually still a relatively small oil spill at 350 tonnes and shows the difficulties of mounting a clean-up operation even when the source of the leaking oil is so close to shore. It raised the spectre of the environmental catastrophe that could occur if an accident on the scale of the Deepwater Horizon disaster in the Gulf of Mexico were to occur in New Zealand’s remote waters.
    [Show full text]
  • Kaiapoi Street Map
    Kaiapoi Street Map www.northcanterbury.co.nz www.visitwaimakariri.co.nz 5 19 To Woodend, Kaikoura and Picton North To Rangiora T S S M A I L L I W 2 D R E 62 D I S M A C 29 54 E V A 64 E To Pines, O H and Kairaki 52 U T 39 45 4 57 44 10 7 63 46 47 30 8 32 59 9 38 33 24 65 11 37 66 48 18 16 23 61 26 20 17 27 25 49 13 58 14 12 28 21 51 15 22 31 41 56 50 55 3 1 35 Sponsored by 36 JIM BRYDEN RESERVE LICENSED AGENT REAA 2008 To Christchurch Harcourts Twiss-Keir Realty Ltd. 6 MREINZ Licensed Agent REAA 2008. Phone: 03 327 5379 Email: [email protected] Web: www.twisskeir.co.nz 40 60 © Copyright Enterprise North Canterbury 2016 For information and bookings contact Kaiapoi i-SITE Visitor Centre Kaiapoi Street and Information Index Phone 03 327 3134 Adams Street C5 Cressy Ave F3 Lees Rd A5 Sneyd St F2 Accommodation Attractions Adderley Tce E2 Cridland St E4 Lower Camside Rd B4 Sovereign Bvd C5 1 H3 Blue Skies Holiday & Conference Park 32 F4 Kaiapoi Historic Railway Station Akaroa St G3 Cumberland Pl H2 Magnate Dr C5 Stark Pl D5 2 C4 Grenmora B & B 55 Old North Rd 33 F4 Kaiapoi Museum And Art Gallery Aldersgate St G2 Dale St D4 Magnolia Bvd D5 Sterling Cres C5 3 H3 Kaiapoi on Williams Motel 35 H3 National Scout Museum Alexander Ln F3 Davie St F4 Main Drain Rd D1 Stone St H4 64 F6 Kairaki Beach Cottage 36 H5 Woodford Glen Speedway Allison Cres D5 Dawson Douglas Pl G4 Main North Rd I3 Storer St F1 4 F3 Morichele B & B Alpine Ln F3 Day Pl F5 Mansfield Dr G3 Sutherland Dr C6 5 A5 Pine Acres Holiday Park & Motels Recreation Ansel Pl D5 Doubledays
    [Show full text]
  • Agenda of Environment Committee
    I hereby give notice that an ordinary meeting of the Environment Committee will be held on: Date: Tuesday, 14 May 2019 Time: to follow the Strategy & Policy Committee meeting Venue: Tararua Room Horizons Regional Council 11-15 Victoria Avenue, Palmerston North ENVIRONMENT COMMITTEE AGENDA MEMBERSHIP Chair Cr GM McKellar Deputy Chair Cr WK Te Awe Awe Councillors Cr JJ Barrow Cr LR Burnell Cr DB Cotton Cr EB Gordon JP (ex officio) Cr RJ Keedwell Cr NJ Patrick Cr JM Naylor Cr PW Rieger, QSO JP Cr BE Rollinson Cr CI Sheldon Michael McCartney Chief Executive Contact Telephone: 0508 800 800 Email: [email protected] Postal Address: Private Bag 11025, Palmerston North 4442 Full Agendas are available on Horizons Regional Council website www.horizons.govt.nz Note: The reports contained within this agenda are for consideration and should not be construed as Council policy unless and until adopted. Items in the agenda may be subject to amendment or withdrawal at the meeting. for further information regarding this agenda, please contact: Julie Kennedy, 06 9522 800 CONTACTS 24 hr Freephone : [email protected] www.horizons.govt.nz 0508 800 800 SERVICE Kairanga Marton Taumarunui Woodville CENTRES Cnr Rongotea & 19-21 Hammond 34 Maata Street Cnr Vogel (SH2) & Tay Kairanga-Bunnythorpe Rds, Street Sts Palmerston North REGIONAL Palmerston North Whanganui HOUSES 11-15 Victoria Avenue 181 Guyton Street DEPOTS Levin Taihape 120-122 Hokio Beach Rd 243 Wairanu Rd POSTAL Horizons Regional Council, Private Bag 11025, Manawatu Mail Centre, Palmerston North
    [Show full text]
  • Geophysical Structure of the Southern Alps Orogen, South Island, New Zealand
    Regional Geophysics chapter 15/04/2007 1 GEOPHYSICAL STRUCTURE OF THE SOUTHERN ALPS OROGEN, SOUTH ISLAND, NEW ZEALAND. F J Davey1, D Eberhart-Phillips2, M D Kohler3, S Bannister1, G Caldwell1, S Henrys1, M Scherwath4, T Stern5, and H van Avendonk6 1GNS Science, Gracefield, Lower Hutt, New Zealand, [email protected] 2GNS Science, Dunedin, New Zealand 3Center for Embedded Networked Sensing, University of California, Los Angeles, California, USA 4Leibniz-Institute of Marine Sciences, IFM-GEOMAR, Kiel, Germany 5School of Earth Sciences, Victoria University of Wellington, Wellington, New Zealand 6Institute of Geophysics, University of Texas, Austin, Texas, USA ABSTRACT The central part of the South Island of New Zealand is a product of the transpressive continental collision of the Pacific and Australian plates during the past 5 million years, prior to which the plate boundary was largely transcurrent for over 10 My. Subduction occurs at the north (west dipping) and south (east dipping) of South Island. The deformation is largely accommodated by the ramping up of the Pacific plate over the Australian plate and near-symmetric mantle shortening. The initial asymmetric crustal deformation may be the result of an initial difference in lithospheric strength or an inherited suture resulting from earlier plate motions. Delamination of the Pacific plate occurs resulting in the uplift and exposure of mid- crustal rocks at the plate boundary fault (Alpine fault) to form a foreland mountain chain. In addition, an asymmetric crustal root (additional 8 - 17 km) is formed, with an underlying mantle downwarp. The crustal root, which thickens southwards, comprises the delaminated lower crust and a thickened overlying middle crust.
    [Show full text]
  • GNS Science Miscellaneous Series Report
    NHRP Contestable Research Project A New Paradigm for Alpine Fault Paleoseismicity: The Northern Section of the Alpine Fault R Langridge JD Howarth GNS Science Miscellaneous Series 121 November 2018 DISCLAIMER The Institute of Geological and Nuclear Sciences Limited (GNS Science) and its funders give no warranties of any kind concerning the accuracy, completeness, timeliness or fitness for purpose of the contents of this report. GNS Science accepts no responsibility for any actions taken based on, or reliance placed on the contents of this report and GNS Science and its funders exclude to the full extent permitted by law liability for any loss, damage or expense, direct or indirect, and however caused, whether through negligence or otherwise, resulting from any person’s or organisation’s use of, or reliance on, the contents of this report. BIBLIOGRAPHIC REFERENCE Langridge, R.M., Howarth, J.D. 2018. A New Paradigm for Alpine Fault Paleoseismicity: The Northern Section of the Alpine Fault. Lower Hutt (NZ): GNS Science. 49 p. (GNS Science miscellaneous series 121). doi:10.21420/G2WS9H RM Langridge, GNS Science, PO Box 30-368, Lower Hutt, New Zealand JD Howarth, Dept. of Earth Sciences, Victoria University of Wellington, New Zealand © Institute of Geological and Nuclear Sciences Limited, 2018 www.gns.cri.nz ISSN 1177-2441 (print) ISSN 1172-2886 (online) ISBN (print): 978-1-98-853079-6 ISBN (online): 978-1-98-853080-2 http://dx.doi.org/10.21420/G2WS9H CONTENTS ABSTRACT ......................................................................................................................... IV KEYWORDS ......................................................................................................................... V KEY MESSAGES FOR MEDIA ............................................................................................ VI 1.0 INTRODUCTION ........................................................................................................ 7 2.0 RESEARCH AIM 1.1 — ACQUIRE NEW AIRBORNE LIDAR COVERAGE ..............
    [Show full text]
  • Geocene Auckland Geoclub Magazine Number 23, July 2020
    Geocene Auckland GeoClub Magazine Number 23, July 2020 Editor: Jill Kenny CONTENTS Instructions on use of hyperlinks last page 26 A CURIOUS CASE OF RIVERBED POTHOLES IN Michael Coote, Kent Xie 2 – 6 WEST AUCKLAND GRANITE FLUTING, BASINS AND TAFONE ON Lee Sawyer, Ken Smith, 7 – 10 SOUTHERN STEWART ISLAND Bruce W. Hayward EVIDENCE FOR TUFFS AT MANGAWHAI HEADS Garry Carr 11 – 13 EXHUMED LAVA CAVE AT KERIKERI, NORTHLAND Bruce W. Hayward 14 – 15 A RECORD OF THE DISTINCTIVE BRYOZOAN GENUS Seabourne Rust 16 – 18 RETELEPRALIA FROM THE EARLY MIOCENE WAITIITI FORMATION OF NORTHLAND, NEW ZEALAND IHUMATAO ROAD END FOSSIL FOREST Bruce W. Hayward, 19 – 21 Maureen Burke RAFTS OF PLEISTOCENE SEDIMENT IN Bruce W. Hayward 22 – 25 PUPUKE VOLCANO LAVA FLOWS Corresponding authors’ contact information 26 Geocene is a periodic publication of Auckland Geology Club, a section of the Geoscience Society of New Zealand’s Auckland Branch. Contributions about the geology of New Zealand (particularly northern New Zealand) from members are welcome. Articles are lightly edited but not refereed. Please contact Jill Kenny [email protected] 1 A CURIOUS CASE OF RIVERBED POTHOLES IN WEST AUCKLAND Michael Coote Map and photographs by Kent Xie Natural rock potholes at Woodside Reserve, Swanson two or more underlying, often oblique potholes, totalling During the COVID-19 lockdown period, local exercise up to about 1 m in depth in the biggest example. was promoted as official government policy. This situation encouraged the authors to look up maps for local The majority of the potholes were filled with water, but walkways, rights-of-way and reserves not previously most were above the water level of the stream.
    [Show full text]
  • Transpressional Rupture Cascade of the 2016 Mw 7.8
    PUBLICATIONS Journal of Geophysical Research: Solid Earth RESEARCH ARTICLE Transpressional Rupture Cascade of the 2016 Mw 10.1002/2017JB015168 7.8 Kaikoura Earthquake, New Zealand Key Points: Wenbin Xu1 , Guangcai Feng2, Lingsen Meng3 , Ailin Zhang3, Jean Paul Ampuero4 , • Complex coseismic ground 5 6 deformation can be explained by slip Roland Bürgmann , and Lihua Fang on six crustal fault segments 1 2 • Rupture process across multiple faults Department of Land Surveying and Geo-informatics, Hong Kong Polytechnic University, Hong Kong, China, School of 3 likely resulted from a triggering Geosciences and Info-Physics, Central South University, Changsha, China, Department of Earth Planetary and Space cascade between crustal faults Sciences, University of California, Los Angeles, CA, USA, 4Seismological Laboratory, California Institute of Technology, • Rupture speed was overall slow, but Pasadena, CA, USA, 5Department of Earth and Planetary Science, University of California, Berkeley, CA, USA, 6Institute of locally faster along individual fault segments Geophysics, China Earthquake Administration, Beijing, China Supporting Information: Abstract Large earthquakes often do not occur on a simple planar fault but involve rupture of multiple • Supporting Information S1 • Data Set S1 geometrically complex faults. The 2016 Mw 7.8 Kaikoura earthquake, New Zealand, involved the rupture of • Data Set S2 at least 21 faults, propagating from southwest to northeast for about 180 km. Here we combine space • Data Set S3 geodesy and seismology techniques to study subsurface fault geometry, slip distribution, and the kinematics of the rupture. Our finite-fault slip model indicates that the fault motion changes from predominantly Correspondence to: W. Xu, G. Feng, and L. Meng, right-lateral slip near the epicenter to transpressional slip in the northeast with a maximum coseismic surface [email protected]; displacement of about 10 m near the intersection between the Kekerengu and Papatea faults.
    [Show full text]
  • Late Quaternary Faulting in the Kaikoura Region, Southeastern Marlborough, New Zealand
    AN ABSTRACT OF THE THESIS OF Russell J. Van Dissen for the degree of Master of Science in Geology presented on February 15, 1989. Title: Late Quaternary Faulting in the Kaikoura Region, Southeastern Marlborough, New Zealand Redacted for privacy Abstract approved: Dr. Robert 8.0eats Active faults in the Kaikoura region include the Hope, Kekerengu, and Fidget Faults, and the newly discovered Jordan Thrust, Fyffe, and Kowhai Faults. Ages of faulted alluvial terraces along the Hope Fault and the Jordan Thrust were estimated using radiocarbon-calibrated weathering-rind measurements on graywacke clasts. Within the study area, the Hope Fault is divided, from west to east, into the Kahutara, Mt. Fyffe, and Seaward segments. The Kahutara segment has a relatively constant Holocene right-lateral slip rate of 20-32 mm/yr, and an earthquake recurrence interval of 86 to 600 yrs: based on single-event displacements of 3 to 12 m. The western portion of the Mt. Fyffe segment has a minimum Holocene lateral slip rate of 16 + 5 mm/yr .(southeast side up); the eastern portion has horizontal and vertical slip rates of 4.8+ 2.7 mm/yr and 1.7 + 0.2 mm/yr, respectively (northwest side up). There is no dated evidence for late Quaternary movementon the Seaward segment, and its topographic expression is much more subdued than that of the two western segments. The Jordan Thrust extends northeast from the Hope Fault, west of the Seaward segment. The thrust has horizontal and vertical slip rates of 2.2 + 1.3 mm/yr and 2.1 + 0.5 mm/yr, respectively (northwest side up), and a maximum recurrence interval of 1200 yrs: based on 3 events within the last 3.5 ka.
    [Show full text]