Soil Organic Matter (SOM) Dynamics Determined by Stable Isotope Techniques

Total Page:16

File Type:pdf, Size:1020Kb

Soil Organic Matter (SOM) Dynamics Determined by Stable Isotope Techniques AT9900043 Soil organic matter (SOM) dynamics determined by stable isotope techniques Martin H. Gerzabek September 1998 OEFZS—4826 SEIBERSDORF 30-20 OEFZS—4826 September 1998 Soil organic matter (SOM) dynamics determined by stable isotope techniques Martin H. Gerzabek Abteilung Umweltforschung Bereich Lebenswissenschaften Mitteilungen der Deutschen Bodenkundlichen Gesellschaft, 87, 161-174 ______ (1998) Soil organic matter (SOM) dynamics determined by stable isotope techniques von GERZABEK, M.H. Abstract Being aware of limitations and possible bias the 13C natural abundance technique using the different 13C enrichments in plants with differing photosynthetic pathways is a powerful tool to quantify turnover processes, both in long-term field studies and short-term laboratory experiments. Special care is needed in choosing reference plots and the proper number of replicate samples. The combination of 13C and 14C measurements has a high potential for a further improvement of isotope techniques in SOM studies. Natural abundance of 15N is less powerful with respect to quantification of SOM processes than the isotope dilution technique. However, its usefulness could be distinctly improved by introducing other stable isotopes into the studies. Introduction Soil organic matter has a large number of functions within the biosphere. It is e.g. the basis of a favourable soil structure, hydrological properties and biological activity, offers sorption sites for plant nutrients and pollutants, is itself an important source for nutrients and acts as a sink for atmospheric C02. All these functions may be influenced by changes in climate (Tinker and Ingram, 1994), land use and the overall situation of the environment. Thus, the questions we ask in soil science concerning soil organic matter are much more complex than a few decades ago, when soil productivity was the main matter of concern. The major difficulty is the quantification of the different processes involved in the previously mentioned functions of soil organic matter. Especially the determination of turnover rates, both of labile and of stable or resistant or recalcitrant or refractory organic matter pools are the basis for modelling the overall system. The use of isotopes in this respect is not new. Already in the sixties and seventies quite a number of experiments focused on the determination of organic matter pools of different stability by using 14C-labelling or radiocarbon dating (Fuhr and Sauerbeck, 1968, Goh, 1991, Jenkinson, 1977, Oberlander and Roth, 1972, 1974, 1975) and basic models were derived from these data (Jenkinson and Rayner, 1977). The use of the radioactive 14C with a physical half-life of 5730 years implies considerable radiation protection measures, which is a great disadvantage. Field experiments with 14C-labelled material are not longer admitted in most countries. Stable isotopes of carbon, nitrogen and sulphur allow in principle similar experimental designs and the rapid development of mass spectrometry and its applications overcame the disadvantage of complicated and time consuming analytical procedures. The following pages attempt to sum up the present use of stable isotopes in organic matter studies and to present some examples from typical experiments using tracer or isotopic dilution methods. Determination of stable isotopes The main method determining stable isotopes abundances is mass spectrometry. Since the fifties dual inlet gas isotope ratio mass spectrometers were used, especially for 13C/I2C ratio analysis (Boutton, 1991). Due to technical and electronical improvements the precision of such instruments is now a factor of ten better than in the early days. The great problem was that the element of interest had to be isolated from the sample and the conversion into the measured gas (e.g. C02, N2, S02) must not cause any isotopic fractionation. In the case of carbon the conversion to C02 is accomplished by dry combustion in an excess of oxygen (Boutton, 1991). The sample preparation of an off-line method has a precision of app. 0.1 %o (1 SD), the mass spectrometric precision is much better (1 SD = 0.01%o). For nitrogen isotope measurements the standard Austrian Research Centers Seibersdorf, Division of Life Sciences, A-2444 Seibersdorf; e-mail: [email protected] 162 procedures were the methods of Kjeldahl-Rittenberg (wet chemistry) and Dumas (dry combustion) (Banie, 1991). In the eighties a considerable step forward was undertaken by coupling an elemental analyser with an isotope ratio mass spectrometer (Preston and Owens, 1985, Pichlmayer and Blochberger, 1988). This combination results in a similar overall precision compared to the off-line methods and an app. fivefold increase of the number of analyses per day (app. 100 instead of 20 per day). For the determination of N-isotopic composition at higher 15N enrichments optical emission spectroscopy offers a cheap and simpler alternative (Preston, 1991). For this technique samples are prepared by direct Dumas conversion in sealed sample tubes containing app. 10 ug total N. The 15N enrichment is determined from the relative intensities of the three N2 lines of masses 28, 29 and 30 after exciting the sample nitrogen gas in a discharge tube by an external radioffequency source. Precision is about + 0.01 - 0.02 at.%15N, which is satisfactory for most tracer studies, but not suitable for natural abundance measurements. The ratio of the peaks of the masses 28, 29, 30 and 44, 45, 46 are used to determine the ratio of 15N/14N and !3C/12C, respectively. Normally the quantity reported is not the isotope ratio of a sample itself, but the relative difference between the isotope ratio of the sample and that of a standard (5-notation). The 5 values are calculated as: 5 (%o) — [(Rsample ~ Rstondaid)/Rstondard] X 1000 (1) where R is the ratio of the heavy to the light isotope of sample or standard. For N, the standard is air, for C it is the Cretaceous carbonate fossil Bellemnitella americana from the PeeDee Formation in South Carolina, USA (PDB), and for S the mineral troilite from the Canon Diablo meteorite is used as standard (Barrie and Prosser, 1996). Especially for C the accepted standard has limited availability. In practice the samples (SAM) are measured against a laboratory reference material Table 1. Primary isotope standards (5 = 0%o) (according to Barrie and Prosser, 1996) PeeDee Belemnite (PDB) 13C/12C = 0.0112372 18 0/160 = 0.0020671 Atmospheric nitrogen (air) 15N/14N = 0.0036765 Canon Diablo meteorite troilite (CDT) 34S/32S = 0.0450045 which has been calibrated against the international standard (Boutton, 1991). Table 1 shows the isotope ratios of important primary standards. Values obtained by using the laboratory reference material (REF) can be converted to values relative to a standard (STD) by (Barrie and Prosser, 1996): 5 SAM - STD — SsaM-REF + 5ref-std + (§SAM-REf8 rEF-STd)/1 000 (2) Another way to report results, especially for tracer studies, is using the abundance: ,3C abundance (atom% 13C) = [(13C) / (12C + 13C)] x 100 (3) Atom% excess is a similar index, but gives the enrichment level of the sample in excess of the background. It should be mentioned that due to minor 17 0 contributions to the mass 45 signal the calculation of 13C/12C ratios (13R) from mass 45/44 (45R) and mass 46/44 (^R) has to be corrected. There is no way in which an equation exactly relating 17 0/160 and 18 0/160 ratios in all pools of oxygen can be deduced (Santrock et al, 1985). However, the mentioned authors describe one possible way using three basic equations, which partly contain empirical values. A simpler method was already proposed 1957 by Craig, which yields quite similar results (Equation 4): 513Csam-std = [(45Rsam - 45Rsto)/(45Rstd - 1/I333.7)]xl0 3 - 0.0336x[{( 46R5AM - ^Rsm^RsmjxlO 3] The use of the natural abundance of isotopes in SOM dynamics studies SOM turnover - changes in plant input Theory Atmospheric C02 is the important link between inorganic and organic compounds involved in the global C- cycle. Atmospheric C02 has a mean 513C value of approximately -7.8%o (Boutton, 1991). Plants differ 163 distinctly in their C-isotopic composition from atmospheric C02 due to fractionation processes during assimilation. The largest difference occur between plant species with different photosynthetic pathways. Trees and gramineae of temperate regions use the Calvin-cycle (C3) and incorporate less 13C than plants with a Hatch-Slack (C4) cycle. The first group exhibit a S13C value of app. -27%o, whereas the second group is significantly higher (-13%o513C). Thus, C3- and C4-plants are differentiated by approximately 14%o on the 8- scale. As already mentioned, modem elemental analyser - mass spectrometer combinations reach acurracies of at least 0.1 %o S13C. Therefore, the difference between C3 and C4 plants is sufficient to be used for tracer studies (Baldesdent et al., 1987). A third photosynthetic pathway, the Crassulacean acid metabolism is used by 10% of all plant species, by some of them obligate, by some of them facultative. The latter can switch to C3 photosynthesis, which causes a wide range of S13C values from -28 %o to -10%o (Boutton, 1996) and make them less suitable for SOM turnover determinations. Several investigations of SOM turnover under field conditions were undertaken using the fact that the vegetation cover changed between C3 and C4 plants (Baldesdent and Mariotti, 1996). Cerri et al. (1991) described the discrimination between SOM originating from indigenous vegetation (forest, C3)
Recommended publications
  • THE NATURAL RADIOACTIVITY of the BIOSPHERE (Prirodnaya Radioaktivnost' Iosfery)
    XA04N2887 INIS-XA-N--259 L.A. Pertsov TRANSLATED FROM RUSSIAN Published for the U.S. Atomic Energy Commission and the National Science Foundation, Washington, D.C. by the Israel Program for Scientific Translations L. A. PERTSOV THE NATURAL RADIOACTIVITY OF THE BIOSPHERE (Prirodnaya Radioaktivnost' iosfery) Atomizdat NMoskva 1964 Translated from Russian Israel Program for Scientific Translations Jerusalem 1967 18 02 AEC-tr- 6714 Published Pursuant to an Agreement with THE U. S. ATOMIC ENERGY COMMISSION and THE NATIONAL SCIENCE FOUNDATION, WASHINGTON, D. C. Copyright (D 1967 Israel Program for scientific Translations Ltd. IPST Cat. No. 1802 Translated and Edited by IPST Staff Printed in Jerusalem by S. Monison Available from the U.S. DEPARTMENT OF COMMERCE Clearinghouse for Federal Scientific and Technical Information Springfield, Va. 22151 VI/ Table of Contents Introduction .1..................... Bibliography ...................................... 5 Chapter 1. GENESIS OF THE NATURAL RADIOACTIVITY OF THE BIOSPHERE ......................... 6 § Some historical problems...................... 6 § 2. Formation of natural radioactive isotopes of the earth ..... 7 §3. Radioactive isotope creation by cosmic radiation. ....... 11 §4. Distribution of radioactive isotopes in the earth ........ 12 § 5. The spread of radioactive isotopes over the earth's surface. ................................. 16 § 6. The cycle of natural radioactive isotopes in the biosphere. ................................ 18 Bibliography ................ .................. 22 Chapter 2. PHYSICAL AND BIOCHEMICAL PROPERTIES OF NATURAL RADIOACTIVE ISOTOPES. ........... 24 § 1. The contribution of individual radioactive isotopes to the total radioactivity of the biosphere. ............... 24 § 2. Properties of radioactive isotopes not belonging to radio- active families . ............ I............ 27 § 3. Properties of radioactive isotopes of the radioactive families. ................................ 38 § 4. Properties of radioactive isotopes of rare-earth elements .
    [Show full text]
  • Stable Isotope Methods in Biological and Ecological Studies of Arthropods
    eea_572.fm Page 3 Tuesday, June 12, 2007 4:17 PM DOI: 10.1111/j.1570-7458.2007.00572.x Blackwell Publishing Ltd MINI REVIEW Stable isotope methods in biological and ecological studies of arthropods CORE Rebecca Hood-Nowotny1* & Bart G. J. Knols1,2 Metadata, citation and similar papers at core.ac.uk Provided by Wageningen University & Research Publications 1International Atomic Energy Agency (IAEA), Agency’s Laboratories Seibersdorf, A-2444 Seibersdorf, Austria, 2Laboratory of Entomology, Wageningen University and Research Centre, P.O. Box 8031, 6700 EH Wageningen, The Netherlands Accepted: 13 February 2007 Key words: marking, labelling, enrichment, natural abundance, resource turnover, 13-carbon, 15-nitrogen, 18-oxygen, deuterium, mass spectrometry Abstract This is an eclectic review and analysis of contemporary and promising stable isotope methodologies to study the biology and ecology of arthropods. It is augmented with literature from other disciplines, indicative of the potential for knowledge transfer. It is demonstrated that stable isotopes can be used to understand fundamental processes in the biology and ecology of arthropods, which range from nutrition and resource allocation to dispersal, food-web structure, predation, etc. It is concluded that falling costs and reduced complexity of isotope analysis, besides the emergence of new analytical methods, are likely to improve access to isotope technology for arthropod studies still further. Stable isotopes pose no environmental threat and do not change the chemistry or biology of the target organism or system. These therefore represent ideal tracers for field and ecophysiological studies, thereby avoiding reductionist experimentation and encouraging more holistic approaches. Con- sidering (i) the ease with which insects and other arthropods can be marked, (ii) minimal impact of the label on their behaviour, physiology, and ecology, and (iii) environmental safety, we advocate more widespread application of stable isotope technology in arthropod studies and present a variety of potential uses.
    [Show full text]
  • Chemical and Isotropic Tracers of Natural Gas and Formation Waters in Fractured Shales
    Chemical and isotopic tracers of natural gas and formation waters in Note: this document may contain some elements that are not fully fractured shales accessible to users with disabilities. If you need assistance accessing any information in this document, please contact [email protected]. Jennifer McIntosh, Melissa Schlegel, Brittney Bates Department of Hydrology & Water Resources University of Arizona, Tucson AZ EPA Technical Workshop Feb 24-25, 2011 Outline of Presentation 1)) What is the chemical and isotoppgic signature of formation waters and natural gas in fractured shales? 2) How does it compare with shallow drift aquifers, coalbeds, and other deep geologic formations? Illinois Basin-Case Study - 3 organic-rich formations: glacial drift, Penn. coal, & Dev. fractured shale - organicorganic-rich Ordov. ShaleShale, not part ooff this study m 500 20 km Schlegel et al. (in press, 2011, Geochimica et Cosmochimica Acta) Illinois Basin-Case Study - microbial methane in all 3 units - thermogenic methane in shale and coal m 500 20 km Schlegel et al. (in press, 2011, Geochimica et Cosmochimica Acta) Illinois Basin - water & gas samples Shallow aquifers Penn. Coals Dev. Shale Limestone aquifers 9New data (white symbols): Schlegel et al. (in press) 9Previous data (black symbols): McIntosh et al., 2002; Strąpoć et al., 2007, 2008a,b; Coleman et al, 1988 Fingerprint of natural gases 1000000 Shallow Aquifers 100000 High C1/C2, no C3 Coals 10000 1000 Shale 100 10 Shallow aquifers Penn. Coals Dev. Shale Thermogenic gas 1 -80 -75 -70 -65 -60 -55 -50 -45 -40 13 δ CCH4 (ä PDB) 13 9In general, 3 organic-rich units have different gas compositions (C1/C2+C3) and δ C-CH4 values.
    [Show full text]
  • F:\Forensic Geology\Ice Man Isotopes.Wpd
    NAME 89.215 - FORENSIC GEOLOGY DEMISE OF THE ICE MAN - ISOTOPIC EVIDENCE I. Introduction Stable and radiogenic isotopic data have been used in a variety of fields to answer a wide range of scientific questions. The nucleus of an atom consists of protons (+1 charge) and neutrons (0 charge), two types of particles that have essentially the same atomic mass. The number of protons in a nucleus determines the element. For example, a nucleus with 1 proton is a hydrogen nucleus, a nucleus with 2 protons is a helium nucleus. Isotopes of an element contain the same number of protons but different numbers of neutrons. For example, there are three isotopes of hydrogen: (1) ordinary hydrogen which contains one proton and no neutrons and has an atomic mass of one; (2) deuterium which contains one proton and one neutron and has an atomic mass of two; and (3) tritium which contains one proton and two neutrons and has an atomic mass of three. The convention used to show the numbers of types of particles in a nucleus is to place the number of protons (called the atomic number) at the bottom left of the element symbol and the number of protons plus neutrons (called the atomic mass) at the upper left of the element symbol. For example, the tritium isotope is 3 shown as 1H . II. Stable isotopes Stable isotopes are not radioactive, they do not spontaneously breakdown to other atoms. In a previous exercise you used radioactive carbon to determine when the Ice Man was killed. There are three isotopes of carbon: (1) carbon 12 which contains 6 protons and 6 neutrons giving an atomic mass of 12; (2) carbon 13 which contains 6 protons and 7 neutrons giving an atomic mass of 13; and (3) carbon 14 which contains 6 protons and 8 neutrons giving an atomic mass of 14.
    [Show full text]
  • Measurement of the Isotopic Composition of Dissolved Iron in the Open Ocean F
    Measurement of the isotopic composition of dissolved iron in the open ocean F. Lacan, Amandine Radic, Catherine Jeandel, Franck Poitrasson, Géraldine Sarthou, Catherine Pradoux, Remi Freydier To cite this version: F. Lacan, Amandine Radic, Catherine Jeandel, Franck Poitrasson, Géraldine Sarthou, et al.. Measure- ment of the isotopic composition of dissolved iron in the open ocean. Geophysical Research Letters, American Geophysical Union, 2008, pp.L24610. 10.1029/2008GL035841. hal-00399111 HAL Id: hal-00399111 https://hal.archives-ouvertes.fr/hal-00399111 Submitted on 15 Jul 2009 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Measurement of the Isotopic Composition of dissolved Iron in the Open Ocean 2 3 Lacan1 F., Radic1 A., Jeandel1 C., Poitrasson2 F., Sarthou3 G., Pradoux1 C., Freydier2 R. 4 5 1: CNRS, LEGOS, UMR5566, CNRS-CNES-IRD-UPS, Observatoire Midi-Pyrénées, 18, Av. 6 E. Belin, 31400 Toulouse, France. 7 2: LMTG, CNRS-UPS-IRD, 14-16, avenue Edouard Belin, 31400 Toulouse, France. 8 3: LEMAR, UMR CNRS 6539, IUEM, Technopole Brest Iroise, Place Nicolas Copernic, 9 29280 Plouzané, France. 10 11 Paper published in Geophysical Research Letters (2008) L24610. 12 We acknowledge Geophysical Research Letters and the American Geophysical Union copyright 13 14 This work demonstrates for the first time the feasibility of the measurement of the isotopic 15 composition of dissolved iron in seawater for a typical open ocean Fe concentration range 16 (0.1-1nM).
    [Show full text]
  • Stable Isotope Analyses Differentiate Between Different Trophic Pathways Supporting Rocky-Reef Fishes
    MARINE ECOLOGY PROGRESS SERIES Vol. 95: 19-24, 1993 Published May 19 Mar. Ecol. Prog. Ser. Stable isotope analyses differentiate between different trophic pathways supporting rocky-reef fishes Carrie J. Thomas, Lawrence B. Cahoon Biological Sciences, University of North Carolina at Wilmington, Wilmington, North Carolina 28403, USA ABSTRACT: Stable isotope analyses of 5 reef-associated fishes, Decapterus punctatus. Diplodus holbrooki, Rhornboplites aurorubens. Pagrus pagrus, and Haernulon aurolineatum, were conducted to determine the ability of stable isotope analysis to distinguish among the species and the trophic pathways that support them. Analyses of F13C, 615~,and 634~from white swimming muscle yielded significant differences between species. Multiple stable isotope signatures of these 5 species indicated that at least 2 trophic pathways, one planktonic and one benthic, supported these reef-associated species. Variability of isotopic signatures within species was largely a result of collection site differ- ences. 8l3C and 615N values inchcated that all fishes were feeding at similar trophic levels. P4S values proved to be useful supplements to carbon and nitrogen isotope values in separating species by signature. INTRODUCTION sandy areas (Hales 1987, Donaldson 1991). Other fishes, such as Diplodus holbrooki (spottail pinfish), Total primary production on the continental shelf off feed upon benthic macroalgae and associated inverte- North Carolina, USA, is supported by 3 sources: phyto- brates (Hay & Sutherland 1988, Pike 1991). Finally, plankton, benthic macroalgae, and benthic micro- demersal zooplankton feed on benthic microalgae algae. Cahoon et al. (1990) found benthic microalgal (Tronzo 1989).Demersal zooplankton are in turn a food biomass frequently equalled or exceeded integrated item for fishes such as Haemulon aurolineatum phytoplankton biomass across the shelf.
    [Show full text]
  • Mass Fraction and the Isotopic Anomalies of Xenon and Krypton in Ordinary Chondrites
    Scholars' Mine Masters Theses Student Theses and Dissertations 1971 Mass fraction and the isotopic anomalies of xenon and krypton in ordinary chondrites Edward W. Hennecke Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses Part of the Chemistry Commons Department: Recommended Citation Hennecke, Edward W., "Mass fraction and the isotopic anomalies of xenon and krypton in ordinary chondrites" (1971). Masters Theses. 5453. https://scholarsmine.mst.edu/masters_theses/5453 This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. MASS FRACTIONATION AND THE ISOTOPIC ANOMALIES OF XENON AND KRYPTON IN ORDINARY CHONDRITES BY EDWARD WILLIAM HENNECKE, 1945- A THESIS Presented to the Faculty of the Graduate School of the UNIVERSITY OF MISSOURI-ROLLA In Partial Fulfillment of the Requirements for the Degree MASTER OF SCIENCE IN CHEMISTRY 1971 T2572 51 pages by Approved ~ (!.{ 1.94250 ii ABSTRACT The abundance and isotopic composition of all noble gases are reported in the Wellman chondrite, and the abundance and isotopic composition of xenon and krypton are reported in the gases released by stepwise heating of the Tell and Scurry chondrites. Major changes in the isotopic composition of xenon result from the presence of radio­ genic Xel29 and from isotopic mass fractionation. The isotopic com­ position of trapped krypton in the different temperature fractions of the Tell and Scurry chondrites also shows the effect of isotopic fractiona­ tion, and there is a covariance in the isotopic composition of xenon with krypton in the manner expected from mass dependent fractiona­ tion.
    [Show full text]
  • Ocean Ecogeochemistry a Review
    Oceanography and Marine Biology: An Annual Review, 2013, 51, 327-374 © Roger N. Hughes, David Hughes, and I. Philip Smith, Editors Taylor & Francis OcEaN EcOgeochemistry: a review KElton w. mcmahon1,2,3, Li Ling HamaDy1 & SImon R. ThorrolD1 1Biology Department, Woods Hole Oceanographic Institution, MS50, Woods Hole, MA 02543, USA E- mail: [email protected] (corresponding author), [email protected] 2Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia E- mail: [email protected] 3Ocean Sciences Department, University of California-Santa Cruz, SantaCruz, CA 95064, USA animal movements and the acquisition and allocation of resources provide mechanisms for indi- vidual behavioural traits to propagate through population, community and ecosystem levels of biological organization. Recent developments in analytical geochemistry have provided ecolo- gists with new opportunities to examine movements and trophic dynamics and their subsequent influence on the structure and functioning of animal communities. we refer to this approach as ecogeochemistry—the application of geochemical techniques to fundamental questions in popula- tion and community ecology. we used meta- analyses of published data to construct δ2H, δ13c, δ15N, δ18O and Δ14c isoscapes throughout the world’s oceans. These maps reveal substantial spatial vari- ability in stable isotope values on regional and ocean- basin scales. we summarize distributions of dissolved metals commonly assayed in the calcified tissues of marine animals. Finally, we review stable isotope analysis (SIa) of amino acids and fatty acids. These analyses overcome many of the problems that prevent bulk SIa from providing sufficient geographic or trophic resolution in marine applications. we expect that ecologists will increasingly use ecogeochemistry approaches to estimate animal movements and trace nutrient pathways in ocean food webs.
    [Show full text]
  • Ocean Primary Production
    Learning Ocean Science through Ocean Exploration Section 6 Ocean Primary Production Photosynthesis very ecosystem requires an input of energy. The Esource varies with the system. In the majority of ocean ecosystems the source of energy is sunlight that drives photosynthesis done by micro- (phytoplankton) or macro- (seaweeds) algae, green plants, or photosynthetic blue-green or purple bacteria. These organisms produce ecosystem food that supports the food chain, hence they are referred to as primary producers. The balanced equation for photosynthesis that is correct, but seldom used, is 6CO2 + 12H2O = C6H12O6 + 6H2O + 6O2. Water appears on both sides of the equation because the water molecule is split, and new water molecules are made in the process. When the correct equation for photosynthe- sis is used, it is easier to see the similarities with chemo- synthesis in which water is also a product. Systems Lacking There are some ecosystems that depend on primary Primary Producers production from other ecosystems. Many streams have few primary producers and are dependent on the leaves from surrounding forests as a source of food that supports the stream food chain. Snow fields in the high mountains and sand dunes in the desert depend on food blown in from areas that support primary production. The oceans below the photic zone are a vast space, largely dependent on food from photosynthetic primary producers living in the sunlit waters above. Food sinks to the bottom in the form of dead organisms and bacteria. It is as small as marine snow—tiny clumps of bacteria and decomposing microalgae—and as large as an occasional bonanza—a dead whale.
    [Show full text]
  • Isotope Geochemistry of Carbonate Dissolution and Reprecipitation in Soils R
    SOIL SCIENCE Vol. 122, No. I Copyright © 1976 by The Williams &Wilkin s Co. I'rintedin U.S.A. ISOTOPE GEOCHEMISTRY OF CARBONATE DISSOLUTION AND REPRECIPITATION IN SOILS W. SALOMONS' AND W. G. MOOK Laboratoryof Inorganic Chemistry'.The University of Groningen, Zernikelaan, Paddepoel,Groningen, the Netherlands, and Physics Laboratory, University of Groningen, Westersingel 34, Groningen, the Netherlands Received for publication May 21, 197/> ABSTRACT The processes of dissolution and reprecipitation of carbonates in soils developed on carbonate rocks, loess-derived soils, and marine clay soils were studied with the methods of stable isotope geochemistry. Between 10 and 50 percent of the carbonates present in the upper part of soils developed on carbonate rocks are newly formed. In loess-derived soils and in marine clay soils, up to 100 percent of the carbonates present may be newly formed. The efficiency of the dissolution-reprecipitation process varies between 10 and 30 percent. In the salt marsh investigated the dissolution is caused by the action of biogenic carbon dioxide. INTRODUCTION pies by treatment with 95 percent orthophos- Carbonates are an important constituent of phoric acid. The presence of organic matter in the soil. The processes they are subject to are most soil samples analyzed introduces an error dissolution followed by (partial) reprecipita­ in both the carbon and oxygen isotopic composi­ tion. Reprecipitation can be easily recognized tion of less than 0.37„o (Salomons 1974). when it results in macroscopic concretions. Since this small shift has no influence on our However, when the newly formed carbonates conclusions, the time-consuming step of remov­ are finely divided they are difficult to detect by ing the organic matter from the sample prior to conventional methods.
    [Show full text]
  • Online Resources for Stable Isotope Laboratory Education and Training and Ecological Applications
    Online Resources for Stable Isotope Laboratory Education and Training and Ecological Applications Lisandra Trine, J. Renée Brooks, and William Rugh Ecological Effects Branch Pacific Ecological Systems Division Corvallis, OR, 97330 Introduction EPA’s Integrated Stable Isotope Research Facility developed a table of online educational and training resources for stable isotope analysis methods and ecological applications. This table was compiled from broad input from the stable isotope geochemistry community on the ISOGEOCHEM list serve. This resource material provides continued training of EPA and other staff in the greater stable isotope research group during situations when they may not have access to the laboratories. For any comments or recommendations to incorporate into this general listing, email [email protected]. Notice/Disclaimer Statement The views expressed in this document are those of the author(s) and do not necessarily represent the views or policies of the U.S. Environmental Protection Agency. Any mention of trade names, products, or services does not imply an endorsement by the U.S. Government or the U.S. Environmental Protection Agency. The EPA does not endorse any commercial products, services, or enterprises. This document provides links to non-EPA web sites that provide additional information about this topic. EPA cannot attest to the accuracy of information on that non-EPA page. Copywrite laws must be considered for all material in these links. Providing links to a non- EPA Web site is not an endorsement of the other site or the information it contains by EPA or any of its employees. Also, be aware that the privacy protection provided on the EPA.gov domain (see Privacy and Security Notice) may not be available at the external link.
    [Show full text]
  • Stable Isotope Diagrams of Freshwater Food Webs
    NOTES AND COMMENTS 2293 i.e., m, = d,ls,, where d, is the number of deaths during mortality rates, which have been described above, are the time interval i, and s, is the number of survivors approaches that can enable very short periods of time at the midpoint of the time interval i. to be identified when mortality risks differ substantially Gehan ( 1969) has derived an equation which enables between sets of plants. Although for the field ecologist the variance of the midpoint age-specific mortality to inferences about the causes of plant death will always be determined: be easier than proof, the ability to compare mortality rates over very short time intervals will allow more accurate interpretation of the causes of mortality and Var[m,] = (:/ {1 - ( ~')l promote a sharper understanding of the tolerance lim­ its of species in the field. d, . where q, = -, I.e., s, Acknowledgments: This work was undertaken while K. D. Booth was in receipt of a Science and Engineering 2 , (m,)' 2 {. ( m,' ) } Research Council studentship. We gratefully acknowl­ Var[m,] = T 1 - . 2 edge the helpful comments of four referees, including David Pyke and Dolph Schluter. This formula may be used to calculate 95% confidence intervals around m, values (Fig. 1), aiding the com­ Literature Cited parison of survivorship patterns in the cohorts (Lee Gehan, E. A. 1969. Estimating survival functions from the 1980). When this procedure is applied to the data of life table. Journal of Chronic Diseases 21:629-644. Pyke and Thompson ( 1986), the analysis shows that Lee, E. T.
    [Show full text]