Bollettino della Societi Paleontologica Italiana

Pubblicatosotto gli auspici del ConsiglioNazionale delle Ricerche

Volume43, r. 1-2r2004

Proceedingof the ]" MEETITVGOF THE ITALIAIVOSTRACODOL( ,,IIVMEMORY OF GIULIAI{O RUGG Rimini,February I 2-I 4, 2003

Editors: Elsa Gliozzr Antonio Russo

MUCCHI MODENA Bollenino delk Societh Paleontologica ltaliana 43 (r-2),2004rssN0375-7633 l8l-199 Modena,Novembre 2004

Taxonomic diversity of Late Cenozoic Cnheroide: from Island

SteliosGru-oures Dan L. Dnxlnl-oPol Geitonas School Institute of Limnology Yarl

KEY WORDS - Osnacoda, Late Cenozoic, Cytheroidea, Thxonomic Diuersity Indices, ClP,

ABSTRACT - Late Cenozoic osnacod assembhgesof south-western Cyprus offer a unique oP occurred at uarious marine sites during the Upper"Miicene-Lower Plioiine ariund the ishni Ostracodn obtained Kahuiso, and'Nicosia Formations pointed to enuironmen' "Missinianfauna fro* .strong called Salinity Crisis" evtent. This iffirmation is compared to those risnicted on I , and Mari and tli, ,harga in the Cytheroidea ttxocenosit ,Jotu*ent9d throygh a qyta.litqt time two indices of diuersity, the"Auerage Thloro*ic Distinctness (called Delta+ index) and the V index) are used foi the chaiacterisation" of"gtnut,Tnd changesin fossil osnacod assemblages.I"fo*ation on C. tWarwicl the LinnaeAn hierarchy fthe species,the the famifl, following thi Claike and the taxonomic diuersiiy. The results sug{est the occrotice of strissfal ecoTogicalconditions in the ct more Drecisely durini a lowering of1he"reuersal marine wAter leuel where the sampling areA nansfor-Clt tondiiions, fillowed kttr-o, by t"he to an eumarine situation. It is coicluded that the usefal desciiptors for palaeoecohgical changesand should. be more widely used. - RIASSUNTO - fDiversit) tassonomica dei Cytheroidea (Ostracoda) dell'isola di Cipro] in diuerse lncaliti aiU costa sud-occidentale dell'isola di Cipro si uerificArono importanii ca* "studiofossili ad ostracodi di queste localith ffie un'opportunith urita per stidiare le uariazioni palet detle osnacofauie delle l{akiatot e Nicosia hanno indicazioni di im, *Crisi"formaziini fornito collegate alh cosi/d.ena di saliniti del MessiniAno". Si i ttrcato di uertfcAre l'euento si ,onfigrnfrche: , Polemi e Mari; i cambiamenti nelle associazioni titoro*iche a C7 ,r'aialiti qualitat;uZ delle ostracofaune stesse.Per la prima uolta uengono qui utiliz,zati, per ia ostracodi, hue indici di diuersiti' k Oittinzione Tiaionomica Media" (deni anche indici Deln (indice Lambdn+). Le informazioni sulle associazioni a Cytheroidea sono state utiliz,zate.per tre li (1998, e h famiglia), seguendogt; nlgor;nni di Ckrke e lVarwiik 2001) per calcolqo k diuersit, di condiiion'i ecilogiche=\ntiate" nell'Ambiente costierodurante un breui periodo di.tempo, Piil t del mare. L'AreA iampionata si sarebbe trasformata in un ambiente hgunare. salmastro,-suci marine. Si conclude ihe gli indici di diaersiih tassonomica di Ckrke e Varwick siano snumenl paleoambientali, e dourehbero essereusati piil ampiamente per le ricostuzioni paleoecologiche.

INTRODUCTION confirmed Ruggieri's view. For instance evidence from the ostracod fluna, e.g. the occurrence of the Cyprideis^of Late Cenozoic (Upper Miocene-Lower Pliocene) torosaJones corrobotit.t the desiccation modei the ostracod assemblagesof Cyprus offbr a unique oppor- Palaeo-Mediterranean(Benson, 1976a, b) and the ex- tuniry to document the faunal changet occurred planation of this catastrophic event was further docu- yhi:h"Messinian at vanous marine sitesduring the so-called mented for the closure of the connections with the Saliniry Crisis" event. One should recall that the Mi- Atlantic (Hsi.iet al.,1973; Benson, 1976a).Short time ocene ended in the Mediterranean space,with the des- later, in Early Pliocene,the ongoing plate tectonic col- iccation of wide areas and the deposition of huge lision of Africa and Europe allowed the influx of oce- amount of salts (Duggen et al., 2003). A chain of anic water via Gibraltar in this desiccatedbasin, fill- "lago-mare", shallow lakes, so-called with diverse sa- irg it again. This lead to the formation of the present liniry conditions, from hypo- to hyper-saline ones, d{y Mediterranean (Hsi.i et al., 1978). A high number developed in many parts of the pre-existing sea. of publications appeared during the last 40-50 years Giuliano Ruggieri-Melanopsis recognised that the occurrence of in order to understand and bring closer to our eyes Congeria and molluscs during this period that unique phenomenon. Great attention has been .ouft be related to thd formation of shdlo; hypohaline paid to th. tf.t{y of fossil ostracods, among other or- lakes in the Palaeo-Mediterraneanspace at a sea-level ganisms in order to reconstruct the environmental niveau below thoseof the Atlantic (e.g.Ruggieri, 1958, -hanges and the evolutionary palaeobiogeographyof 1967; Ruggieri 6{ Sprovieri, 1976). More geological the Mediterranean realm (e.g. Russo, 1968; Benson and pdaeontological evidenceappeared later on which & Sylvester-Bradley,l97l; Benson, 1976b, 1984; r82 S. GALOUI(AS,D.L. DANIELOPOL

Benson et al., l99l; Sissingh, 1972; Gliozzi et al., organismal and/or super-organismalentities, like the 2002). behaviour of individuals within popu.lationsand/or Authors like G. Ruggieri and R.H. Benson used specieswithin a given taxocenoslswrth clear selected ostracod species as markers for the phylogenetical relatedness.Continuing this line of "lago-m of the are" event (Ruggieri, thinking Benson (1976a, p. 6) proposed to approach characterisation (( 1967; Benson, 1976b). Others like Carbonnel (1978) the concept of crisis through biodynamic strategies or Gliozzi et al. (2002) used entire specieslists with from specificproblems". For this scientistthe study of "biodynamics" characteristicspecies, which could document through changesin living systemsis in the same their origin and palaeobiogeographythe transforma- way that a study of changesin geologicalstructures is "geodynamics". tion of an eumarine environment in different Biodynamics can be approachedat an perimarine environments. Moreover R.H. Benson re- organismal level by the examination of structural constructed historicd eventsin the Mediterranean from changes,which could occur during evolutionary time the examination of morphological changesof the os- or at the super-organismallevel, with changeswithin tracod carapacesof selectedspecies (Benson, 1977). animal assemblages.Both are related to the external In the present contribution, we propose another environmental evolution experiencedby the organisms. rype of information, the changeswithin the taxonomic Benson (1976b, p. 149), followitg Ruggieri'sviews, diversiry of a marine taxocenosis,the important ostra- formulated a precise diagnostic for the biodynamic "The cod group Cytheroidea, in time and space. Our ap- changeswhich reflect an environmental crisis: "classic" proach is a combination between occurrence of Cyprideisin the Messinian indicates a micropalaeontologicalstudies and a statisticalapproach strong departure from normal marine conditions, a 'Warwick recently by K.R. Clarke and R.M. very strong but not total dominance of continental developed 'Warwick, (Clarke & 1998, 2001). Below we review freshwaterconditions". Two other criteria were offered first, conceptual and methodological aspects related further in this publication (Benson, 1976b, p. 150): "If to the ostracod usage for the reconstruction of the the crisiswas real, there should have been an inter- "Messinian Saliniry Crisis"; we further present geo- ruption in the normal rate of evolution of ostracode logical and palaeontological information on Cyprus speciesand more important in the composition of material obtained and processedby one of us (SG) their faunal assemblages".For the former argument and presented in details in Galoukas (1995). The Benson published detailed studies.on speciesbelong- Cytheroidea data is then treated statistically for the irg to various phylogenetical lineages, e.g. the calculation and the representation of the data with Oblitacythereiscase (Benson, 1977). An interruption rwo diversiry indices, the Delta+ and the Lambda+ of in the morphological continuiry of theselineages dur- Clarke & \Warwick (1998, 2001) in order to check ilg ,f. Messinian as .9-pled to the previous time how well these indices can inform us about the envi- srtuauon or after the Messinian was evidenced.At the ronmental changesalready perceived by the paleonto- assembl$. level a strong reorganisationof the species logical information which already exist (Galoukas, composition was documented (review in Gliozzi et al., 1995) and here briefly exposed.Finally, we discussthe 2002). This is representedby the reduction in the "traditional" advantagesto combine techniques com- rypical marine ostracod lineag€s,which existedduring monly used by palaeontologistswith those developed the pre-Messinianin the Palaeo-Mediterraneansea and by neontologists for palaeoecologicaland palaeo- the arrival of caspi-brackishelements from the biogeographical reconstructions. Paratethyr. August Thienemann, one of the prominent lim- CONCEPTUALAND METHODOLOGICALISSUES nologists and biogeographersof the 20'h century, pro- "biozoenotische several ecological rules, called posed 'We The 1967 publication of Giuliano Ruggieri became Grundprinzipi.l', (Thienemann, 1954). will here a standard referencefor the idea that during the Up- mention rwo of them: ( 1) the speciesrichness is high- per Messinian, the evidence of dilute saline environ- est in habitats with strong environmental heterogene- "nor- ments rn what we call now the Palaeo-Mediterranean iry; Q) biotopeswith strong departure from their sea represented,as compared to the former or latter mal" ecological conditions and notorious biological events,a period of environmental crisis (Benson, 1982, stresslead t'-or local reduction in the diversiry of"spe- 1984; Russo,this volume). Benson'sdefinition of what cies assemblagesand a numerical increaseof individu- "a a crisis should be has to be quoted in its entirery: als for few dominant taxa.The generali.yof theseprin- turning point in the functional progressof a system, ciples are well documented (Fkebs, 1972) and could under conditions of unusual stress,when further be nowadays called the Thienemann's rules. They will change brings either restoration of normal conditions be helpful in the present palaeoecologicalcontext to or a collapse of the system" (Benson 1976a, p. 3). interpret the ostracod data presentedbelow. "the This author further notes in his publication that: The study of complex changeswithin large land- concept of crisisis diagnostic...itrequires value judge- or hydroscapes forms nowadays the domain of ments about progress,normaliry unusual stress...".The Macroecology (Brown, 1995). The diversiry of animal latter two concepts pertain to the dynamics of assemblageswithin such ecosystemscan be defined by TAXONOMIC DIVERSITY OF LATE CENOZOrc CWHEROIDEA 183 the statisticalproperties of the ensemble.For instance, til(onomic distance or distinctnessweight. The average the individual frequencies of animal speciesare re- taxonomic distinctnessor diversity can be seenas a lated to the number of speciesin the assemblagesand generalisationof Simpsont diversiry index ('Warwick 6c these relationshipscan be representedthrough proba- Clarke, 2001). This index allows comparisonsberween bilistic mathematical models and various statisticalex- presence/absenceof speciesin assemblages.\7e usehere -Indexpressions known as diversiry indices. The Simpson's ipecieslists for characterisationof an assemblagefollow- is one of the well-known diversiry metrics also i"g the idea of Botkin et al. (1979). These authors used for fossil ostracods (Pokorny, 197l). The index -formation,po-intedout that a specieslist encapsulatesenough in- measuresthe heterogeneiryof animal assemblages,and which can characterisespecies assemblages or it expressesthe probabiliry that two individuals picked can give us information on the structure of ecosystems. at random belong to same species.Diversiry indices Warwick 6r Light (2002) point out that specieslists of "spatially can be used at various levels of the til(onomic hierar- the averaged"death assemblagesof molluscsin chy, from the species level to the suprageneric ones Britain reflect well the living assemblagesof the sur- (Tokeshi, 1999). For the reconstruction of the ostra- roundirg sampling area.Hence we consider that the cod diversification during the evolutionary time, ostracod lists we will use in this study are representative \Whatley (1990) used the ta(onomic diversiry of the of the ostracod assemblageswhich existedduring vari- main phylogenetic groups, the Cytheroidea and the ous geologicalperiods. Cypridoidea. Whatl.y't approach was to represent the Variation in Thxonomic Distinctness (VarTD or evennessof the taxonomic numbers of ta>

IN Text-fig. I Geological map of Cyprus Island with the main ++++ d.positional + sub-basins (after TROODOSMASSIF +++++ +++ Robertson et al., l99l ) and the + LEGEND location of the POL PLIOCENESEDIMENTS studied sections sus-snN .Fr - IMess) (AM Amargeti, MIOCENE.PLIOCENESEDIMENTS PO - Polemi, - YERASSA MARI MESSINIANSEDIMENTS MA Mari); I ggg_g4gs1r1(ptio) 0-10 Hnrns_snlNEANf;)X dashed lines: km 1 MAVRr TROODOSMASSIF SUB-BASIN--ir',rIb-Iilb) ;;^;LINEAMENT major faults of STUDTEDSECTTONS (THtS STUDY) south and west Cyprus. r84 S. GALOUI{AS,D,L. DANIELOPOL

family is representedby l-2 genera and these test to detect differences in the average and/or'Sfarwick the each variation of taxonomic distinctness(review in ones by l-2 species(Thbs 3, 4). 6c Clarke, 2001). A 95o/oprobabiliry funnel, using "master 5000 random selections from a list" allows GEOLOGICALBACKGROUND to verifi, if the observed data of various samples significantly depart from sub-samples^randomlywith an equiva- The generalgeological structure of the island con- l#t ru-blt of tp.cies extracted from the sists mafnly of ifneous rocks at the bottom, followed master list. In oui casewe used the total til(onomical upwards by sedimentary formations of different com- list of the nine sampling sections(153 species,cf. Tabs ^position and ^ge. The oldest geotectonically autochthonous Part of 3,4). "stressed" Analysis of marine nematode fauna from Cyprus is the Troodos Vtasiif (ophiolites) of^Creta- (anthropogenicallypolluted sediments)on. the British ceous t1e, Campanian or older (Text-fig. .1). coasts (\Tirwick & Clarke, 1998) showed lower val- During early Tertiary times relatively thin_ (tent _of ues for the Delta+ index as compared for the values metres) pilagic carbonateswere deposited along th. "normal" obtained from (unpolluted) benthic habi- north mlrgin qf ,lt: while at the "stressed" Io9d9t^:phiolite, tats. Data representativefor environments same ume much thicker (> 1000 m) successionswere had values laying outside the 95o/osignificance values depositedin tectonically active basinsin south Cyprus of the simulated-sub-samples.Therefore, the 95%osig. as the Maastrichtian-Miocene Lefkara Formation "funnel" nificance line of the representsa well-defined (Mantis, 1970; Robertson, 1976). In the Oligocene, "objective" criterion when one intends to set the lim- during a time of relative tectonic quiescence,a gtadual normal and stressedecological systems. shallowi.g of the Troodos Massif took place (Uppgt .Weits between will use it here for the Cyprus ostracod data. Lefkara Formation) (Mantis, 1970; Robertson, 1977). In order to better illustrate the meaning of the rwo The Neogene evolution of Cyprus is markqd by .^ til(onomic diversiry indices we present below an ex- fundamental-change in sedimentation, from relatively ample extractedfrom the sample Polemi 10358 (T.Tt- uniform pelagic cirbonate deposition (Upper Lefkara fig. 5, Thbs 3, 4). This sample originating from the Formation), to much more varied carbonateand clas- Aihalassa Formation was dated as Pleistocene tic sedimentation in tectonically controlled small ba- (Galoukas, 1995) and is representedby eight species sins borderi.g the Thoodosophiolite (Pakhna Forma- belonging to six genera and five families. Four of the tion) (Robertlon, 1977). This early to late Miocene generi hive one specieswhile the others display rwo sedimentationtook placethroughout central and south species.The probabiliry thqt randomly extracted, rwo Cyprus, south of the Ovgos-Troodos fi'ult, and-probably also specieswill belong to different superspecific taxa is covered much of the oPhiolite areas tfty high, hence tKe .'alue of the Delta* index is also (Robertson, 1977). higlr, i.e. over units (lrb. 4). The value of the On the top of the Pakhna Formation (Text-fig. 2) . . 90 - vanauon ln taxonomlc distinctnessis low becausethe lie evaporitic lithofacies of the Messinian Kalavasos evennessof the five taxonomic lineages is high, i.e. Formatlon (Eaton, 1987; Follows, 1990a).In the lower and upper parts of the Pakhna Formation, interstritified ieefal units are exposed (Eaton, 1987; Follows & Robertson, 1990; Follows, 1990b), belong- LITHOLOGY FORMATION ing to the Aquitanian-Burdigalian Terra Member and ATHALASSA (Robertson et al., PLEISTOCENE KAKKARISTA Conglomeratesand Sandstones thE Tortoniah Koronia Member APALOS 1991). The Pliocene of Cyprus is representedby the Marls. silts. muds. sandstone. PLIOCENE NICOSIA Nicosia Formation (Text-figs. 3-, which starts with conglomerate - locally exposed (e.g. Mari area) basal Pliocene silts unconformably over-lyingMiocene evaporitesand marls KALAVASOS Evaporites (Robertson et al., 1991), and continues with relatively <- UPPER *o*o*to ! Reefal and bioclastic , stable deposition of marly sediments. MEMBER \ limestone \ gl The Nicosia Formation is coveredby bioclastic sedi- z rYl U Pelagicchalks. marls. ments of the Athalassa Formation, which is locally MIDDLE PAKHNA = calcarenites.conglomerates unconformably sitting on it. The AthalassaFormation is laterally equivaleni to the Kakkaristra and Apalos LOWER ;-*? @ (McCallum MEMBER' limestone Formations ln south Cyprus , 1989; McCallum & Robertson, 1990). Later in the Pleistocene, all the circum-Thoodos Pelagic chalks and marls OLIGOCENE UPPER LEFKARA sedimentary basins are covered by coarseconglomer- ates, which overlie all older formations. Thus- drastic updomitg of the toodos Massif took place duling Text-fig. 2 Stratigraphic nomenclature of the Neogene of - Cyprus (after Robertson et al., 199 I ). t6e Pleistocene(Robertson, 1977) which may reflect TAXONOMIC DIVERSITY OF LATE CENOZOrc CWHEROIDEA 185 the initial underthrustine of thinned African conti- with an unknown thickness (t 10 m) of soft foramin- ^rea is thought nental margin crust, implying-East that little fully oceanic iferal marls.The baseof this unit in this crust still pErsistsin the Mediterranean seasouth to be of earliestPliocene age (Robertson, 1977). of CypruJ (Dixon 6{ Robertson, 1984). Radiometric Overlyitg the Nicosia Formation are found loc"lly dating of corals in coastal terrace deposits indicates gravels,sand-s, pebbly sandstonesand sandy limestones that iapid uplift was over prior to Holocene times irtri.h contain reworked microfossils and clasts of (Poole-et al., 1991), when the modern toPograPhy Thoodos basic igneous rocks. These.are assignedto the was attained. Cyprus is still a seismically active area. Quaternary, iniluditg also a small travertine deposit in the southwest of the area. BIO-LITHOLOGICALDESCzuPTION OF THE The three samplesused here (Text-fi g. 3) were dated SECTIONSAND SAMPLES and interpreted uJing Foraminifera and cdcareousnan- noplanktbn studied 5y Radley & Mondejar-Marchante AvancEr (A) (1990) (Tab. 1). Sample 10351 to laminated foraminiferal marl Amargeti is located in the southwest part of 9/pt,t: Sofu pale blocky (Text-fig. 1). The samplesfor this areawere collected (Nicosia-rype) fills a small channel-like structure 1 m along a traversewhiclr consists of a southwest-north- deep within massiveweathered rypsum. A sample was eastirending section through the southeasternmargin coll-ectedfrom this marl. of the Polemi evaporite bisin, near the southeastern Sample 10347 termination of the Polis Graben. At this localiry, a gypsum boulder bed is observed The oldest seolosical unit in the areais the Lefkara overlying the Kaiavasos-Formation. Northeast of this (with containitg Formation (Teit-fi i Zl which comprises bioturbated bed a marl sequence a sandy_marl foraminiferal chalk- and whose age ranges from Late charophyr. oogonia) in^cluditg. intraformational brec- Cretaceous(Maastrichtian) to the Miocene (Robenson, clas was ,..orJ.d and from tFit sandy marl a sample tg77). was taken. Following upwards, fossiliferousmarls, chalks and Samph 10344 thin (turbidltic) calcarenitescan be found belongi.g Thesection here contains 3 m of shelly bioturbated to the Pakhna Formation. Hard micrites with Nicosi a-rypemarls (from which a samPlewas collected) Discospirinawerefound near the top of this unit, which with sandy lenses,overlain abruptly by tpproxima,.ly is probably entirely of Mid to early Late Miocene age 3 m of iriegularly bedded gravels (locally cemented), (Robertson,1977). calcareoussindstones and clayeysands, with stringers The Pakhna Formation is overlain by more than 7 of matrix-supported clasts. m of laminated, brecciatedand massiverypsum, with hard laminated limestonesand marls at the base,com- Pomvr (P) prising together the KalavasosFormation. Accordi$ to Robertion (1977), these evaporites belong to the The studied area is around the village of Polemi, Late Miocene (Messinian). which is located in the S\f part of the island and The KalavasosFormation is overlain by more than about 15 km NE of .Geologically, the are is 3 m of marls containing large (,tp to 2 m) boulders of -placed in the Polis Basin (Text-fig. 1). of Messinian the Kalavasosrypsum ii thJ lo*br part and the ag. 9f In general, the sequencec.onsists this unit assumed to be latest Miocene or early evaporitic deposits (KalavasosFormation), occ.uPyilg Pliocene. the^Polemi Basin (Robertson, 1977) and overlain by The next unit upwards is the Nicosia Formation Pliocene marls (Nicosia Formation), with coarse

SAMPLE NANNOFOSSIL FORAMS AGE ENVIRONMENT ZONE ZONE

1035I ,l G. margaritae Early Pliocene open manne ,l t0347 Late Miocene - Late Miocene - restricted marine Early Pliocene ( ?freshwater infl uence) Early Pliocene Tab. I - Chronostratigraphic t0344 ? Late Miocene - Earliest Pliocene outer shelf to data for the Amargeti samples based on Late Pliocene bathyal marine Foraminifera and calcareous nanno- lateral equivalent of (shallow?) marine 10341 No markers No markers plankton (after (reworked ?) (reworked ?) the gypsum boulder bed Radley & Mondejar- Marchante, 1990). 186 GALOUIAS,D.L. DANIELOPOL

AMARGETI POLEMI SAMPLES AGE LITHOLOGY SAMPLES AEE UTHOTOGY Or ro rr)s (t) ct { ATHALASSA o PLEISTOCENE I ronvATroN PLEISTOCENE I f o ry t \o I') ct ct

$ €l (q rJl ol (q q €u) F{ !t lO o I PLIOCENE (O C'

! (r) ct rD t i:i:i:ilfi o r\ c, I H (t) \ ct (a ?PLIOCENE lr=< \ :::::t+ lO \:/L E" cts S It \o (t \ rt (q \ q ct NIC ollA l, rt€ FOl,lfvIAIION I (t € s*l o I t'*l I t\ PLIOCENE N I I UPPER ct tt) MIOCENE < o ol ! (O c, .qI q -/ Fl t\ { l') E (Yt o €.O -/ ct -/ (t -/ (qut o rO q (? Fl cl MIO/PLIOCENE < (r) ta) Or *r o t \c (o \ 3t o MIDDLE ct MIOCENE € (t) (til o c, KALAVASOS q ,-1 tr/-\Di, ,\Tla-\Nl MESSINIAN | \-,rt\l N n) rO (t) .t o o

Text-fig.3 Stratigraphy of the Amargeti section, including the Text-fig.4 Stratigraphy of the Polemi section, including the number of the sampleunits (from Galoukas, 1995). number of the sampleunits (from Gdoukas, 1995).

bioclastic limestones of the Athalassa Formation on Green/buff fine-grained marl that weathers grey. the top (Text-fig. 4). The four samplesused here (Text- Sample 10355 fig. 4I were dated and interpreted using Foraminifera Buff, coarsegrained bioclastic limestone with cor- "id calcareous nannoplankion (Ttb. 2l studied by als, oysters and Pectenpresent. Outram 6{ McCarthy (1990). Sample 10354 Mnzu (M) A marly rypsum bed between rwo gyplum beds. The marl wis white, soft and fine-grained and was The Mari section is located between the coast and sampled in the belief that it is the top of the Kalavasos the main road from Limassol to Nicosia on the south Formation. coast of Cyprus (Text-fig. 1). It may be considered Sample 10355 represetrt"ti'neof those sJdi-.trts that have been de- Thia is a sample taken from a fine-grained creamy posited in local, tectonically controlled, subsidi"g b1- white marl at the same height as sample 10354 but sins that adjoined shallow areasof small islands with further to NE. This sample was taken for correlation fringing lagoons, reefsand shoals. of the rwo samplesand (due to its position at the base The Miri section (Text-fig. , consistsof approxi- of a faulted block that was capped by Nicosia and mately 35 m of homogeneous, in parts heavily Athalassa Formations) in an attempt to find out bioturbated, green-grey clays, grey-brown silts and whether this marl was at the base of the Nicosia or sands, overlain by approximately 15 m thickness of the top of the KalavasosFormation. conglomerates,aeolian dune sands and thin-bedded Sample 10356 silts. In the fine-grained sections,the transition from ruXONOMIC DIVERSITYOF LATE CENOZOIC CWHEROIDEA r87

SAMPLE NANNOFOSSIL FORAMS AGE ENVIRONMENT ZONE ZONE r0358 Poor N9-Recent Middle Miocene - Inner shelf Recent (highsalinity ?) Tab. 2 - Chronostratigraphic r 0356 Late Miocene N l6-N2I Late Miocene - Continentalshelf / data for the Polemi Late Pliocene Outer slope samples based on Foriminifera and 103s5 Sparsemicrofossils N l9-N2l Pliocene Continental slope ca lc a r e o us I 0354 Poor No Forams Middle Miocene - Brackish,Estuarine nannoplankton (after O utram 6( Recent McCarthy, 1990). the clay to the silt was noticed to be gradual in places, dominates sample 10347 representing 86.50/oof the except-from the upper silt which overlies the silry clay specimens.There are only fotl non-cFthe.roid.species with an irregular boundary. belongitg to the genera Polycope, Cytherella, and The wholle sequenceis dominated by both intact Bythofi,pr\s.So, the"most probabfe depbsitional envi- and broken shells-of bivalvesand gastropods.Vertical rotr-.nt for this samplewbuld be a brackish one with burrows containing wood remains and laminae of or- moderate marine influence. ganic material are shown in the brown clayband. These Next, in sample 10351 brackish conditions with horizons seem to be strongly affected by diagenetic marine influence are shown by the imponant num- processes(responsible for the formation of layers and bers of Cyprideisvalves (indicating brackish conditions) iensesof iron oxides, which eventually destroyed the accom p an i ed by Loxo conc h a, Callis toclth ere, ostracod fauna in places).Also, the oratrBe,fine-grained Monoce^mtina,Xestoleberis. Only two caraPa..t of a non- sand horizon, which is placed between the two irregu- cyrheroid (Argrlhecia acuminata Mueller) were sampled. lar boundaries,just below the conglomerates,is lami- Then, a deep marine environment is established nated, slightly bioturbated and lessaffected bI, diagen- (Galoukas, 1995), *hich is gradually transformed into esrs,contalnitg fragmented and intact shellsof bivalves, an environment (sampl. 10344) with almost conditions (Ob litarytbergismediterranea aJ'gastropods and scaphopods. psychrosphaeric The age of the^Mari sequenceis supposed to be Benson,- Henryhowella asperrima Reuss). Not a single Early Pliocene(Pavlakelli, 1986). Three samples,9428, valve of the characterisiic psychrosphaeric ostracod 9429 and 943I, (Text-fie. 5) are examined from the species Agrenoqttherepliocenica Seguenza was found. section. The generally low densiry of the ostracods Iieside Cytheroidea til(a there are 1 I non-cytheroids limits the ualile of the results to the specific basin belonging to the genera Cytherella, Byihocyp.ris, only. The environment interpreted for the lower Parts Argilloecia Pontocypris, Paracypris, and Pontocyprella. of the section (where the above samplesbelong) is a deep, open marine environment with an autochtho- Pou,ul (Text-fig. 4) noui fauna. More specific"lly,the boffom of this faulted (10354, 10356, and basin is believed to correspond to continental slope In the four samples 10355, 'W'ith depth (lower part of the Mari sequenge),with a tem- 10358) examined, cilcareous nannofossilsoccur. peiature higher than 10"C (thermosphaericbasin, i.e. the exception of sample 10354, benthic and plank- iepth <50d'm). The section has ttof been studied for tonic Folaminifera have been reported as co-occur- plinktonic foraminifera and calcareousnannoplank- ring-As with the other microfossils. ton. can be seen from lhb. 3, there are (with the exception of 10354 and 1035, very few common RESUtrsFROM t"t#tt?IrloNAl" sruDYoF ostricods in any two adjacent samples.This fact clearly indicates the ,rertical derrelop*ent of different envi- ronments through the section. The less speciesfwo AunncErt (Text-fig. 3) adjacent samplei have in commor, the more _llkely thesesamples represent different environments. Using The distribution of the cytheroid ostracodsof the this princlple, one environment should be agfepted threesamples (10347,10351 , and 10344)is presented for simple 10354, which is then slightly differenti- in Thb. 3 and additionally data are presented in ated in sample I 0355 with the development of a Popu- Galoukas (1995). In thesesamples, ostracods were as- lation consiltitg of many of the speciesaPPearitg in sociatedwith variable ratios of calcareousnannofossils, 10354 plus some new species.The majgr comPonents benthic andlor planktonic Foraminifera, accompanied of these samples ere speciesof Leptocythere,Cyprideis, in some caseswith fragments of other fossilslike echi- Tynhenocytltere,Loxocauda, and Loxoconcha.Addition- noid spines (samples 1035 1 and I 03 47) and ^ily, Canioninae specieswere noted (Galoukas, 1995). charophytes (sample 10347). Cyprideis torosA Jones Outram & McCarthy ( 1990) gavein their study based 188 GALOUIAS,D. L, DANIELOPOL

other with Tyrrhenocyt/tere,Leptocythere (Amnicythery), Pontoleberisfurther north-east (sample 10355). Addi- tionally in sample 10354 a diverse subassemblageof Candoninae belongitg-(Galoukas, to Pontoniella and CamptocyPrya were identified I 995). Loxoconcha (Loxocorniculina) djffiroui Schneider as well as vari- ous other Loxoconchaspecies and Cyprideistorosa Jones were living in both ecosystems._ The genus Tyrrhenorytherefirst appe.arsin _sample 10355 wlth a largenumber of valves(Thb. 3). Sissingh (1982) suggested-Tyrrhenoqtthere as an immigrant when he found li in an assemblagewhich is very similar to the one of the present study, but its quantiry here is far higher (showing also a good balance berween leftl right valves)and therefore it should be indigenogs to that environment, together with Loxoconchadjffiroui Schneider and Leptoqtthere(Amnicythere) litica Livental. The favourite environment of the latter is a stenoha- line one (saliniry about l2-l3o/oo)with a temPerature of 15.5-16"C (Carbonnel, 1978). From the present data it is inferred that the rwo ecosystemswere rwo "lakes" warm, saline with that of 10354 being less saline as suggestedalso by the presenceof the rich fauna of candonids (Galoukas, 1995). The existenceof planktonic Foraminiferain sample 10355 (Outram & McCarthy, 1990) may reflect ei- ther: (1) that the ecosystemof this sample was a la- goon connectedwith the open sea,or (2) that it was a lake but somethitg rapid happened,(..g. eustaticrise of the sea-level,or tectonic activiry) and there was tempo rary influx of open-marine water. If this h"P- penid, the rise of sea-leveldid not have any influence in sample 10354 probably becauseit was situated as at the present day-higher than the level of the sample 103 55: Also, the fact that no Pontian ostracodshave been recoveredfrom oFshore samplesDSDP west of Cyprus (Benson, 1972a; Carbonnel, 1978) probably Text-fig. 5 - Stratigraphy of the Mari section, including the indicates that the sampling areawas completely dried- (from "lakes" number of the sampleunits Galoukas,1995). up at that time, which means that the Polemi were closed to the west (where the DSDP coreswere "crisis" on Foraminifera, a environment for sample collected). Concerning the agesof these rwo samples, 10354 of uncertain age and an open ocean contlnen- their speciescomposition indicates (Thbs 2, 3) a tal slope environmeni (with more inner shelf influ- Pontian age for both samples. ences)for sample 10355 of Zanclean-EarlyPiacenzian Going-further up in the Polemi section, the ostra- (N 19-N21) ^gr. Since they did not give any further cod fauna indicates a thermosphaeric environment "crisis" explanation of the sort of it is taken here that (Galoukas,1995) while a little later,in sample 10356, they meant non-marine conditions for sample 10354, a sudden strong app earance of fully marine which is supported by the ostracods. Further, for (psychrosphaeric)ipecies is shown; they are thought sample 10355 ostracodsgive a much shallower envi- to be of Pliocene age.A diverse non-cytheroid fauna ronment (littoral) with brackish conditions and fresh- with various Argilloecia, Paracypris, Bythocypris, water (continental) influences.These freshwatersigns Macrorypria, Cytherella,and Polycopetaxa were identi- may very well be the remains of an earlier or adjacent fied (Galoukas, 1995).This associationhas many simi- continental environment (sample 10354). The option laritieswith both the assemblagesof the sameage from of an adjacentcontinental environment is adoptedhere neighbouring areas and Dhrymou (Galoukas, since sample 10355 was collectedfrom the samelevel l9f1il and tf,. assemblagesthat have been recovered as 10354- but further to north-east.This means that from an off-shore DSDP core (Benson, 1972a). two rypes of ecosystemsexisted at the same time but One of the abundant species,e.g. in the sample in different locations, i.e. one ecosystemrich in 10356 (T"b . 3) is Agrenocytherepliocenica Seguen- Euxinoqtthere(sample 10354) in one place, and an- za, indicative of psychrosphaericconditions (i.e. At- T,4XONOMICDIVERSITY OF LATE CENOZOrc CWHEROIDEA 189

"TAXONOMIC lantic cold, dense bottom-waters with temperatures RESULTSUSING THE DIVERSITY' <8-10"C). The sudden faunal transition from warm APPROACHOF CI.ARKEAND \rAR\7ICK non-marine ( 15 .5-I6"C) to deep cold marine (.8- 10'C) speciesat the beginni.g of the Pliocene, Thb. 4 and Text-fig. 6 present information on the shows a rapid change in the environment of the til(onomic diversiry oFth. i"-ples from the Amargeti, Levantine Basin which is in full accordancewith what Polemi and Mari section. With the exception of the 'Western happened in the Mediterranean basins (the data for the sample Polemi-10358 (P4), which was for the demonstration of Balearic and the Tyrrhenian B.) at the same time used in the previous section'Warwick's (Benson, 1972b). This transition happened possibly the way the Clarke and algorithm work, as a result of an influx of oceanic waters (with the the otlrer nine data sets will be here described. opening of Gibraltar), which filled up the pre-existing "lakes" Messinian and re-establishedthe marine com- Avnncerr munication between the Polemi area and the sites of the oFshore drilling west of Cyprus, allowing devel- The cytheroid speciesrichness varies between 27 opment of a uniform cold, deep-waterostracod com- speciesin the samples 10347 and 10344 (Al and A3) munlry. ahd 11 speciesin the sample 10351 (A2). In this lat- ter sample the number of genera, both the Gr,, and Mezu (Text-fig. 5) G. onesl and the number off"-ilies is markedly'lower thin in the former rwo samples.The value of the av- The three samples examined (9425, 9429, and erage to(onomic distinctness (the Delta+ index) for 9431) contain moie or less equal numbers of left/ thJAl and A.3 is higher than those of the A2 sample. right ostracod valves, which are very uniformly dis- Ar opposite trend is visible for the values of the varia- trlbuted, and few carapaces(Tab. t. In geneial, in tion b-f taxonomic distinctness (the Lambda+ index), this section there is an almost uniform distribution of i.e. the A2 has a much higher value than those of the the ostracodsin the samplesindicatitg probably rela- other rwo samples (T"b. 4). The values of the both tively stable conditions through the time when the indices for lr2 [ay outside the 95o/oprobabiliry funnel sampled sequencewas deposited. The association of Graptorytherehsripta Capeder, Aurila conuext Baird and Loxoconcha ouulata Costa forms a very distinct group throughout the whole sec- Mr,M2 _ M3 olo tion. Aurila and Loxoconchaare known to inhabit shd- + Ar.Ar low marine environments while Graptocytheredeeper o /a ones. Additionally valves of Cytherella,(e.8. C. terquemi A2 (Galoukas, 1995). A pos- Sissingh) were also present o sible explanation for this phenomenon is the trans- Pl'Pz portation of the shallow water speciesinto deeper wa- 0 25 50 75 100 t25 150 175 ter either by currents or by tectonic disturbance.The Numberof species quantitative distribution of the valves (T"b. 3) and the right/left valve balance of the shallow water _spe- cies are indicative of the autochthonous nature of the rather than of the deep-water tOfi) shallow water'We species, assemblage. suggest therefore ("t least for the \ 800 i p,.p, samples 94Zg and 9429) the existenceof outer neritic \n,o conditions. ! 600 \ ' In later samples (Galoukas, 1995) the presenceof S 4oo Ar.Ar additional deep-water speciesis observed, indicatitg Mr.Mz O as an assemblagea depth of approximately 500 m but 200 not psychrosphaeric due to the absence of cle arly 0 psychrosphaeric species like Agrenocytherepliocenica 0 25 50 75 100 t25 150 t75 Seguenza. Number of species Th. palaeogeographicsetting for the Mari section as concluded from the above information, fits with Text-fig. 6 Thxonomic diversiry of the Neogene Cytheroidea frory Amargeti (A), Polemi (P) and Mari (M) that proposed by Pavlakelli( 1986) accorditg to which sections; upper panel - The average taxonomic the iegion was a small faulted basin during the distinctness (Delta+) for the various samples; Cy - Pliocene, with shdlow calcareousplatforms immedi- Total species list; lower panel - Variation in - ately adjacent to it (including samples9428 and 9429). til(onomic distinctness (Lambda+); dashed line mean, thin line - probabiliry of the Mari Basin in the the simulated 95o/o An easr'wardshallowitg funnel for the expected range of Delta+ respectively Pliocene, followed by erosion is also suggestedby Lambda+ values; assemblagecode as in Thb. 4 (Al, McCallum (1989). M, f\3,PL,P2, P3, Ml,,M2, M3, Cy). r90 S. GALOUIGS,D. L. DANIELOPOL

J

@ ro E. \n crt o F O O) c\I l:. ,; J (o (0 (o C\I K) E. (r) ra o .EF () LO o J cf) O) f:. cf) (t) o rO cf) q.) o |.r) E $ O) c\I c\I CN (rt o cf) V) F C) N LO J @ N ol c\l rO ol t ot O) lct E. tf, rO (D o F O q)E (o J . .-i cf) cf) N q.) F E bo (Yt sf o) O

J $ >\ (t) L CD E (E N C) sf = CD () (J cf) cf) J $ $ @ E N X sf CD O qJ

J sf >- sf E c) o v) OJ .E F O o cD J L N (E F ro (r OJ (r) v) E cf) C\I o v) F O cf) cf) N U

J (t) c\l cf) cr) N sf (r a,) (D o c\I F O c.) (,>-

q.) rL c S o .\ (! E rii o o .9 to 5 { F o t4 e x s o o G o .g tr c 5 s q 5 t! rili g o G P (J s o o N s o s .E ta .9 14 o IF E E s tB \t u) N a C') Fr F. o o € c F g 't c I tr s = () o o .$ s s s I {.b E = to G E o s € e o c 5 c G a o s G 5 E s tr: o o o ci ci ci ci ci ci ci I g to .L \ e tr c o tr: € o bs,G G o E o a. a 3O B to ro to 1r, to B o E s s E E g s to o z f.) G € € a G G a G (! a a G (! a (! G a r! G a a a G G f s e e s € € q € c G € € € q € € q € c € € c € € \ t a g g qJ o I s o o o o o o a o o o o o o o o o o () o () E ssS o o s s s s s cIF crb a a o G f I I I I o c s tr s s tr s s s s s s s s s s s tr s s UJ o s P a G (! a a a o o o o o o o o o o o o o o o o o o o o o o .g \ \ o g ( o o o o o o () o o o o o o o o o o o o o o o o o o o o o I e .g .g o o o o o o o o o o o o o o o o o o o o o o o o o o o l- o e c c x x x E s rH rh o x x x x x o x x x x x x x x x x x x x x x x x x x x I o E E o o o o o o o o o o o o o o o o o o o o o o o o o o q J -l -l -I -l -l -t -l -'l -l -l -l -I -l -l -l -l -l -t -l -l -I -l -l -I -I -l -l o T fl s o o o

I j F N N cr) $ LO (o fr. @ O) o c\l cf) $ rO F (o N f- @ c4t o) o N CY) $ rO (o f:. @ O) o cl co z N C\I C\I N ol N o C\I o C\I N o N cf) tl r-'r TAXONOMIC DIVERSITY OF LATE CENOZOIC CYTHEROIDEA 19r

J @ro (r CD o F C) C\I (o N J (o c\I O) u) (E cr) o '= F () F- o J o ro o. rO E, N (r) o F ()

J sf lc) cr ct o F O

J N F (r c) .f CD ()

J

L CD E G N -f = o) O C\I J ol @ cr sl sf o) O

J sf sf tr (D o F O tto ctl J L- F (E ro E GI E o l- O

J

N sf E CD o F C)

to ii t! $ rb s rb s G o G s s rb o o E a o o I - G G o \ s G G x x .s s \ o o o s .s s .9 s 3 G tr a s E g E s o E G E € F o .s I T1 o T I a. a o E, .9 u, N rb o g .g a o E F e a \l o o \: ci. lrJ E .g c .o E N .b s o s F .g 30 ol E G G o * ...s E o o a o s .g o € .g ci sl f o 3 .\ s s \ s rh E o ol E B \ E E tt *.1 t E E E E E E E UJ E GI o I G a o o 5 I I I s o B a o .sx e e G o \ \ J G I q o \ E E E E c \ t t t \ €.h E .h g o o f.)l rha 30 rb rb E E o1 I .sla o o s o o o o o o o a sl .s t \ t t S s c c C ? \ ol C srH rts rh. .b iha o1 c .s .s cl o o o rb b - o s .s .s .Hl o Ni s o s TI o €l a\ \ \ sl o o s s s s s o E ()l rha o$ o$ o$ s S S s u G \ \ 5l € o .g .g .g .g .g .g s o1 5 o \ gt I U e e e r}| c c ol \ \ sl ol s F €.h ol

I j t LO (o N ro @ (0 N cf) rO (o F 6l a) N cr) s O) o € c\I s f'r. @ O O) o N CV) $ cO z cf) cf) cf) o cf) cf) cf) cf) o cf) o cf) $ o $ o $ $ $ $ $ $ $ o s o rO o rf) rO rO rf) J r-i r92 S. GALOUIA.', D.L. DANIELOPOL

J @ro tr (v) o F O $ $ (o o) o J (o c\l ol (o cv) c\I s @ (o @ u) E. rO N C\I c, o cf) CY) ? F O F- -9 J o to o. ro E a) o F O

J sf rO tr crt o F O cf) cf) J CY) cf) F CT ct t o) O

J cf) L o) cr (E N sf = CD O cf) J

@ cr sl sf ct) O $ s C\I 1t'- s @ ct) J sf lt'- cf) lO sf E (vt o 'E F O o cD J L- F (E lc' E CO E o F O

J

N sf E (r) o F O

(! o E s s g a s G ga .g I a \ E os to x .g s 's .- .g E s rb G o .E s o o t E := o .E tr $ { s(! :=r .E o o s o F a o o .E a tE o E g a .g ta to E o .g .E o E := E .g a s .S I a s 10 o g .E E \ G E .h s o1 -1 G .g E o s s cl E .g E o -l o S llJ a E .o x o rbl E E o s tr \ o S G € c s g I o o s .\{ ol E g a o (tt E rh S S S s o o o F € crh fl o s .sl a. s t o E rH o s s o \l o o o F o o € g ol \ \ S E 3 S o s o b - o .t: s o a E ci ci f.) € .s s o ot \ .El () 1r, ol o o \ a. .E c \ o g o sE o a o o E E a a a o I o o () s s \ cl o) .E o o o o o o o o o o o o \ .sl s 10 s s b ol s \ ol F S c c c c c c c g g rb €rb IE IF .b .b rb rb s q T ! s c ol o s g I tr) .Ts s s 't 't s't s ss.g .g o a a a g UI 5 E :T :r :tr :tr :tr :\ It- :r :r a. q Y Y Y Y Y Y Y Y Y Y Y Y Y s 8lI I ol o o E ,I ,I sssls o o a. trl v s

I j o F sl t r.o (o ro f'- (0 @ N o, @ o o) ol cf) $ F rO (o l'- @ o) o ol cf) s rO (o (o (o ;- lt- (o F o (o (o (o (o co z o ro lO o LO o LO o LO () o O @ o O @ o @ f'- 1t'* f'- f'* f:. lt'- N r" l- TAXONOMIC DIVERSITY OF LATE CENOZOIC CYTHEROIDEA 193

J € ro tr cl o F O C\I $ LO J (o cf) (\I N lO tr ct o F O

lt- LO ? J C\I F- rO u) cr N cr) -9 c, o o o. F O lO LO $ O) rO o J cf) sf N Ir) (r N cf) (? o F () N J C\I F CT (Y) sf CD O

J c) L CD E (u ol sf = o) O C\l J

@ E (\l sf o) O N J sf sf (r ct o F () Fo E'| J L (E l!-u) (r ctt E o F ()

J cf) N sf CE (r) o F O

s s I s e s o I G o a € ii s a 't s e g s s s sa *.I .s o x o a o o a E s s a o (! - * s N cr) u) o I T E 3A I I s i. F. € o o s .9 $ (! .\ E o tr g o a rb € E s a o a o G Fr (r! \r E ci ci (!E o s o s e F s IJJ E 10 10 .g .s€ .g 3 o E E B B I .t: E ci *. o N o c € E .s s a o \: s t tt, to ah () E E E E E E E o EI G \ tr u, o o o E E B * F S o o o o o o o o ol o B c E E E E E E E e E E E E E E E E u) s s €IE € s s rb s o SI o o o o o o o o o o o o o o o S] o o o a \ E G c s \ \ 'h. €rh rF rL rha 'rl G o E. o s S s s s rb €rh o () o o o o o s ol 'tr 'L-s .T o s1 C.ts E E. E. E, E.\ B {l g o o o o o (f o o o o o ?.) C! o F .Ql s I e s s e (J o o \ I a\ \ T \l el o o o o o o o { .a .b rb rb rh IE IE rb s S EIE E E o. g g s .g e s s s s I s e s :tr UJ sec c o s I I s I s B s I I I s s s s s $ Y J -ll -l -l -l -l -I -l -l -l -l -l -l -l -l -l -l s {l t { { 8lI I I I I I I - s s

t o c! cf) j ol F cf) sf rO (o sl cf) rO (o @ l:. @ O) o IIJ c\I N @ ct o) o OI $ l'- O) o o o o eO z f'- o f- 1t'- @ IJJ @ @ @ @ @ @ @ lU @ llJ @ O) O) o) o) O) O) o) O) o) o) r-( 194 .'. GALOUIAS,D. L. DANIELOPOL

J € lr'l) cr (Yt o rO c\l F O a) c\l cf) J (o C\I o) c\l cv) ro E c! CD o C\I e F () ?- o J o ro o. to cr fit o F O

J N sf ro E N G' o F O N (o J (r C\I LO C\l N Fc, sf ct) O $ @ ot J 't rO o) CE (E (\l sf = o) O @ N J ol (o C\I o E ol sf o) O

sf sf CE a) o F O +to E'l J L (E F to E C? E o F O N $ C\t J $ N sf cr (r) o C\I cf) F O

UJ G a tE o .g to rE G UJ o g to G to s x - s s 't o G -s o u, f .E () () o 5 o \ a a u, o o o rta so s E G s - to 30 F s .s a g (\ s € e a\c .9 s E o E, G E rh. E $ s UJ s o a o € .t g G o o ta o o ci .E tr ul q € s UJ G IE |t, s s .T o .3a () s s E B I o € a\ .= $o x - o I E o o o qo T .g o s s e S o ul o .E.3.3.e .3.g.g - $ o e ! g I I s a a co G C E o F F C) o () G a E () IE a 3 G F s o a c \ tr o u s fo J o o o o o o o o t o e - G tr: g g {l E a o o o \ E S g a, \ a a a a a a a ul rbo () o g g o g g g g o e E E s a G () o s E a. a. a I S g o o o e I rb \ F .ha E s .Ts E o o g o o E o S s s s a :s CI' u, I s s s .L e F S € o = 'trs 'trs 'trs 'trs 'trs S 't 'tr 't 5 t 1A 30 to ta ta to to o o ,$ ul 5 * I E ul o o o o o o o e .\ 5 5 I 5 S S I I T I S (5 (5$ x * x x * x x x x x o o 6 v x I { t I I s

I

a cf) rO (o f.- @ O) o C\J cf) $ rO (o fr. $ lf) @ f:. @ o, o F N ol ct $ F ol cr) L F C\I C\I ol C\I ol c\l C\I N cO lt ]L o o o o o o o (5 (, (5 E I t t z .i r" l-( TAXONOMTCDIVERSITY OF LATE CENOZOIC CYTHEROIDEA 195

$ J o ro cr cr) o F O $ C\l J (o (o rO ro cr ct o F () E 1'- o J N o lc) N o. ro cr N (D o F O

J sf ro E CD o F O cf) N J $ c\t F E (Y) sf CD O N J '= o) E G ol sf = o) O

J

@ E sl sf o) O

J sf sf E cr) o .E F C) o o J L- (E F K) tr (r) E o F- O N cr) J

N $ (r (r) o F O

s c .9 (! E E S G E o UJ o .E o S .g di s 30 I o s s s 10 E c qt E s o a o rh s o E E .\ o s (Y) g - (.) o o .g s F T o- os s .b o .s C' U) UJ €.b s E (! ci E, sI E a o S 30 o E a a, o tr E o o o \ s s E o B .b UJ E a - E o o .9 g f E a. a o a. o e o E E E E E .g t E to o S E E o o .sB ra s o o o o o a\c o E F E € F rb G G S E c UJ a E E o s IF t rE S € o o - s o f.) €.b €rb .F S .9 a 30 .s e 5 s E tr € \ I E (!E E g s o \ o E rb .E o a S o a E o s f.) o o o o E o s a a F a 30 ta 10 s \ s o o E o €rh. E o G o o o o o o S E E o a 30 E o s s s s s o a o o s E € .g \ T o s s f.) f.) I O o \ s o E $ o o o o o ol t o T € s I E s, \ € s \ o o S e I x E f.t € T o a $(! s s s s s o F c ar o e o o I E E E o T t T t t t T s o o o 5 s o T s elP o o o to P UJ q. GI A. g F F 5 a- F t s = = I t I o t F F t 51 o = = = I t z { { { s

I j @ O) N c) $ lf,) (o lt- o @ o) o C\I cf) $ sf ro (0 o r\ @ CD F N cf) cf) cf) c) cf) cf) cf) cf) F cf) - F cf) $ ? $ $ eo - E N - E E I - s! s s?s ? z E .i

r-r 196 S. GALOUI{AS,D. L. DANIELOPOL

J

@ lO E a) o F O cf) J (o ro cr c) o F () E (o -g J o ro $ o. ro cr c) o F O

J t O) lO G cr) o F O

J

F E (v) sf o) O

J '= CD (r (E ol sf = o) O

J

@ CT ol sf o) O ot J t N sf E CD o .E F O o CN E'l J lt- L t- (E F u) (r f:. E ct $ o @ F O LO

J N o N (o t E N cf) $ o (f) F O

UJ UJ -o a (! F o .ts s G tr o to - q ii s ul o € s(! x = g s q o E o ii s ql o - (! a ta (.) s -o F E g I s F .Q o to ci. E € .S * o S o UJ $t Q a trt UJ - a o .g o o E I s.T G (! a o I a. o a\ UJ tr o \ to - o - e.e a e .g s o x o c f F o 'tr ta a z e () s s e (! .g s s s .= rb t o S o c o o o E, ta t a G C o C) .E .g .g = o IH S S ul t G (.) \ ge o E \ o .3 s - E \ e C) E o o * c E E o g E o o $ss () U' 30 G N E € € E E E E F S s o o 30 s o ?.) 3 3 5 I q s g g o. I I o o. { I { I o o o o o $ o o o s

I !O (o l'- @ O) ot cf) F 6l F F o (\ cr) F s L $ s J $ s $ rO rO LO rO LO co z Y Y Y J = = = = z z r{ TAXONOMIC DIVERSITY OF LATE CENOZOrc CWHEROIDEA r97 for the expected range, while the Al and A2 values brackish conditions dominate the Polemi and Amargeti lay closely-to the simulated mean value (Text-fig. 6). areas. A little later, in Early Zanclean, marine thermosphaericconditions dominate the sectionsand Pol-Etvtt progressivelytowards the mid Pliocene, a deepenitA bf ;ll the sections is observed.This, in the areasof The taxonomic diversities of the samples 10354 Amargeti ".tr+ Mari has to be the result of local tec- and 10355 arevery similar. There are more or lessthe tonic activity since no occurrence of clearly same number of speciesas well as of G,,, and G3 -psychrosphaeric - species has been noticed. senera and families. The Delta+ and the"Lambda+ Tradiiional micropalaeontological analysis showed i-'ndicesshow similar trends as in the caseof Amargeti for Amargeti A2, Polemi Pl and Polemi P2 a strong h2 sample, i.e. the averagetaxonomic distinctness is departure from eumarine conditions (this -latter com- lower than 90 units and the variation of taxonomic monly characterisedby a high biological diversiry). (P3) with the probabilistic distinctnessis over 600 units. The sample 10356 The ostracod data reanalysed'Warwick displaysa markedly high speciesrichness (65) as com- approach of Clarke and give for the taxo- paied to the other samples(Thb. 4), ^ notoriously high nomic diversiry congruent resultswith the conclusions analy- humber of "(13).genera witlr 1-2 speciesand a high number derived from a tradiiiond micropalaeontological of families The value^of the Delta+- index l^y sis. The three samples mentioned above, laying out- below 250. side the 9 5o/oconfidence limits of the simulated prob- above 90 units and those of the Lambda+ "crisis" The P 1 and P2 valueslay outside the 95o/oprobabiliry able diversity, point out to a experiencedby funnel for the expected range (Text-fig. 6). the cytheroid til(ocenosis. The analysisof the ostracod data of Cyprus using Mnnl the taxonomic diversiry algorithm has the merits to allow a rapid comparison in a synthetic way of abun- The three samples 9428, 9429 and 9431 display dant taxonomic dlta. It complements well the tradi- high Delta+ and low Lambda+ values,i.e. around 95 tional micropalaeontological"the analysis and stimulates ,ttiitr for the former index and below 250 units for further ."r-ination of palaeobiological and/or the laner one (Tab. 4). The speciesrichness varies be- palaeoecologicalmeaning of the information encaPsu- rween 22 and 33, the total number of generaberween iated in the"ortt..od asse"mblages.In this way the taxo- the number of families berween 8 and nomic diversiry approach used here forms a kind of 15 and 22 and "smoki.g 10. All the values of the two taxonomic indices for epistemological gun" (fot this latter concePt the Mari section here used lay within the 95o/oprob- see Cleland, 2001), i.e. it stimulated our interest to abiliry funnel for the expected range of their diversiry re-examinethe data set of Thb. 3. (Text-fig. 6). The Polemi P3 is remarkablethrough the high di- Summing up there are three samples(A2, P I , P2) versiry suggestingal:o a high h;te;ogele.iry of the envi- which disp6y values below 90 uniti for the average ronment sensuThienemann s rlrst biocenotic rule til(onomrc distinctness and high values (above 600) (Thienemann, 1954). It confirms Gaston S( \filliams for the variation of taxonomic distinctness.They con- (1996) view, which consider that the taxonomic diver- trast with the other six sampleshere analysed,which siry in the marine benthic realm peaksat intermediate show an opposite trend. The significanceof thesedata depths.The^other samplespresent lower dominance of will be evaluatedin the next section. supraspecrfictaxa, e.8. at Amargeti A 1 and A3 lo*oconchids represettttLtt than 20oAof taxaand there DISCUSSIONAND CONCLUSIONS is an important contribution of the Cytheruridae, Hemicytheridae, Trachileberididae, Krithidae and From the interpretation of the ostracodassemblages Xestoleberididaeto the given assemblages(Ttb. 3). A of the sections presented above, it is concluded that similar trend can be observed also in the three Mari the environment (and consequently the samples. palaeogeography)was not synchronous changing with If G. (Kino) Bonaduce would examine the Mari iime ai different placesalong the west, southwest, and M 1-M3 and the Polemi P3 samples,he would tell us south Cyprus. that the taxonomic diversiry is much similar with what A composite palaeoecologicalhistory for all the sec- he saw in the samplesfrom the Gulf of Naples (Puri tions together (and consequentlyfor the west and south et al., 1964) or in ihose of the Adriatic Sea(Bonaduce of Cyp*r) would start from the Messinian with alter- et dl., 1975). They point out to conditions with a nations of limnic (lacustrine)and brackish water con- palaeobathymetryof more than 100 m deep, an infer- ditions up to the earlieststages of the Pliocene.In the ince which came out also from the traditional Polemi region, the section starts later in the Messinian ^palaeontological investigation of Galoukas (1995). with limnic conditions, which became brackish just The cFKeroid too.Enosis of Amargeti A2 and the before the Pliocene. Polemi Pl and P2 are dominated by speciesof two The beginnitg of the Pliocene finds the Mari area ostracod lineages, the Loxoconchidae and the with inner- neritic conditions, while at the same time Leptocytherid ae: generally characteristic for shallow 198 S. GALOUIAS, D.L. DANIELOPOL

Code Site Formation Age Species Genus GenusGr Fam. AvTD VarTD & Richness Gtn (No.) (No.) SampleNo. (No.) (No.) AI Amargeti-10347 KalavasosF. U. Miocene 2l l0 4 9 92.69 335.9 A2 Amargeti-1035 I B-NicosiaF. Pliocene? T2 7 7 89.39 577.7 A3 Amargeti-10344 NicosiaF. Pliocene 27 T4 3 9 92.69 329.6 PI Polemi-10354 B-NicosiaF. Mio/Pliocene 22 5 3 5 84.42 66t.4 P2 Polemi-10355 B-NicosiaF. Mio/Pliocene 2l 5 3 6 84.44 668.l P3 Polemi-10356 Nicosia F. Pliocene 65 25 7 l3 94.49 234.6 P4 Polemi-10358 AthalassaF. Pleistocene 8 6 0 5 92.86 345.8 MI Mari-9428 NicosiaF. Pliocene 23 t6 I 8 94.73 226.9 M2 Mari-9429 NicosiaF. Pliocene 22 13 2 8 94.95 258.3 M3 Mari-9431 Nicosia F. Pliocene 33 l8 4 l0 95.0l 2t2.9 Cy Master specieslist Kalavasos& Miocene & 153 37 t4 l4 94.56 257.3 (A,P,Mll-3) NicosiaF. Pliocene - Tab. 4. - Taxonomic diversiry of Cytheroidea assemblagesof Cyprus; G,,, -€enus with I or 2 species;G1 genus with 3 or more species; - AvTD - Average Taxonomic Distinctness; VarTD - Variation.in Thxonomic Distinctness (additional explanations in text); B basis.F - formation. waters of marginal marine habitats, e.g. open _lagoons REFERENCES and/or peri-coastallakes. More than 50o/oof sPecies R.H. 1972a, Ostracodesas indicators of threshold depth in these samples belone to genera of these two fami- BT,NSOX, , in the Mediterranean during the Pliocene./z Stanley,D.J. (.d.), lies. These i"," fit tKe seZond biocenotic rule of The Mediterranean Sea. Huthchinson & Ross Inc., Dowden: Thienemann ( 19 54) pointing out to stressfuland/or 63-73. strongly disturbed environments. From the inspection -, 1972b, Psychrosphericand continental ostracodesfrom ancient of Ta6. f one notices that each of the three iamples sedimentt in the^floorof the Mediterranean: Init. Repts. DSDP, "stressful" reflecting environments is characterisedalso 13:1002-1008. by a lo*er number of genera within their respective -, I 976a,Testingthe Messinian Saliniry Crisis biodynamically: arr "normal" Palaeoclimat., Palaeoecol.,20: 3' families, as compared to the eumarine as- introduction: Palaeogeogr., ll. semblages.So combining the values of the taxonomic 'Warwick -, 1976b, Changes in the ostracodes of the Mediterranean with of Clarfe and with a careful diversitj' i"aices the Messiniai Salinity Crisis: Palaeogeogr.,Palaeoclimat., examination of the ecological preferencesof the vari- Palaeoecol.,20: 147-170. can note that at ous ostracodetaxa here piesented one -, 1977 , Evolution of Oblitacythereis from Paleocosta(Osrracoda: each level of the Linnean hierarchy (species,genus Tiachyleberididae) during ihe Cenozoic in the Mediterranean and family) there is biological information which can and Atlantic: Smithsonia-nContr. Paleobiol. 33: l-47 - for palaeoenvironmentalreconstruction. -r 1982, From conversation with Peter: Reminiscenceso[ the be 'Sfeused .ott.l,td. this discussion pointing out that the philosophy of P.C.Sylvester-Bradley.. In Bate, R.H. & Robinson' 'Warwick's (.ar), Fossiland Recent Ostracods, Ellis Horwood Ltd. Publ., Clarke and taxonomic diversiry indices are ii. Chichester:147 -163. useful descriptorsfor past environmental changesand "Crisis" -, asviewed from the Miocene. In in con- l984,,The Phanerozoic should be Inore widely used in palaeontology Berggren,\7'.A. & van Couvering,J.A. (eds),Catastrophes and junction with other traditional apProaches. eartl-history, Princeton UB Princeton NJ: 437-446. -, RAKIc-EI- Blro, K. & BoNADUCE, G., 1991, An important ACKNO\TtEDGEMENTS currenr reversal (influx) in the Riftian Corridor (Morocco) at the Tortonian-Messinian boundary: the end of Tethys Ocean: This paper is in honour of three outstanding ostracodologists. Paleoceanography,6: 164-192. Ve planned- the topic for Professor Giuliano. Ruggieri when one - 6{ Syt-VESfEn-BnnOLEY,P.C., 1971, Deep-sea ostracodesand of ui (DLD) received the invitation to contribute to the Ruggieri the loss of Ocean to Sea in the Tethys: Bull. Centre Rech. Pau- Memorial Symposium, at Rimini, beginning of 2003. \7e dedi- SNPA,5: 63-91. (Kino) Bonaduce and care this pap.r "lro to Professor Gioaclhino BoxnoucE,G., CIAMPo,G. & MnsoLI,M., 1975,Distribution ro Profesioi Richard H. (Dick) Benson, both left us in 2003. of Ostracoda in the Adriatic Sea: Pubbl. Staz. Zool. Napoli, were at least for one of us (DLD) marvellous mentors and Thev Suppl.40: l-304. ad#rable friends. Prof. Antonio Russo (Modena), Prof. Nevio Pugliese (Tiieste), Borrux, D.B., MRGUIRE,B., MooRE, B., MoRowlTZ, H.J. & and Dr. Elsa Gliozzi (Roma) are acknowledged for their support SLOnOoKIN,L.B., 1979,A foundationfor ecologicaltheory: during the Rimini meeting and for the critiial comments on the Mem. Ist.Ital. Idrobiol., Suppl .37: 13-31. MS. Frof. Alan Lord (Lon?on) offered the subject of the Cyprus BnO,uyx,J.H. , 1995,Macroecolory. Univ. ChicagoPress, Chicago. Neogene osrracods to SG as topic for a doctoral thesis. Professor CnnsONNEL,G., 1978,Lespbce Cyprideis 1908 is here acknowledged For pet-anent suPPort and useful PannonicaMehes, A. L"ord (Ostracoda)dans la Tethysau Messinien(Miocene): Doc. Lab. Dr. K.R. (Bobi Clarke^ (Plymouth) lidlped repeatedly discussions. Geol.Fac. Sci. Lyon, 72:79-97. with information when working with the PNMER statistic pack- age. Professor D. Keyser (Hamburg) and an anonymous revlewer Cmnru, K.R. & Gonr-ev,R.N .,2001, PRIMER v.5, User manual/ hElped the improvement of the MS. tutorial. Primer-E,Plymouth. AXONOMIC DMERSITY OF IATE CENOZOrc CWHEROIDM r99

- 6( tVnnruytcrc,R.M., 1998,A taxonomicdistinctness index and Gulf of Naples:Pubbl. Staz. Zool. Napoli, 33: 87-199. its statisticalproperties: J. Appl. Ecol.,35: 523-531. Raonv, J. 6( MoNorynn-MnncHANTE,V., 1990,Geological and - 6{ -, 2001, A further biodiversiryindex applicableto species micropalaeontologi.dstudy of a transversenear Amarged. M.Sc. lists:variation in taxonomicdistinctness: Mar. Ecol. Progr.Ser., Micropalaeontology,(short-project report), Univ. College 216: 265-278. London (Unpubl.). Cu,l-nND,C.E., 2001,Historical science , experimental science, and Rogpcr, H.E., M,qlEy,C.C. & DoNoGUE,M.J., 2000,Thxonomy the scientificmethod: Geology, 29:987-990. and temporaldiversiry patterns: Paleobiology, 26: 17l-187 . from DIXoN, J. E. & RospRTSoN,A.H.F, (eds), 1984,The geological RosrnrsoN, A., 1976,Pelagic chalks and cdciturbidites the evolution of the EasternMediterranean. British Geol. Soc., Lower Tertiary of the Tioodos Massif,J. Sedim.Petrol. , 46: SpecialPubl., No. 17. 1007-1016. -, DuccrN, S., HoEnxLE, K., Bocnnno, P.vAN DEN,Rupxr, L. & 1977,Tertiary uplift history of the Ti'oodosMassif, Cyprus: Bull. Geol.Soc. Am., 88: 1763-1772. MoncnN, J.P.,2003, Deep roots of the MessinianSaliniry Crisis: Nature, 422: 602-606. -, EAToN,S., Follows, E. & McCnr-LUM,J., 1991,The role of EAToN,S., 1987,The sedimentologyand mid- to late Miocene local tectonicsversus global sea-levelchange in the Neogene carbonatesand evaporites in southernCyprus. PhD thesis,Univ. evolutionof the Cyprusactive margin: Special Publ. Int. Assoc. Edinburgh(Unpubl.). Sedim.,12: 331-369. RucctEN, G., 1958,Gli esoticineogenici della colata gravitativa Follovs, E., 1990a,Sedimentology and tectonicsetting of Miocene 4, 17: l- reefsand relatedsediments in Cyprus. PhD thesis,Univ. dellaVd Marecchia:Atti Accad.Sci. Lett. Arti, Ser. Edinburgh(Unpubl.). r70. -, -, 1990b, Patternsof reef sedimentationand diagenesisin the 1967, The Miocene and later evolution of the Mediterranean Miocene of Cyprus. In Gutteridge& Harwood (eds), Sea: Syst. Assoc. London, T: 283-290. SedimentaryGeol., Special Issue: 74-93. 6{ SpRovtr,RI,R., 1976, Messinian Salinity Crisis and its implications: Palaeogeogr.,Palaeoclimat., - 6( RonpnrsoN, A., 1990,Sedimentology and structuralsetting paleogeographical 20: 13-21. of Miocenereefal limestones in Cyprus. InMoores et al. (eds), Palaeoecol., Ophiolitesand Oceaniclithosphere. Proc. Int. Sy-p., Nicosia, Russo, A., 1968, Ostracodi Tortoniani di Montebaranzone Cyprus,October, 1987. (Appennino settentrionde Modenese): Boll. Soc. Paleont. Itd., 7:6-56. Gru-ourns, S., 199r, LateCenozoic Ostracoda of Cyprusand their -, palaeoenvironmentalinterpretation. PhD thesis,Univ. College 2004, In memory of ProfessorGiuliano Ruggieri:Boll. Soc. London (Unpubl.). Paleont.Ital., (thisvolume). 'WILttRtvts, 'W., GnsroN, K.J. 6{ P.H., 1996, Spatialpatterns in StsslNcH, 1972,Late Cenozoic Ostracoda of the southAegean til(onomicdiversiry. In Gaston,K.J. (ed.), Biodiversiry Blaclnvell islandsarc: Utrecht Micropal. Bull., 6: l-187. Sci.,London: 202-229. -, 1982, Ecostratigraphicaloutline history of the Late Cenozoic Gtlozzr, E., Ctpolt-ARRI,P. 6{ CoseNrtNO, D., 2002, The ostracodefauna of the Centraland 'Wetensch., EasternMediterranean Basin: "Lago-Mare" Messinian eventin CentralItaly: paleogeographical Proc. Koninkl. Nederl. Akad. Amsterdam,ser. B, reconstructionusing geological data and ostracodassemblages: 85:27 r-299. Bull.Acad. Serbe Sci. Arts, 125,Sci. Nat., 4l: 153-168. THInNEMANN,A., I 954, Ein drittesbiozonotisches Grundprinzip: Arch. Hydrobiol., 49: 421-422. Hsu, K.J., RvAN,\7.8.F. & Ctrn, M.B., 1973, Lare Miocene desiccationof the Mediterranean:Nature, 242: 240-244. ToxrsHI, M., 1999,Species coexistence. Blaclnvell. Sci, London. tVnnwcr, -, MoNTnDERT,L., BERNOULLI,D., CtrR, M.8., ErucrcsoN, R.M. & CmRKE,K.M., 1998,Thxonomic distinctness A., GRRRtssoN,R.E., KIDD, R.B., MEI-tpRrS,F., MUt-mR, C. and environmentalassessment: J. Appl. Ecol., 35: 532-543. 6c VrucHT, R., 1978, History of the MediterraneanSaliniry - & -, 2001, Practicalmeasures of marine biodiversityon Crisis:Init. Repts.DSDB 42: 1053-1078. relatednessof species:Oceanogr. Mar. Biol. Ann. Rev.,39:207- KREBS,C.J. , 1972,Ecology. Harper & Row, New York. 23r - MeNrts, M., 1970,Upper Cretaceous-Tertiaryforaminiferal zones & LIGHT,J.,2002, Death assemblages of molluscs on St.Martin's flats,Isles of Scilly:a surrogatefor regionalbiodiversiry?: Biodiv. in Cyprus:Cyprus Res. Centre J.,3, 227-241. Conserv.,I l: 99-112. McCnrLUM, J., 1989, Sedimentationand tectonicsof the Plio- 'WEBB, Pleistoceneof Cyprus.PhD thesis,Univ. Edinburgh(Unpubl.). C.O.,Acrrru-y, D.D., PECK,M.A., DONOGUE,M.J.,2002, Phylogeniesand communiryecolory: Ann. Rev.Ecol. Syst. ,33: - Massif; 6c RosTRTSON,A., 1990, Pulseduplift of the Tioodos 47 5-505. ^IzMoores evidencefrom the Plio-PleistoceneMesaoria basin. tVHerl-EY, etal. (eds),Ophiolites and Oceanic lithosphere. Proc. Int. Sy-p., R., 1990, Ostracodaand global events.InYlhatley, R. (eds) Nicosia,Cyprus, October, 1987. & Maybury C. Ostracodaand global events,Chapman and Hall, London: 3-24. Ournav, R. & McCnnrHy, L., 1990,A Cenozoicgeological and studyof the Polemi area,Cyprus. M.Sc. micropalaeontological (manuscript receiuedDecember 30, 2003 (short-project Micropalaeontology report), Univ. College accepted 18, 2004) London (Unpubl.). June Pnu-arcrlll, D., 1986,Early Pliocene ostracods from the Mari area, Stelios Gru-ourns South-centralCyprus. M.Sc. Micropalaeontolo$r, (long-project Geitonas School report),Univ. CollegeLondon (Unpubl.). P.O. Box 74128, GR-16602 - Varkiza, Greece Porconxv,V., 1971,The diversiryof fossilostracode communities e-mail: [email protected] asindicator of palaeogeographicconditions: Bull. CentreRech. Pau-SNPA,5: 45-62. Dan L. DnNIELoPoL PooLE,A., SHttuurELD,G. & RogrnrsoN, 4., 1991, Late Institute of Limnology Quaternaryuplift of the Ti'oodosophiolite, Cyprus: Uranium- Austrian Academy of Sciences seriesdating of Pleistocenecoral: Geolory, 18: 894-897. Mondseestr. 9, A 5310 - Mondsee, Austria PuRr,H.S., BoNADUCE,G. S{ Mlttoy, J., 1964,Ecology of the e-mail: dan. danielopol@oeaw. ac. at