BORC/Kinesin-1 Ensemble Drives Polarized Transport of Lysosomes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
FK506-Binding Protein 12.6/1B, a Negative Regulator of [Ca2+], Rescues Memory and Restores Genomic Regulation in the Hippocampus of Aging Rats
This Accepted Manuscript has not been copyedited and formatted. The final version may differ from this version. A link to any extended data will be provided when the final version is posted online. Research Articles: Neurobiology of Disease FK506-Binding Protein 12.6/1b, a negative regulator of [Ca2+], rescues memory and restores genomic regulation in the hippocampus of aging rats John C. Gant1, Eric M. Blalock1, Kuey-Chu Chen1, Inga Kadish2, Olivier Thibault1, Nada M. Porter1 and Philip W. Landfield1 1Department of Pharmacology & Nutritional Sciences, University of Kentucky, Lexington, KY 40536 2Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294 DOI: 10.1523/JNEUROSCI.2234-17.2017 Received: 7 August 2017 Revised: 10 October 2017 Accepted: 24 November 2017 Published: 18 December 2017 Author contributions: J.C.G. and P.W.L. designed research; J.C.G., E.M.B., K.-c.C., and I.K. performed research; J.C.G., E.M.B., K.-c.C., I.K., and P.W.L. analyzed data; J.C.G., E.M.B., O.T., N.M.P., and P.W.L. wrote the paper. Conflict of Interest: The authors declare no competing financial interests. NIH grants AG004542, AG033649, AG052050, AG037868 and McAlpine Foundation for Neuroscience Research Corresponding author: Philip W. Landfield, [email protected], Department of Pharmacology & Nutritional Sciences, University of Kentucky, 800 Rose Street, UKMC MS 307, Lexington, KY 40536 Cite as: J. Neurosci ; 10.1523/JNEUROSCI.2234-17.2017 Alerts: Sign up at www.jneurosci.org/cgi/alerts to receive customized email alerts when the fully formatted version of this article is published. -
Single-Cell RNA Sequencing Demonstrates the Molecular and Cellular Reprogramming of Metastatic Lung Adenocarcinoma
ARTICLE https://doi.org/10.1038/s41467-020-16164-1 OPEN Single-cell RNA sequencing demonstrates the molecular and cellular reprogramming of metastatic lung adenocarcinoma Nayoung Kim 1,2,3,13, Hong Kwan Kim4,13, Kyungjong Lee 5,13, Yourae Hong 1,6, Jong Ho Cho4, Jung Won Choi7, Jung-Il Lee7, Yeon-Lim Suh8,BoMiKu9, Hye Hyeon Eum 1,2,3, Soyean Choi 1, Yoon-La Choi6,10,11, Je-Gun Joung1, Woong-Yang Park 1,2,6, Hyun Ae Jung12, Jong-Mu Sun12, Se-Hoon Lee12, ✉ ✉ Jin Seok Ahn12, Keunchil Park12, Myung-Ju Ahn 12 & Hae-Ock Lee 1,2,3,6 1234567890():,; Advanced metastatic cancer poses utmost clinical challenges and may present molecular and cellular features distinct from an early-stage cancer. Herein, we present single-cell tran- scriptome profiling of metastatic lung adenocarcinoma, the most prevalent histological lung cancer type diagnosed at stage IV in over 40% of all cases. From 208,506 cells populating the normal tissues or early to metastatic stage cancer in 44 patients, we identify a cancer cell subtype deviating from the normal differentiation trajectory and dominating the metastatic stage. In all stages, the stromal and immune cell dynamics reveal ontological and functional changes that create a pro-tumoral and immunosuppressive microenvironment. Normal resident myeloid cell populations are gradually replaced with monocyte-derived macrophages and dendritic cells, along with T-cell exhaustion. This extensive single-cell analysis enhances our understanding of molecular and cellular dynamics in metastatic lung cancer and reveals potential diagnostic and therapeutic targets in cancer-microenvironment interactions. 1 Samsung Genome Institute, Samsung Medical Center, Seoul 06351, Korea. -
Cell Communication and Signaling Biomed Central
Cell Communication and Signaling BioMed Central Review Open Access Extravasation of leukocytes in comparison to tumor cells Carina Strell and Frank Entschladen* Address: Institute of Immunology, Witten/Herdecke University, Stockumer Str. 10, 58448 Witten, Germany Email: Carina Strell - [email protected]; Frank Entschladen* - [email protected] * Corresponding author Published: 4 December 2008 Received: 18 November 2008 Accepted: 4 December 2008 Cell Communication and Signaling 2008, 6:10 doi:10.1186/1478-811X-6-10 This article is available from: http://www.biosignaling.com/content/6/1/10 © 2008 Strell and Entschladen; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract The multi-step process of the emigration of cells from the blood stream through the vascular endothelium into the tissue has been termed extravasation. The extravasation of leukocytes is fairly well characterized down to the molecular level, and has been reviewed in several aspects. Comparatively little is known about the extravasation of tumor cells, which is part of the hematogenic metastasis formation. Although the steps of the process are basically the same in leukocytes and tumor cells, i.e. rolling, adhesion, transmigration (diapedesis), the molecules that are involved are different. A further important difference is that leukocyte interaction with the endothelium changes the endothelial integrity only temporarily, whereas tumor cell interaction leads to an irreversible damage of the endothelial architecture. Moreover, tumor cells utilize leukocytes for their extravasation as linkers to the endothelium. -
The Small G Protein Arl8 Contributes to Lysosomal Function and Long-Range Axonal Transport in Drosophila
This is a repository copy of The small G protein Arl8 contributes to lysosomal function and long-range axonal transport in Drosophila. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/134948/ Version: Accepted Version Article: Rosa-Ferreira, Cláudia, Sweeney, Sean orcid.org/0000-0003-2673-9578 and Munro, Sean (Accepted: 2018) The small G protein Arl8 contributes to lysosomal function and long- range axonal transport in Drosophila. Biology Open. (In Press) https://doi.org/10.1242/bio.035964 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ The small G protein Arl8 contributes to lysosomal function and long-range axonal transport in Drosophila Cláudia Rosa-Ferreira1 , Sean T. Sweeney2 and Sean Munro1* 1: MRC Laboratory of Molecular Biology Francis Crick Avenue Cambridge CB2 0QH UK 2: Department of Biology University of York York YO10 5DD UK *: Corresponding author. Email: [email protected] © 2018. -
Lysosomal Membrane Glycoproteins Bind Cholesterol and Contribute to Lysosomal Cholesterol Export
1 Lysosomal membrane glycoproteins bind cholesterol and 2 contribute to lysosomal cholesterol export 3 4 Jian Li and Suzanne R. Pfeffer* 5 Department of Biochemistry, Stanford University School of Medicine 6 Stanford, CA USA 94305-5307 7 8 *Correspondence to: [email protected]. 9 10 Abstract: LAMP1 and LAMP2 proteins are highly abundant, ubiquitous, mammalian proteins 11 that line the lysosome limiting membrane, and protect it from lysosomal hydrolase action. 12 LAMP2 deficiency causes Danon’s disease, an X-linked hypertrophic cardiomyopathy. LAMP2 13 is needed for chaperone-mediated autophagy, and its expression improves tissue function in 14 models of aging. We show here that LAMP1 and LAMP2 bind cholesterol in a manner that 15 buries the cholesterol 3β-hydroxyl group; they also bind tightly to NPC1 and NPC2 proteins that 16 export cholesterol from lysosomes. Quantitation of cellular LAMP2 and NPC1 protein levels 17 suggest that LAMP proteins represent a significant cholesterol binding site at the lysosome 18 limiting membrane, and may signal cholesterol availability. Functional rescue experiments show 19 that the ability of LAMP2 to facilitate cholesterol export from lysosomes relies on its ability to 20 bind cholesterol directly. 21 22 23 Introduction 24 Eukaryotic lysosomes are acidic, membrane-bound organelles that contain proteases, lipases and 25 nucleases and degrade cellular components to regenerate catabolic precursors for cellular use (1- 26 3). Lysosomes are crucial for the degradation of substrates from the cytoplasm, as well as 27 membrane bound compartments derived from the secretory, endocytic, autophagic and 28 phagocytic pathways. The limiting membrane of lysosomes is lined with so-called lysosomal 29 membrane glycoproteins (LAMPs) that are comprised of a short cytoplasmic domain, a single 30 transmembrane span, and a highly, N- and O-glycosylated lumenal domain (4-6). -
A Yeast Phenomic Model for the Influence of Warburg Metabolism on Genetic Buffering of Doxorubicin Sean M
Santos and Hartman Cancer & Metabolism (2019) 7:9 https://doi.org/10.1186/s40170-019-0201-3 RESEARCH Open Access A yeast phenomic model for the influence of Warburg metabolism on genetic buffering of doxorubicin Sean M. Santos and John L. Hartman IV* Abstract Background: The influence of the Warburg phenomenon on chemotherapy response is unknown. Saccharomyces cerevisiae mimics the Warburg effect, repressing respiration in the presence of adequate glucose. Yeast phenomic experiments were conducted to assess potential influences of Warburg metabolism on gene-drug interaction underlying the cellular response to doxorubicin. Homologous genes from yeast phenomic and cancer pharmacogenomics data were analyzed to infer evolutionary conservation of gene-drug interaction and predict therapeutic relevance. Methods: Cell proliferation phenotypes (CPPs) of the yeast gene knockout/knockdown library were measured by quantitative high-throughput cell array phenotyping (Q-HTCP), treating with escalating doxorubicin concentrations under conditions of respiratory or glycolytic metabolism. Doxorubicin-gene interaction was quantified by departure of CPPs observed for the doxorubicin-treated mutant strain from that expected based on an interaction model. Recursive expectation-maximization clustering (REMc) and Gene Ontology (GO)-based analyses of interactions identified functional biological modules that differentially buffer or promote doxorubicin cytotoxicity with respect to Warburg metabolism. Yeast phenomic and cancer pharmacogenomics data were integrated to predict differential gene expression causally influencing doxorubicin anti-tumor efficacy. Results: Yeast compromised for genes functioning in chromatin organization, and several other cellular processes are more resistant to doxorubicin under glycolytic conditions. Thus, the Warburg transition appears to alleviate requirements for cellular functions that buffer doxorubicin cytotoxicity in a respiratory context. -
Anti-ARL8B Antibody (ARG43276)
Product datasheet [email protected] ARG43276 Package: 50 μg anti-ARL8B antibody Store at: -20°C Summary Product Description Rabbit Polyclonal antibody recognizes ARL8B Tested Reactivity Hu, Ms Tested Application IHC-P, WB Host Rabbit Clonality Polyclonal Isotype IgG Target Name ARL8B Antigen Species Human Immunogen Recombinant protein corresponding to aa. 20-186 of Human ARL8B. Conjugation Un-conjugated Alternate Names Novel small G protein indispensable for equal chromosome segregation 1; ARL10C; ADP-ribosylation factor-like protein 8B; Gie1; ADP-ribosylation factor-like protein 10C Application Instructions Application table Application Dilution IHC-P 1:100 WB 4 µg/ml Application Note * The dilutions indicate recommended starting dilutions and the optimal dilutions or concentrations should be determined by the scientist. Positive Control Mouse brain, NIH/3T3 and Jurkat Calculated Mw 22 kDa Observed Size ~ 22 kDa Properties Form Liquid Purification Caprylic acid ammonium sulfate precipitation purified. Buffer 0.01 M PBS (pH 7.4), 0.03% Proclin 300 and 50% Glycerol. Preservative 0.03% Proclin 300 Stabilizer 50% Glycerol Storage instruction For continuous use, store undiluted antibody at 2-8°C for up to a week. For long-term storage, aliquot and store at -20°C. Storage in frost free freezers is not recommended. Avoid repeated freeze/thaw cycles. Suggest spin the vial prior to opening. The antibody solution should be gently mixed before use. www.arigobio.com 1/2 Note For laboratory research only, not for drug, diagnostic or other use. Bioinformation Gene Symbol ARL8B Gene Full Name ADP-ribosylation factor-like 8B Function Plays a role in lysosome motility (PubMed:16537643, PubMed:25898167). -
Sensitization to the Lysosomal Cell Death Pathway by Oncogene- Induced Down-Regulation of Lysosome-Associated Membrane Proteins 1 and 2
Research Article Sensitization to the Lysosomal Cell Death Pathway by Oncogene- Induced Down-regulation of Lysosome-Associated Membrane Proteins 1 and 2 Nicole Fehrenbacher,1 Lone Bastholm,2 Thomas Kirkegaard-Sørensen,1 Bo Rafn,1 Trine Bøttzauw,1 Christina Nielsen,1 Ekkehard Weber,3 Senji Shirasawa,4 Tuula Kallunki,1 and Marja Ja¨a¨ttela¨1 1Apoptosis Department and Centre for Genotoxic Stress Response, Institute for Cancer Biology, Danish Cancer Society; 2Institute of Molecular Pathology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; 3Institute of Physiological Chemistry, Medical Faculty, Martin-Luther-University Halle-Wittenberg, Halle, Germany; and 4Department of Cell Biology, School of Medicine, Fukuoka University, Fukuoka, Japan Abstract molecules of the cell to breakdown products available for Expression and activity of lysosomal cysteine cathepsins metabolic reuse (3, 4). Cathepsin proteases are among the best- correlate with the metastatic capacity and aggressiveness of studied lysosomal hydrolases. They are maximally active at the tumors. Here, we show that transformation of murine acidic pH of lysosomes (pH 4–5). However, many of them can be Y527F embryonic fibroblasts with v-H-ras or c-src changes the active at the neutral pH outside lysosomes, albeit with a decreased distribution, density, and ultrastructure of the lysosomes, efficacy and/or altered specificity (5). For example, transformation and tumor environment enhance the expression of lysosomal decreases the levels of lysosome-associated membrane pro- teins (LAMP-1 and LAMP-2) in an extracellular signal- cysteine cathepsins and increase their secretion into the extracel- regulated kinase (ERK)- and cathepsin-dependent manner, lular space (6). Once outside the tumor cells, cathepsins stimulate and sensitizes the cells to lysosomal cell death pathways angiogenesis, tumor growth, and invasion in murine cancer induced by various anticancer drugs (i.e., cisplatin, etoposide, models, thereby enhancing cancer progression (7, 8). -
Transcriptional Profiling of Long Non-Coding Rnas and Novel
Brunner et al. Genome Biology 2012, 13:R75 http://genomebiology.com/2012/13/8/R75 RESEARCH Open Access Transcriptional profiling of long non-coding RNAs and novel transcribed regions across a diverse panel of archived human cancers Alayne L Brunner1, Andrew H Beck1,2, Badreddin Edris1,3, Robert T Sweeney1, Shirley X Zhu1, Rui Li1, Kelli Montgomery1, Sushama Varma1, Thea Gilks1, Xiangqian Guo1, Joseph W Foley3, Daniela M Witten4, Craig P Giacomini1,5, Ryan A Flynn6, Jonathan R Pollack1, Robert Tibshirani7,8, Howard Y Chang6, Matt van de Rijn1 and Robert B West1* Abstract Background: Molecular characterization of tumors has been critical for identifying important genes in cancer biology and for improving tumor classification and diagnosis. Long non-coding RNAs, as a new, relatively unstudied class of transcripts, provide a rich opportunity to identify both functional drivers and cancer-type-specific biomarkers. However, despite the potential importance of long non-coding RNAs to the cancer field, no comprehensive survey of long non-coding RNA expression across various cancers has been reported. Results: We performed a sequencing-based transcriptional survey of both known long non-coding RNAs and novel intergenic transcripts across a panel of 64 archival tumor samples comprising 17 diagnostic subtypes of adenocarcinomas, squamous cell carcinomas and sarcomas. We identified hundreds of transcripts from among the known 1,065 long non-coding RNAs surveyed that showed variability in transcript levels between the tumor types and are therefore potential biomarker candidates. We discovered 1,071 novel intergenic transcribed regions and demonstrate that these show similar patterns of variability between tumor types. -
ARL8B Sirna (M): Sc-141251
SAN TA C RUZ BI OTEC HNOL OG Y, INC . ARL8B siRNA (m): sc-141251 BACKGROUND STORAGE AND RESUSPENSION ADP-ribosylation factors (ARFs) are highly conserved guanine nucleotide bind - Store lyophilized siRNA duplex at -20° C with desiccant. Stable for at least ing proteins that enhance the ADP-ribosyltransferase activity of Cholera Toxin. one year from the date of shipment. Once resuspended, store at -20° C, ARF’s are important in eukaryotic vesicular trafficking pathways and they play avoid contact with RNAses and repeated freeze thaw cycles. an essential role in the activation of phospholipase D (PC-PLD). ARL8B (ADP- Resuspend lyophilized siRNA duplex in 330 µl of the RNAse-free water ribosylation factor-like protein 8B), also known as ARL10C or GIE1, is a 186 pro vided. Resuspension of the siRNA duplex in 330 µl of RNAse-free water amino acid protein that localizes to the late endosome membrane and belongs makes a 10 µM solution in a 10 µM Tris-HCl, pH 8.0, 20 mM NaCl, 1 mM to the ARL family of ARF-like GTPase proteins. Expressed ubiquitously, ARL8A EDTA buffered solution. interacts with Tubulin and is thought to play a role in lysosome motility, as well as in chromosomal segregation. The gene encoding ARL8B maps to APPLICATIONS human chromosome 3, which houses over 1,100 genes, including a chemokine receptor (CKR) gene cluster and a variety of human cancer-related gene loci. ARL8B siRNA (m) is recommended for the inhibition of ARL8B expression in mouse cells. REFERENCES SUPPORT REAGENTS 1. Secombe, J., et al. 2004. -
Dipeptidase Aminodipeptidase, Quiescent Cell Proline of a Novel
Vesicular Localization and Characterization of a Novel Post-Proline-Cleaving Aminodipeptidase, Quiescent Cell Proline Dipeptidase This information is current as of September 26, 2021. Murali Chiravuri, Fernando Agarraberes, Suzanne L. Mathieu, Henry Lee and Brigitte T. Huber J Immunol 2000; 165:5695-5702; ; doi: 10.4049/jimmunol.165.10.5695 http://www.jimmunol.org/content/165/10/5695 Downloaded from References This article cites 28 articles, 18 of which you can access for free at: http://www.jimmunol.org/content/165/10/5695.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 26, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2000 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Vesicular Localization and Characterization of a Novel Post-Proline-Cleaving Aminodipeptidase, Quiescent Cell Proline Dipeptidase1 Murali Chiravuri,* Fernando Agarraberes,† Suzanne L. Mathieu,* Henry Lee,* and Brigitte T. Huber2* A large number of chemokines, cytokines, and signal peptides share a highly conserved X-Pro motif on the N-terminus. -
Fluid Biomarkers in Frontotemporal Dementia: Past, Present and Future
Neurodegeneration J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp-2020-323520 on 13 November 2020. Downloaded from Review Fluid biomarkers in frontotemporal dementia: past, present and future Imogen Joanna Swift ,1 Aitana Sogorb- Esteve,1,2 Carolin Heller ,1 Matthis Synofzik,3,4 Markus Otto ,5 Caroline Graff,6,7 Daniela Galimberti ,8,9 Emily Todd,2 Amanda J Heslegrave,1 Emma Louise van der Ende ,10 John Cornelis Van Swieten ,10 Henrik Zetterberg,1,11 Jonathan Daniel Rohrer 2 ► Additional material is ABSTRACT into a behavioural form (behavioural variant fron- published online only. To view, The frontotemporal dementia (FTD) spectrum of totemporal dementia (bvFTD)), a language variant please visit the journal online (primary progressive aphasia (PPA)) and a motor (http:// dx. doi. org/ 10. 1136/ neurodegenerative disorders includes a heterogeneous jnnp- 2020- 323520). group of conditions. However, following on from a series presentation (either FTD with amyotrophic lateral of important molecular studies in the early 2000s, major sclerosis (FTD- ALS) or an atypical parkinsonian For numbered affiliations see advances have now been made in the understanding disorder). Neuroanatomically, the FTD spectrum end of article. of the pathological and genetic underpinnings of the is characteristically associated with dysfunction and disease. In turn, alongside the development of novel neuronal loss in the frontal and temporal lobes, but Correspondence to more widespread cortical, subcortical, cerebellar Dr Jonathan Daniel Rohrer, methodologies for measuring proteins and other Dementia Research molecules in biological fluids, the last 10 years have and brainstem involvement is now recognised. Centre, Department of seen a huge increase in biomarker studies within FTD.