7 CFR Ch. III (1–1–05 Edition) § 301.97–2

Total Page:16

File Type:pdf, Size:1020Kb

7 CFR Ch. III (1–1–05 Edition) § 301.97–2 § 301.97–2 7 CFR Ch. III (1–1–05 Edition) other person authorized by the Admin- Bean, lima (Phaseolus lunatus = Phaseolus istrator to enforce this subpart. limensis) Interstate. From any State into or Bean, mung (Phaseolus vulgaris) Cantaloupe (Cucumis melo and Cucumis melo through any other State. var. Cantalupensis) Limited permit. A document in which Cauliflower (Brassica oleracea var. botrytis) an inspector or person operating under Chayote (Sechium edule) a compliance agreement affirms that Colocynth (Citrullus colocynthis) the regulated article identified on the Cowpea (Vigna unguiculata) document is eligible for interstate Cucumber (Cucumis sativus) Cucumber, bur (Sicyes sp.) movement in accordance with § 301.97– Cucurbit (Cucumis pubescens and Cucumis 5(b) of this subpart only to a specified trigonus) destination and only in accordance Date palm (Phoenix dactylifera) with specified conditions. Eggplant (Solanum melongena) Melon fruit fly. The insect known as Fig (Ficus carica) the melon fruit fly, Bactrocera Gourds cucurbitae (Coquillett), in any stage of (Coccinia spp.) (Cresentia spp.) development. (Lagenaria spp.) Moved (move, movement). Shipped, of- (Luffa spp.) fered for shipment, received for trans- (Momordica spp.) portation, transported, carried, or al- (Trichosanthis spp.) lowed to be moved, shipped, trans- Grape (Vitis trifolia) ported, or carried. Guava (Psidium guajava) Guava, cattley (Psidium cattlelanum) Person. Any association, company, Lemon, water (Passiflora laurifolia) corporation, firm, individual, joint Mango (Mangifera indica) stock company, partnership, society, Melon (Citrullus spp.) or other entity. Melon, Chinese (Benincasa hispida) Plant Protection and Quarantine. Melon, oriental pickling (Cucumis melo var. Plant Protection and Quarantine, Ani- conomon) mal and Plant Health Inspection Serv- Mustard, leaf (Brassica juncea) Okra (Hibiscus esculentus) ice, United States Department of Agri- Orange, king (Citrus nobilis) culture. Orange, mandarin (Citrus reticulata) Quarantined area. Any State, or any Orange, sweet (Citrus sinensis) portion of a State, listed in § 301.97–3(c) Papaya (Carica papaya) of this subpart or otherwise designated Passion fruit (Passiflora edulis) as a quarantined area in accordance Peach (Prunus persica) with § 301.97–3(b) of this subpart. Pear (Pyrus communis) Pepper (Capsicum annum) Regulated article. Any article listed in Pepper, chile (Capsicum annum) § 301.97–2 or otherwise designated as a Pepper, tobasco (Capsicum frutescens) regulated article in accordance with Pumpkin (Cucurbita pepo) § 301.97–2(e). Pumpkin, Canada (Cucurbita moschata) State. The District of Columbia, Puer- Scarlet wisteria tree (Sesbania grandiflora) to Rico, the Northern Mariana Islands, Soursop (Annona muricata) Squash (Cucurbita maxima) or any State, territory, or possession of Tomato (Lycopersicon esculentum) the United States. Tomato, tree (Cyphomandra betaceae) Watermelon (Citrullus lanatus = Citrullus § 301.97–2 Regulated articles. vulgaris) The following are regulated articles: Any fruits or vegetables that are (a) Melon fruit flies.2 canned or dried or frozen below ¥17.8 (b) The following fruits and vegeta- °C. (0 °F.) are not regulated articles. bles: (c) Soil within the dripline of plants Apple (Malus sylvestris) that are producing or have produced Apple, custard (Annona reticulata) the fruits or vegetables listed in para- Avocado (Persea americana) graph (b) of this section. Bean, hyacinth (Dolichos lablab) (d) Plants of the following species in the family Cucurbitaceae: 2 Permit and other requirements for the Cantaloupe (Cucumis melo) interstate movement of melon fruit flies are Chayote (Sechium edule) contained in part 330 of this chapter. Colocynth (Citrullus colocynthis) 158 VerDate Aug<04>2004 11:17 Jan 24, 2005 Jkt 205016 PO 00000 Frm 00158 Fmt 8010 Sfmt 8010 Y:\SGML\205016T.XXX 205016T Animal and Plant Health Inspection Service, USDA § 301.97–4 Cucumber (Cucumis sativus) nonquarantined area in a State as a Cucumber, bur (Sicyos sp.) quarantined area in accordance with Cucurbit, wild (Cucumis trigonus) paragraph (a) of this section. The Ad- Gherkin, West India (Cucumis angaria) Gourd, angled luffa (Luffa acutangula) ministrator will give a copy of this reg- Gourd, balsam apple (Momordica balsaminia) ulation along with a written notice for Gourd, ivy (Coccinia grandis) the temporary designation to the Gourd, kakari (Momordica dioica) owner or person in possession of the Gourd, serpent cucumber (Trichosanthis nonquarantined area. Thereafter, the anguina) interstate movement of any regulated Gourd, snake (Trichosanthis cucumeroides) article from an area temporarily des- Gourd, sponge (Luffa aegyptiaca) Gourd, white flowered (Lagenaria siceraria) ignated as a quarantined area will be Melon, Chinese (Benincasa hispida) subject to this subpart. As soon as Melon, long (Cucumis utilissimus) practicable, this area will be added to Pumpkin (Cucurbita pepo) the list in paragraph (c) of this section Pumpkin, Canada (Cucurbita moschata) or the designation will be terminated Squash (Cucurbita maxima) by the Administrator or an inspector. Watermelon (Citrullus lanatus = Citrullus The owner or person in possession of an vulgaris) area for which designation is termi- (e) Any other product, article, or nated will be given notice of the termi- means of conveyance not listed in para- nation as soon as practicable. graphs (a) through (d) of this section (c) The areas described below are des- that an inspector determines presents ignated as quarantined areas: There a risk of spreading the melon fruit fly, are no areas in the continental United when the inspector notifies the person States quarantined for the melon fruit in possession of the product, article, or fly. means of conveyance that it is subject to the restrictions of this subpart. [65 FR 8636, Feb. 22, 2000, as amended at 65 FR 39780, June 28, 2000] § 301.97–3 Quarantined areas. § 301.97–4 Conditions governing the (a) Except as otherwise provided in interstate movement of regulated paragraph (b) of this section, the Ad- articles from quarantined areas. ministrator will list as a quarantined Any regulated article may be moved area in paragraph (c) of this section interstate from a quarantined area 3 each State, or each portion of a State, only if moved under the following con- in which the melon fruit fly has been ditions: found by an inspector, in which the Ad- ministrator has reason to believe that (a) With a certificate or limited per- the melon fruit fly is present, or that mit issued and attached in accordance the Administrator considers necessary with §§ 301.97–5 and 301.97–8 of this sub- to quarantine because of its insepa- part; rability for quarantine enforcement (b) Without a certificate or limited purposes from localities in which the permit if: melon fruit fly has been found. Less (1) The regulated article originated than an entire State will be designated outside the quarantined area and is ei- as a quarantined area only if the Ad- ther moved in an enclosed vehicle or is ministrator determines that: completely enclosed by a covering ade- (1) The State has adopted and is en- quate to prevent access by melon fruit forcing restrictions on the intrastate flies (such as canvas, plastic, or other movement of the regulated articles closely woven cloth) while moving that are substantially the same as through the quarantined area; and those imposed by this subpart on the (2) The point of origin of the regu- interstate movement of regulated arti- lated article is indicated on the way- cles; and bill. (2) The designation of less than the (c) Without a certificate or limited entire State as a quarantined area will permit if: prevent the interstate spread of the melon fruit fly. 3 Requirements under all other applicable (b) The Administrator or an inspec- Federal domestic plant quarantines and reg- tor may temporarily designate any ulations must also be met. 159 VerDate Aug<04>2004 11:17 Jan 24, 2005 Jkt 205016 PO 00000 Frm 00159 Fmt 8010 Sfmt 8010 Y:\SGML\205016T.XXX 205016T.
Recommended publications
  • Karyotype and Genome Size Determination of Jarilla Chocola, an Additional Sister Clade of Carica Papaya
    POJ 14(01):50-56 (2021) ISSN:1836-3644 doi: 10.21475/POJ.14.01.21.p2944 Karyotype and genome size determination of Jarilla chocola, an additional sister clade of Carica papaya Dessireé Patricia Zerpa-Catanho1, Tahira Jatt2, Ray Ming1* 1Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA 2Department of Botany, Shah Abdul Latif University, Khaipur, Sindh, 66020, Pakistan *Corresponding author: [email protected] Abstract Jarilla chocola is an herbaceous plant species that belongs to the Jarilla genus and the Caricaceae family. No information on chromosome number or genome size has been reported for J. chocola that confirms the occurrence of dysploidy events and explore the existence of heteromorphic sex chromosomes. Therefore, the total number of chromosomes of this species was determined by karyotyping and counting the number of chromosomes observed, and the genome size of female and male plants was estimated separately by flow cytometry. Results showed that J. chocola has eight pairs of chromosomes (2n = 2x = 16), and its chromosomes are classified as metacentric for five pairs, submetacentric for two pairs and telocentric for one pair. The nuclear DNA content (1C- value) in picograms and diploid genome size was estimated separately from female and male plants using two species as the standards, Phaseolus vulgaris (1C = 0.60 pg) and Carica papaya (1C = 0.325 pg), to look for the possible existence of heteromorphic sex chromosomes. C. papaya proved to be a better standard for the determination of J. chocola DNA content and diploid genome size. No significant difference on the DNA content was observed between female (1C = 1.02 ± 0.003 pg) and male (1C = 1.02 ± 0.008 pg) plants.
    [Show full text]
  • The Use of Vasconcellea Wild Species in the Papaya Breeding (Carica Papaya L.- Caricaceae): a Cytological Evaluation
    The use of Vasconcellea wild species in the papaya breeding (Carica papaya L.- Caricaceae): a cytological evaluation Telma N. S. Pereira, Monique F. Neto, Lyzia L. Freitas, Messias G. Pereira Universidade Estadual do Norte Fluminense Darcy Ribeiro - Campos dos Goytacazes - RJ -Brazil Introduction Papaya is a fruit species grown in tropical and subtropical regions. The cultivars of this species are all susceptible to ring spot mosaic virus; however, there is in the Caricaceae family wild species that exhibit resistance genes to the virus as Vasconcellea cauliflora, V. cundinamarcensis, V. quercifolia, and V. stipulata. But, interspecific/intergeneric hybrids are not obtained between the wild species and the cultivated one, thus preventing the introgression of important genes in the cultivated form. The objectives of this study were to generate cytogenetic knowledge by karyotype determination and species meiotic behavior.The study was conducted on C.papaya, V.quercifolia,V.cundinamarcensis, V.cauliflora,V.goudotiana, and V.monoica by routine laboratory methodology. Methodology Seeds Germination Pdb=8h Fixation Observation Coloration Enzimatic Figure 1- Caricaceae species. A) Carica papaya; B)Vasconcellea monoica; Figure 2- Papaya products. Figure 3- Mitotic protocol. Figure 4- Meiosis protocol. C)Vasconcellea quercifolia;D)Vasconcellea cundinamarcensis; E) Vasconcellea goudotiana; F)Vasconcellea cauliflora. Results Table 1 - Karyotype formulas, mean sets lenghts and similarities indices of Caricaceae species. Table 2 - Characteristics evaluated during meiosis and post-meiosis in C. papaya, V. Goutodiana,V. monoica and V. Quercifolia. Karyotype Rec Syi Species Meiosis Recombination Meiotic Pollen Species formula THC TF (%) index index abnormalites index index viability C. papaya 9M 17.18 45.51 82.66 82.69 C.papay a 4.76% 26.0% 94.8% 96.0% V.
    [Show full text]
  • Basil Dolce Fresca
    BASIL DOLCE FRESCA Ocimum basilicum BASIL PERSIAN Ocimum basilicum BEAN MASCOTTE Phaseolus vulgaris BEAN SEYCHELLES Phaseolus vulgaris BEET AVALANCHE Beta vulgaris BROCCOLI ARTWORK F1 Brassica oleracea Italica BRUSSELS SPROUTS HESTIA F1 Brassica oleracea CABBAGE KATARINA F1 Brassica oleracea (Capitata group) CHIVES, GARLIC GEISHA Allium tuberosum CUCUMBER PARISIAN GHERKIN F1 Cucumis sativus CUCUMBER PICK A BUSHEL F1 Cucumis sativus CUCUMBER SALADMORE BUSH F1 Cucumis sativus EGGPLANT PATIO BABY F1 Solanum melongena FENNEL ANTARES F1 Foeniculum vulgare KALE PRIZM F1 Brassica oleracea (Acephala Group) KOHLRABI KONAN F1 Brassica oleracea LETTUCE SANDY Lactuca sativa MELON MELEMON F1 Cucumis melo L. MIZUNA RED KINGDOM F1 Brassica juncea OKRA CANDLE FIRE F1 Abelmoschus esculentus ONION, BUNCHING WARRIOR Allium fistulosusm OREGANO CLEOPATRA Origanum syriaca PAK CHOI BOPAK F1 Brassica rapa chinensis PEA PATIO PRIDE Pisum sativum PEPPER AJI RICO F1 Capsicum baccatum PEPPER CHILI PIE F1 Capsicum annuum PEPPER CORNITO GIALLO F1 Capsicum annuum PEPPER EMERALD FIRE F1 Capsicum annuum PEPPER ESCAMILLO F1 Capsicum annuum PEPPER FLAMING FLARE F1 Capsicum annuum PEPPER GIANT RISTRA F1 Capsicum annuum PEPPER HOT SUNSET F1 Capsicum annuum PEPPER MAD HATTER F1 Capsicum baccatum PEPPER MAMA MIA GIALLO F1 Capsicum annuum PEPPER PRETTY N SWEET F1 Capsicum annuum PEPPER SWEET SUNSET F1 Capsicum annuum PEPPER SWEETIE PIE F1 Capsicum annuum PEPPER SERRANO FLAMING JADE F1 Capsicum annuum PUMPKIN CINDERELLA'S CARRIAGE F1 Cucurbita maxima PUMPKIN PEPITAS F1 Cucurbita pepo PUMPKIN SUPER MOON F1 Cucurbita maxima RADISH RIVOLI Raphanus sativus RADISH ROXANNE F1 Raphanus sativus RADISH SWEET BABY F1 Raphanus sativus SQUASH BOSSA NOVA F1 Cucurbita pepo SQUASH BUTTERSCOTCH F1 Cucurbita moschata SQUASH HONEYBABY F1 Cucurbita moschata SQUASH SUGARETTI F1 Cucurbita pepo STRAWBERRY DELIZZ F1 Fragaria F.
    [Show full text]
  • Safety Assessment of Carica Papaya (Papaya)-Derived Ingredients As Used in Cosmetics
    Safety Assessment of Carica papaya (Papaya)-Derived Ingredients as Used in Cosmetics Status: Draft Report for Panel Review Release Date: February 21, 2020 Panel Meeting Date: March 16-17, 2020 The Cosmetic Ingredient Review Expert Panel members are: Chair, Wilma F. Bergfeld, M.D., F.A.C.P.; Donald V. Belsito, M.D.; Curtis D. Klaassen, Ph.D.; Daniel C. Liebler, Ph.D.; James G. Marks, Jr., M.D.; Lisa A. Peterson, Ph.D.; Ronald C. Shank, Ph.D.; Thomas J. Slaga, Ph.D.; and Paul W. Snyder, D.V.M., Ph.D. The CIR Executive Director is Bart Heldreth, Ph.D. This safety assessment was prepared by Alice Akinsulie, former Scientific Analyst/Writer and Priya Cherian, Scientific Analyst/Writer. © Cosmetic Ingredient Review 1620 L St NW, Suite 1200 ◊ Washington, DC 20036-4702 ◊ ph 202.331.0651 ◊fax 202.331.0088 ◊ [email protected] Distributed for Comment Only - Do Not Cite or Quote Commitment & Credibility since 1976 Memorandum To: CIR Expert Panel Members and Liaisons From: Priya Cherian, Scientific Analyst/Writer Date: February 21, 2020 Subject: Draft Report on Papaya-derived ingredients Enclosed is the Draft Report on 5 papaya-derived ingredients. The attached report (papaya032020rep) includes the following unpublished data that were received from the Council: 1) Use concentration data (papaya032020data1) 2) Manufacturing and impurities data on a Carica Papaya (Papaya) Fruit Extract (papaya032020data2) 3) Physical and chemical properties of a Carica Papaya (Papaya) Fruit Extract (papaya032020data3) Also included in this package for your review are the CIR report history (papaya032020hist), flow chart (papaya032020flow), literature search strategy (papaya032020strat), ingredient data profile (papaya032020prof), and updated 2020 FDA VCRP data (papaya032020fda).
    [Show full text]
  • Buffalo Gourd (Family Cucurbitaceae, Cucurbita Foetidissima)
    Buffalo Gourd (Family Cucurbitaceae, Cucurbita foetidissima) By Gerald R Noonan PhD May 2013 © May 2013 Buffalo Gourds are a common sight along the trails near the San Pedro House and in many other parts of SPRNCA. They grow as a prostate vine that spreads along the ground and may grow up to 20 feet long. The leaves are relatively large, up to approximately a foot in length, grayish green above and whitish beneath. The triangular shaped leaves have fine teeth along the margins and are born on relatively long stalks. During approximately May to August, yellow flowers appear. They are funnel shaped, five-lobed, about 4 inches long, and have the basic ribbed and with veins. The flowers open very early in the day and are pollinated by bees. Pollinated flowers each produce a gourd that is approximately 4 inches long, round, and predominantly dark green but with light stripes. The gourds eventually mature to an even yellow color and with continued exposure to the sun become whitish in appearance. Buffalo Gourds are perennial, die back in the winter, and then grow back from the large root when weather becomes warmer. The triangular shaped leaves distinguish this plant from the other two gourd producing species of vines that occur in SPRNCA. Finger-leaved Gourds differ by having central silvery white markings on the tops of the five narrow fingerlike segments of each leaf. Melon Loco plants differ by having leaves that are roundish or kidney shaped, approximately 2-6 inches wide, and with irregular jagged edges or pleats. Buffalo Gourds occur in roadsides and in dry or sandy areas.
    [Show full text]
  • University of Florida Thesis Or Dissertation Formatting
    GENETICS AND EVOLUTION OF MULTIPLE DOMESTICATED SQUASHES AND PUMPKINS (Cucurbita, Cucurbitaceae) By HEATHER ROSE KATES A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2017 © 2017 Heather Rose Kates To Patrick and Tomás ACKNOWLEDGMENTS I am grateful to my advisors Douglas E. Soltis and Pamela S. Soltis for their encouragement, enthusiasm for discovery, and generosity. I thank the members of my committee, Nico Cellinese, Matias Kirst, and Brad Barbazuk, for their valuable feedback and support of my dissertation work. I thank my first mentor Michael J. Moore for his continued support and for introducing me to botany and to hard work. I am thankful to Matt Johnson, Norman Wickett, Elliot Gardner, Fernando Lopez, Guillermo Sanchez, Annette Fahrenkrog, Colin Khoury, and Daniel Barrerra for their collaborative efforts on the dissertation work presented here. I am also thankful to my lab mates and colleagues at the University of Florida, especially Mathew A. Gitzendanner for his patient helpfulness. Finally, I thank Rebecca L. Stubbs, Andrew A. Crowl, Gregory W. Stull, Richard Hodel, and Kelly Speer for everything. 4 TABLE OF CONTENTS page ACKNOWLEDGMENTS .................................................................................................. 4 LIST OF TABLES ............................................................................................................ 9 LIST OF FIGURES .......................................................................................................
    [Show full text]
  • Morphological Variation in the Flowers of Jacaratia
    Plant Biology ISSN 1435-8603 RESEARCH PAPER Morphological variation in the flowers of Jacaratia mexicana A. DC. (Caricaceae), a subdioecious tree A. Aguirre1, M. Vallejo-Marı´n2, E. M. Piedra-Malago´ n3, R. Cruz-Ortega4 & R. Dirzo5 1 Departamento de Biologı´a Evolutiva, Instituto de Ecologı´a A.C., Congregacio´ n El Haya, Xalapa, Veracruz, Me´ xico 2 Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada 3 Posgrado Instituto de Ecologı´a A.C., Congregacio´ n El Haya, Xalapa, Veracruz, Me´ xico 4 Departamento de Ecologı´a Funcional, Instituto de Ecologı´a, UNAM, Me´ xico 5 Department of Biological Sciences, Stanford University, Stanford, CA, USA Keywords ABSTRACT Caricaceae; dioecy; Jacaratia mexicana; Mexico; sexual variation. The Caricaceae is a small family of tropical trees and herbs in which most species are dioecious. In the present study, we extend our previous work on Correspondence dioecy in the Caricaceae, characterising the morphological variation in sex- A. Aguirre, Departamento de Biologı´a ual expression in flowers of the dioecious tree Jacaratia mexicana. We found Evolutiva, Instituto de Ecologı´a A.C., Km. 2.5 that, in J. mexicana, female plants produce only pistillate flowers, while Carretera Antigua a Coatepec 351, male plants are sexually variable and can bear three different types of flow- Congregacio´ n El Haya, Xalapa 91070, ers: staminate, pistillate and perfect. To characterise the distinct types of Veracruz, Me´ xico. flowers, we measured 26 morphological variables. Our results indicate that: E-mail: [email protected] (i) pistillate flowers from male trees carry healthy-looking ovules and are morphologically similar, although smaller than, pistillate flowers on female Editor plants; (ii) staminate flowers have a rudimentary, non-functional pistil and M.
    [Show full text]
  • UNIVERSITY of CALIFORNIA, SAN DIEGO Pollinator Effectiveness Of
    UNIVERSITY OF CALIFORNIA, SAN DIEGO Pollinator Effectiveness of Peponapis pruinosa and Apis mellifera on Cucurbita foetidissima A Thesis submitted in partial satisfaction of the requirements for the degree Master of Science in Biology by Jeremy Raymond Warner Committee in charge: Professor David Holway, Chair Professor Joshua Kohn Professor James Nieh 2017 © Jeremy Raymond Warner, 2017 All rights reserved. The Thesis of Jeremy Raymond Warner is approved and it is acceptable in quality and form for publication on microfilm and electronically: ________________________________________________________________ ________________________________________________________________ ________________________________________________________________ Chair University of California, San Diego 2017 iii TABLE OF CONTENTS Signature Page…………………………………………………………………………… iii Table of Contents………………………………………………………………………... iv List of Tables……………………………………………………………………………... v List of Figures……………………………………………………………………………. vi List of Appendices………………………………………………………………………. vii Acknowledgments……………………………………………………………………... viii Abstract of the Thesis…………………………………………………………………… ix Introduction………………………………………………………………………………. 1 Methods…………………………………………………………………………………... 5 Study System……………………………………………..………………………. 5 Pollinator Effectiveness……………………………………….………………….. 5 Data Analysis……..…………………………………………………………..….. 8 Results…………………………………………………………………………………... 10 Plant trait regressions……………………………………………………..……... 10 Fruit set……………………………………………………...…………………... 10 Fruit volume, seed number,
    [Show full text]
  • Marker-Assisted Breeding for Papaya Ringspot Virus Resistance in Carica Papaya L
    Marker-Assisted Breeding for Papaya Ringspot Virus Resistance in Carica papaya L. Author O'Brien, Christopher Published 2010 Thesis Type Thesis (Masters) School Griffith School of Environment DOI https://doi.org/10.25904/1912/3639 Copyright Statement The author owns the copyright in this thesis, unless stated otherwise. Downloaded from http://hdl.handle.net/10072/365618 Griffith Research Online https://research-repository.griffith.edu.au Marker-Assisted Breeding for Papaya Ringspot Virus Resistance in Carica papaya L. Christopher O'Brien BAppliedSc (Environmental and Production Horticulture) University of Queensland Griffith School of Environment Science, Environment, Engineering and Technology Griffith University Submitted in fulfilment of the requirements of the degree of Master of Philosophy September 4, 2009 2 Table of Contents Page No. Abstract ……………………………………………………… 11 Statement of Originality ………………………………………........ 13 Acknowledgements …………………………………………. 15 Chapter 1 Literature review ………………………………....... 17 1.1 Overview of Carica papaya L. (papaya)………………… 19 1.1.1 Taxonomy ………………………………………………… . 19 1.1.2 Origin ………………………………………………….. 19 1.1.3 Botany …………………………………………………… 20 1.1.4 Importance …………………………………………………... 25 1.2 Overview of Vasconcellea species ……………………… 28 1.2.1 Taxonomy …………………………………………………… 28 1.2.2 Origin ……………………………………………………… 28 1.2.3 Botany ……………………………………………………… 31 1.2.4 Importance …………………………………………………… 31 1.2.5 Brief synopsis of Vasconcellea species …………………….. 33 1.3 Papaya ringspot virus (PRSV-P)…………………………. 42 1.3.1 Overview ………………………………………………………. 42 1.3.2 Distribution …………………………………………………… 43 1.3.3 Symptoms and effects ……………………………………….. .. 44 1.3.4 Transmission …………………………………………………. 45 1.3.5 Control ………………………………………………………. .. 46 1.4 Breeding ………………………………………………………. 47 1.4.1 Disease resistance …………………………………………….. 47 1.4.2 Biotechnology………………………………………………….. 50 1.4.3 Intergeneric hybridisation…………………………………….. 51 1.4.4 Genetic transformation………………………………………… 54 1.4.5 DNA analysis ……………………………………………….....
    [Show full text]
  • Jacaratia Mexicana Seedlings Inoculated with Arbuscular Mycorrhizal Fungi in a Tropical Dry Forest
    Madera y Bosques vol. 21, núm. 3: 161-167 Otoño 2015 Survival and growth of Jacaratia mexicana seedlings inoculated with arbuscular mycorrhizal fungi in a tropical dry forest Supervivencia y crecimiento de plántulas de Jacaratia mexicana inoculadas con hongos micorrícico arbusculares dentro de un bosque tropical seco Ramón Zulueta-Rodríguez1, Luis G. Hernandez-Montiel2*, Bernardo Murillo-Amador2, Miguel V. Córdoba-Matson2 y Liliana Lara1 and Isabel Alemán Chávez1 1 Facultad de Ciencias Agrícolas. Universidad Veracru- 2 Centro de Investigaciones Biológicas del Noroeste. * Corresponding author: [email protected] zana. Xalapa, Veracruz, México. La Paz, Baja California Sur, México. ABSTRACT Jacaratia mexicana is not only an endemic and typical tropical dry forest tree of Mexico, it is considered as a direct ancestor of the pa- payo (Carica papaya). Locally it is mainly used in traditional medicine, for human food or for feeding backyard animals (forage plant), but its use value is very restricted or even unknown. Nevertheless, various abiotic and anthropogenic pressures in its Mexican habitat are causing populations of this tree to decline alarmingly. Arbuscular mycorrhizal fungi (AMF) are microorganisms that have an important role for the regeneration of tree species by increasing their ability to absorb water and nutrients. The aim of this study was to determine the effect of AMF on growth and survival of seedlings of J. mexicana transplanted within a fragmented area of the remaining dry forest located in the central portion of the state of Veracruz. We measured height, stem diameter, number of leaves, percent seedling survival and mycorrhizal colonization. Results showed increases in all growth-related variables when seedlings were inoculated with AMF.
    [Show full text]
  • Cucurbitaceae”
    1 UF/IFAS EXTENSION SARASOTA COUNTY • A partnership between Sarasota County, the University of Florida, and the USDA. • Our Mission is to translate research into community initiatives, classes, and volunteer opportunities related to five core areas: • Agriculture; • Lawn and Garden; • Natural Resources and Sustainability; • Nutrition and Healthy Living; and • Youth Development -- 4-H What is Sarasota Extension? Meet The Plant “Cucurbitaceae” (Natural & Cultural History of Cucurbits or Gourd Family) Robert Kluson, Ph.D. Ag/NR Ext. Agent, UF/IFAS Extension Sarasota Co. 4 OUTLINE Overview of “Meet The Plant” Series Introduction to Cucubitaceae Family • What’s In A Name? Natural History • Center of origin • Botany • Phytochemistry Cultural History • Food and other uses 5 Approach of Talks on “Meet The Plant” Today my talk at this workshop is part of a series of presentations intended to expand the awareness and familiarity of the general public with different worldwide and Florida crops. It’s not focused on crop production. Provide background information from the sciences of the natural and cultural history of crops from different plant families. • 6 “Meet The Plant” Series Titles (2018) Brassicaceae Jan 16th Cannabaceae Jan 23rd Leguminaceae Feb 26th Solanaceae Mar 26th Cucurbitaceae May 3rd 7 What’s In A Name? Cucurbitaceae the Cucurbitaceae family is also known as the cucurbit or gourd family. a moderately size plant family consisting of about 965 species in around 95 genera - the most important for crops of which are: • Cucurbita – squash, pumpkin, zucchini, some gourds • Lagenaria – calabash, and others that are inedible • Citrullus – watermelon (C. lanatus, C. colocynthis) and others • Cucumis – cucumber (C.
    [Show full text]
  • Coile, Nancy C
    THE PALMETTO,Winter 1992, Page5 after-school snack for American young- is native to Central America. Common (Duchesne) Poiret: butternut, pumpkin, sters is the peanut-butter-and-jelly green beans are grown as a winter veg- and winter crookneck. sandwich. etable throughout the state, commer- In winter, squashes are grown com- Corn, Zea mays l., is a grain or cereal cially as a winter vegetable in south mercially in south Florida. native to Mexico. In other English- Florida. Squash casserole made from yellow speaking countries, "corn" refers to any The Phaseo/us genus and Stropho- crookneck squash is a favorite of many grain (e.g., wheat), while Zea mays is styles genus of beans can be found Southerners, while many others disdain called "maize". growing wild in Florida. If they had been squash in any form. There are five kinds of corn: pop, flint, selected by the native Florida Indians What Southerner could long survive dent, flour, and sweet corn. Sweet corn for cultivation, perhaps we would havea without butterbeans and cornbread, is the kind grown in Florida throughout different bean as one of our foods! chowchow on the side, squash casserole, the state. Zellwood in Orange County has Beanflowers are mostly self-pollinating slices of tomato and Cayenne peppers, an annual sweet corn festival, scheduled and thus cherished cultivars "come true" and sweet potato souffle? How wou Id we when the corn gets ripe. when seedsare savedto replant. Beans get through Thanksgiving without turkey "Indian corn" has variously colored are a good source of protein, iron, and (another New World food), cranberry kernels and comes in flint or flour B vitamins.When eatenwith corn, all the sauce, cornbread dressing (not"stuffing"! varieties.
    [Show full text]