Synthesis of Glutaconic Acid Salt from Cesium 3-Butenoate with Carbon Dioxide

Total Page:16

File Type:pdf, Size:1020Kb

Synthesis of Glutaconic Acid Salt from Cesium 3-Butenoate with Carbon Dioxide 48 石 油 学 会 誌 Sekiyu Gakkaishi, 38, (1), 48-51 (1995) [Note] Synthesis of Glutaconic Acid Salt from Cesium 3-Butenoate with Carbon Dioxide Kiyoshi KUDO*, Futoshi IKOMA, Sadayuki MORI, and Nobuyuki SUGITA Institute for Chemical Research, Kyoto University, Gokanosho, Uji, Kyoto 611 (Received July 13, 1994) Cesium carbonate (Cs2CO3) is an effective catalyst used for the carboxylation of cesium 3-butenoate (1) with carbon dioxide, in dimethylformamide, affording cesium glutaconate (2) in good yields (-55%) at temperature of 100℃ and pressure of 42atm. The reaction is restricted to 1-Cs2CO3 system. It is essential to use more than unity of the Ce2CO3/1 ratio to attain high yield. Other system such as potassium 3-butenoate-K2CO3 system is inactive. The effects of the pressure of CO2, reaction tem- perature and the amount of Cs2CO3 on the yield of carboxylated product were examined. 1. Introduction (1) The chemical utilization of CO2, as a resource for the production of useful substances, has been Although we have explored the subject of whether rather limited. It has been well established that or not this carboxylation could be applicable to the alkali metal phenolates are required as catalysts in synthesis of olefinic dicarboxylic acids by the a number of carboxylation reactions of active carboxylation of olefinic monocarboxylic acid salts, hydrogen compounds. Theoretical and funda- it was found that this procedure could not be mental studies on this carboxylation were reported employed because most of the starting acids or by Bottaccio et al.1) and Kwan et al.2). In these resulting acids were easily decomposed. The carboxylations, CO2 is activated, presumably, by ploblem was solved by use of cesium carbonate chelation to the alkali metal moiety of phenolate3). (Cs2CO3)and cesium salt in DMF solution. Glutaconic acid or its derivatives are important The purpose of this paper is to report on the facile intermediates for synthesis of the antibiotics4). and regioselective carboxylation of the tautomeric Battaccio and co-workers1) have reported, using a acid salt, cesium 3-butenoate (1), with CO2, using model reaction of alkali metal phenolate-promoted Cs2CO3as a base, which provided a useful method for carboxylation, that methyl 3-butenoate and methyl the synthesis of glutaconic acid salt (2) under mild crotonate are carboxylated to form monomethyl conditions; i.e., under pressure of 50atm of CO2 at glutaconate, along with monomethyl ethylidene- temperature of 100℃ (Eq. (2)) malonate, in hexamethyl-phosphoramide solution at temperature of 25℃, under atmospheric pressure. The yield, however, was low(15%), and the develop- 2. Experimental ment of efficient procedure was required. Previously, the authors has reported that anhy- 2.1. Material drous potassium acetate reacts with CO2 in the Commercially available solvent, dimethylform- presence of anhydrous potassium carbonate to give amide (DMF), was distilled before use. Alkali potassium malonate, under extreme conditions metal salts of olefinic monocarboxylic acid were (Eq. (1))5). prepared by neutralization with required amounts of aqueous alkali metal hydroxides. The solu- tions were, then, evaporated to dryness and further (2) 石 油 学 会 誌 Sekiyu Gakkaishi, Vol. 38, No. 1, 1995 49 dried in vacuum (ca. 5mmHg) at 150-180℃. Table 2 Carboxylation of Cesium 3-Butenoate under Alkali phenoxides were prepared in accordance Various Conditionsa) with the previous report3). Alkali metal car- bonates, obtained commercially, were used after being further dried. 2.2. Procedure A typical procedure carried out follows: A mixture of 1 (2mmol), Cs2CO3 (3mmol), and solvent DMF (10ml) were charged into a shaking- type autoclave (ca. 30ml). Air was flushed out with CO2, after which a desired amount of liquid a) Substrate, 2mmol; DMF, 10ml; time, 3h. b) Based on 1 CO2 was charged into the autoclave, at room employed. c) (Yield of 2/Conversion)×100. temperature. The autoclave was then heated and shaken constantly at 100℃ for 3h. In general, the carbonate is utilized in slurry form, regardless of solvent. The reaction mixture was cooled and those investigated, cesium carbonate was the most then poured into water (50ml) and acidified with effective base (Run 2), while potassium carbonate, dilute perchloric acid, and then determined by potassium phenoxide, and organic bases e.g. HPLC (Shimadzu LC-10A). Column, Shim- DBU or tributylamine, were less effective (Runs 3- pack SCR-101H, (0.25m×6mm), eluted with 7). This is particularly notable in that the aqueous perchloric acid (pH 2.1) solution, was corresponding reaction of 1, using cesium phen- used. oxides, give only low yield of 2, attributed to easy tautomerization of 1 (Run 5). An alkali metal 3. Results and Discussion species of the substrate had also significant effect on the reactivity, namely, the carboxylation of The reaction conditions, leading to the for- potassium salt led to a noticeable decrease of the mation of 2, was initially examined, using various yield in 2 (Runs 8 and 9). When methyl 3- bases, which show the sensitivity of this reaction to butenoate was used in place of salt (1), the reaction the nature of added base are shown in Table 1. In did not afford, at all, the corresponding diacid the reaction, solvent DMF was used, because DMF monoester. These results suggest that both alkali have higher solubilities for 1 (0.3mol/l) and metals of carbonate and salt (1) affect reactivity. Cs2CO3 (7mmol/l) than other solvents investigat- Next, the effects of reaction variables on the ed. product yield and selectivity (Table 2) were In the absence of base, only trace amounts of 2 surveyed. The yield of 2 was increased with the was formed, but greater amount of 3 (75%) resulted amount of cesium carbonate, up to about the from the tautomerization of 1(Run 1). Key to the equivalent of the substrate, while excess amount of successful formation of 2 rests on the choice of the cesium carbonate caused little or no increase in the base. The appropriate base must not only be product (Runs 10-13). It is noteworthy that the capable of driving the carbanion formation, but tautomerization of 1 into 3 decreased with an also capable of trapping α-hydrogen. Among all increase in the amount of the carbonate, and a considerable amount of cesium hydrogencarbon- ate (CsHCO3) was always observed. These facts suggest that the cesium carbonate do not operate as Table 1 Carboxylation of Alkali Metal 3-Butenoate with a base nor as an effective proton acceptor. The Various Systemsa) reaction was possible with CO2 at pressures rang- ing from 10 to 100atm. The yield and selectivity of 2 increased with the initial increase in the pressure, but nearly leveled off as the pressure increased to ca. 40atm (Runs 12, 14 and 15). The reaction temperature was also an important factor. The reaction did not occur at temperatures below 70℃ (Run 16). At higher temperature, the tau- tomer 3 increased at the expense of production 2 (Run 17). The best result, with respect to the a) Substrate, 2mmol; Base, 3mmol; DMF, 10ml; CO2: 100atm, 100℃, 3h. b) Based on 1 employed. c) 1,8- yield and selectivity of the desired product (2), was Diazabicyclo[5.4.0]undec-7-ene. achieved by the reaction carried out with CO2 at 石 油 学 会 誌 Sekiyu Gakkaishi, Vol. 38, No. 1, 1995 50 Scheme 1 pressures ranging from about 40 to 50atm, and at is abstracted by cesium carbonate as CsHCO3 in temperature of 100℃ (Run 15). The reaction was competition with its transfer onto γ-carbon, and complete within a lapse of about 3h. the resultant carbanion (1b) may then react with It is interesting to note that the carboxylation is CO2 to form 2 as shown in Scheme 1. regioselective, and the addition of CO2 took place The high reactivity of cesium carbonate for mainly at the γ-carbon of the acid(1) leading to 2. carboxylation may be ascribed to the strong Reaction products at both α- and β-carbon, such as electron-donating property of cesium metal, which ethylidenemalonic acid or methylenesuccinic acid, enhances the nucleophilicity of the dissociated were not obtained at all. carbonate anion (CsCO3-) to capture proton from The present carboxylation is characteristic of 1a. substrate 1. Other olefinic acids such as cesium salts of acrylic acid, crotonic acid and 3- and 4- References pentenoic acid did not afford the corresponding products, and these substrates were recovered 1) Bottaccio, G., Chiusoli, G. P., Felicioli, M. G., Gazz. Chim. unchanged. These results, thus, strongly suggest Ital., 103 (1-2), 105 (1973). that an intermediate (1a), generated in the 2) Mori, H., Yamamoto, H., Kwan, T., Chem. Pharm. Bull., 20, 2440 (1972). prototropic equilibrium between the two triads 1 3) Hales, J. L., Jones, J. I., Lindsey, A. S., J. Chem. Soc., 1954, and 3, which lies so far to the right, play an 3145. important role and causes the effective carbox- 4) Perri, S. T., Slater, S. C., Toske, S. G., White, J. D., J. Org. ylation under mild conditions. Chem., 55, 6037 (1990). Although detailed mechanism of the reaction is 5) Kudo, K., Takezaki, Y., Kogyo Kagaku Zasshi, 70, 2147 not known, it is apparent that an α-hydrogen of 1 (1967). 石 油 学 会 誌 Sekiyu Gakkaishi, Vol. 38, No. 1, 1995 51 要 旨 3-ブ テ ン酸セ シウム からの二酸化炭 素によ るグル タコン酸 塩の合成 工藤 清, 生駒 太志, 森 貞之, 杉 田信之 京都大学化学研究所, 611京 都府宇治市五ヶ庄 炭 酸 セ シ ウ ム は (Cs2CO3), DMF溶 液 中, 3-ブ テ ン酸 セ シ 比 を1以 上 で 行 う こ と が必 要 で あ る。 この 反 応 は 他 の ア ル カ ウム (1) の 二 酸 化 炭 素 に よ る カ ル ボ キ シ ル化 反応 に高 い触 媒 リ塩 系, た とえ ば3-ブ テ ン酸 カ リ ウム-炭 酸 カ リ ウム 系 で は 進 活 性 を示 し, 100℃, 42気 圧 で, グ ル タ コ ン酸 塩 (2) が 高 収 行 し ない。 セ シ ウ ム塩1-炭 酸 セ シ ウ ム系 で の 生 成 物 収 率 に 及 率 (~55%) で得 られ た。 この 反 応 は セ シ ウ ム塩1-炭 酸 セ シ ぼ す圧 力, 温 度, お よび炭 酸 塩 の添 加 量 な ど の影 響 を検 討 した。 ウ ム系 に特 異 的 で あ り, 2を 高 収 率 で 得 る た め に はCs2CO3/1 Keywords Carbon dioxide, Carboxylic acid, Carboxylation, Cesium carbonate, Cesium 3-butenoate 石 油 学 会 誌 Sekiyu Gakkaishi, Vol.
Recommended publications
  • CO2 Capture from Flue Gas Using Amino Acid Salt Solutions
    CO2 capture from flue gas using amino acid salt solutions Jacco van Holst, Patricia. P. Politiek, John P. M. Niederer, Geert F. Versteeg* University of Twente, Faculty Science and Technology (UT TNW), P.O. Box 217, 7500 AE Enschede, The Netherlands Abstract An initial kinetic study was performed on the reaction of CO2 with various potassium amino acid salt solutions at 298 K. Kinetics were measured at 0.5 kmol/m3, reason for which only apparent ki- netic constants are presented. The results were compared with the work of Kumar et al. [1] and Penny and Ritter [2]. Keywords: CO2, flue gas treatment, kinetics, potassium amino acid salt solutions Introduction One of the most alarming global environmental problems of today is the increase of the natural greenhouse effect. This problem is mainly caused by the increasing atmospheric carbon dioxide concentration due to the burning of fossil fuels for power generation. To reduce these problems, the carbon dioxide emissions from flue and fuel gases produced in combustion and gasification proc- esses in power plants have to be decreased by efficiency improvements and carbon dioxide capture. The removal of acid gases such as carbon dioxide, H2S or COS by absorption in aqueous alkanola- mine solutions is widely used in the chemical industry. Carbon dioxide reacts with primary and sec- ondary amines, reaching an equilibrium of carbamate, bicarbonate, and carbonate species. The ini- tial absorption reaction is the formation of the carbamate, which can then undergo hydrolysis to the bicarbonate and, if conditions such as pH are suitable, the carbonate species. The degree of hydroly- sis of the carbamate is determined by parameters such as amine concentration, solution pH, and the chemical stability of the carbamate [3].
    [Show full text]
  • SALTS of FATTY ACIDS
    SALTS of FATTY ACIDS Prepared at the 33rd JECFA (1988), published in FNP 38 (1988) and in FNP 52 (1992). Metals and arsenic specifications revised at the 55th JECFA (2000). An ADI 'not specified' was established at the 33rd JECFA (1988) SYNONYMS INS No. 470 DEFINITION These products consist of calcium, potassium or sodium salts of commercial myristic, oleic, palmitic, stearic, acids or mixtures of these acids from edible fats and oils. The article of commerce can be further specified by: - saponification value, - solidification point for the fatty acids obtained from the salts, - iodine value, - residue on ignition including assay of the cation, and - moisture content Assay Not less than 95% total fatty acid salts, dry weight basis DESCRIPTION Hard, white or faintly yellowish, somewhat glossy and crystalline solids or semi-solids or white or yellowish-white powder FUNCTIONAL USES Anticaking agent, emulsifier CHARACTERISTICS IDENTIFICATION Solubility (Vol. 4) Potassium and sodium salts are soluble in water and ethanol; calcium salts are insoluble in water, ethanol and ether Test for cations Heat 1 g of the sample with a mixture of 25 ml of water and 5 ml of hydrochloric acid. Fatty acids are liberated, floating as a solid or oil layer on the surface which is soluble in hexane. After cooling, aqueous layer is decanted and evaporated to dryness. Dissolve the residue in water and test for the appropriate cation. Fatty acid composition Using the Method of Assay, identify the individual fatty sample. The fatty acid(s) in primary abundance should conform to those declared on the label of the product PURITY Free fatty acids Not more than 3% Measure free fatty acids as directed in the method Free Fatty Acids.
    [Show full text]
  • DP70460.Pdf (4.893Mb)
    HEAT CHAHGES ACCGKPABYIIJG ABSGRFTIOH EQUILIBRIA IB SOLTJTIQH. D. C. UCETSBVAUfER C h e w . LD Sill ,/V\7 od L VVC\ I If) <2 D-C. C o ' :o Thesim submitted to the Faculty of the Graduate School of the TJnivsrsity of Maryland in partial fulfillment of the requirements for the degree of Doctor of Phil­ osophy* A 1 9 fc 6 .. UMI Number: DP70460 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. Dissertation Publishing UMI DP70460 Published by ProQuest LLC (2015). Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 ACKHQWLXDGMEHT The writer wishes to express hie appreciation and thaiifcs to Dr* Hell S. Gordon, Head of the Depart­ ment of Chemistry of the University of Maryland who dlreetcd this work and gate helpful suggestions and advice* TABLE OF G CH U M S X* Introduct 1 q h -—-*——— «*►»»««*«*»*«»»*— «■»»*-«««»»» x . Historical He view-----— ----- —■—— — — Z Heat of Absorption of Liquids art Gases- 1 4 Heat of Coagulation --- -- ™ -i^ * General Methods and Materials--— — — — — 2H of G els— 38H ----- - --- — ;S6 ------ Froeebnre——— ——-——32 If# Experiiaenial Hes’nlts-— --— — — — — ---- g*> T. Hubimavy C oixdua i OHS— —— — -— —— 61 FX* Lit eratare Gi ted :——— Introduction Adscript ion has for a long time teen a well recognised phenomenon and numerous investigations have been mad® on the nature and magnitude of the energy changes involved* Some of the measurementa on the adsorption of gases have shown ti&se changes to be enormous.
    [Show full text]
  • United States Patent Office Patented July 18, 1972 1
    3,677,770 United States Patent Office Patented July 18, 1972 1. 2 It will be apparent that those fusible sugars which may 3,677,770 be employed have a melting or fusion point below their CARBONATED CANDY Frank Witzel, Spring Valley, N.Y., assignor to decomposition temperature, and that no substantial de Beech-Nut, Inc., New York, N.Y. composition occurs at the melting or fusion temperature No Drawing. Filed Oct. 7, 1970, Ser. No. 78,910 which would interfere with fusion, melting, or solidifica Int, Cl, A23g 3/00 tion on cooling. U.S. C. 99-134 R 2 Claims Although as will be apparent from this disclosure, the fusible sugars which may be used in the practice of this invention include those which have a melting or fusing ABSTRACT OF THE DISCLOSURE 0 point which falls within a wide range, the preferred mate rials will be those having a melting or fusing point at The off-taste present in effervescent hard candy due to temperatures of from slightly above room temperature unreacted food acidulant as well as salt formed by the to about 300 F. (149 C.). reaction of the efferverscent factors, i.e., leavening agent The fusible sugars which may be employed in the prac and acidulant, is overcome by incorporating a small tice of this invention include sugars and their derivatives amount of a saccharin into the candy. such as sugar alcohols and sugar acids. Typical fusible monosaccharide sugars include glucose, fructose (levu lose), invert sugar (chemically equal parts of glucose BACKGROUND OF THE INVENTION and fructose), arabinose, etc.
    [Show full text]
  • Metals and Acids Key Revision Facts • to Test for Hydrogen Gas- Place a Lighted Spill Near the Gas and Hear a ‘Squeaky Pop’
    Metals and Acids Key Revision Facts • To test for hydrogen gas- place a lighted spill near the gas and hear a ‘squeaky pop’. • Potassium, sodium and magnesium are all examples of reactive metals. • Copper, lead and gold are all examples of unreactive metals. • When reactive metals are placed in acids they will react violently with lots of gas given off. Unreactive metals do not react with the acid. • The equation for the reaction between a metal and an acid is: metal + acid salt + hydrogen Zn + HCl sZnCl + H • State symbols Solid (s) Liquid (l) Gas (g) Aqueous - a substance dissolved in water (aq) • Magnesium and iron filings react vigorously with air • Group 1 metals react with water to produce hydroxides and hydrogen. • sodium + water sodium hydroxide + hydrogen • Some metals like magnesium react slowly with cold water but will react quickly with steam. • The reactivity series lists in order, how reactive metals are: K Potassium Most reactive Na Sodium Ca Calcium Mg Magnesium Al Aluminium Zn Zinc Fe Ferum Increasingly reactive Sn Tin Pb Lead Cu Copper Hg Mercury Ag Silver Least Au Gold reactive Metals and Acids Key Revision Facts • A more reactive metal will displace a less reactive metal from its compound for example • Magnesium + copper sulphate Magnesium sulphate + copper • Metals below carbon in the reactivity series can be extracted from its ore by heating it with carbon • Ceramic materials are compounds for example silicates and metal oxides • Polymers are long chain molecules. • Wool is an example of a natural polymer. • Polyethene is an example of a synthetic polymer.
    [Show full text]
  • Ph Calculations
    03.10.2018 pH calculations MUDr. Jan Pláteník, PhD Brønsted-Lowry concept of acids and bases • Acid is a proton donor • Base is a proton acceptor + - HCl(aq) + H 2O(l) H3O (aq) + Cl (aq) Acid Base Conjugate Conjugate acid base + - H2O(l) + NH 3(aq) NH 4 (aq) + OH (aq) AcidBase Conjugate Conjugate acid base 1 03.10.2018 Which of the following are conjugate acid-base pairs? A) HCl, NaOH - B) H 2O, OH 2- C) H 2SO 4, SO 4 - D) H 2SO 3, HSO 3 - E) HClO 4, ClO 3 + F) H 3C-NH 2, H 3C-NH 3 Autoionization of water Water is amphoteric as it can behave both as acid and base + - 2 H 2O(l) H3O (aq) + OH (aq) Ion-product constant for water: + - + - Kw = [H3O ][OH ] = [H ][OH ] In pure water at 25 ºC: [H +] = [OH -] = 1.0 × 10 -7 mol/L -7 -7 -14 2 2 Kw = (1.0 × 10 mol/L)×( 1.0 × 10 mol/L) = 1.0 × 10 mol /L Constant! 2 03.10.2018 pH Activity = f . c + pH= -log 10 (activity of H ) f is activity coefficient, pOH= -log (activity of OH -) f<1, 10 c is molar concentration Ion-product of water (constant!): pH + pOH = 14 E.g.: pH=7 (neutral): [H +] = 10 -7 M = 0.0000001 mol/L pH=1 (acidic): [H +] = 10 -1 M = 0.1 mol/L pH=13 (alkaline): [H +] = 10 -13 M = 0.0000000000001 mol/L Strong acid E.g. HCl, HNO 3, H 2SO 4 In aqueous solution fully dissociates to H + and A − pH of strong acid can be calculated as pH = −log (f × [H +]) For HCl: [H +]= [HCl] + For H2SO 4: [H ]= ~ [H2SO 4] nd + -2 (2 H does not fully dissociate, Kd= ~10 ) 3 03.10.2018 Calculating the pH of strong acid solutions Example: Calculate the pH of 0.06 mol/L HCl.
    [Show full text]
  • Understanding Acidity of Molten Salt Hydrate Media for Cellulose
    Understanding Acidity of Molten Salt Hydrate Media for Cellulose systems, which indicate that the main effect of a salt on the rate stems from the effect on the Hydrolysis by Coupling Kinetic Studies, Electrolyte Solution Modeling, acidity rather than catalytic properties of the ions. Prior investigations suggest that in addition to 13 the nature of the salt, the mineral acid used to acidify the MSH plays a key role in cellulose and C-NMR Experiments dissolution and reactivity.[1,6] It has been proposed that a synergistic effect between LiBr and H2SO4 renders this system more reactive than HCl acidified MSH. Similar to the effect of the Natalia Rodriguez Quiroz, Dionisios G. Vlachos* salt, we found that the effect of different acids on the reactivity could be attributed to their effect Chemical and Biomolecular Engineering Department, University of Delaware, on the overall acidity. However, as seen in Figure 2b, different acid-salt pairs will result in a 150 Academy St., Newark, DE 19716 (USA) different acidity based on (1) the strength of the acid that will contribute to the initial proton *[email protected] concentration (2) the interactions between the salt and the acid that can affect the speciation of the acid in solution and therefore the proton concentration. Lastly, we assessed the calculated pH values in concentrated LiBr solutions experimentally by extending the 13C-NMR method Introduction developed by Farcasiu[7] for the calculation of Hammett acidity of super acids, to concentrated Homogeneous chemo-catalytic systems play an important role in biomass upgrading. inorganic salt solutions. Figure 2c shows good agreement between the OLI calculated pH and Recently, the depolymerization of lignocellulosic biomass in concentrated metal salts and more the experimentally measured pH in different salt solutions.
    [Show full text]
  • The Preparation and Properties of the Neutral Ammonium Salts of Organic Acids
    742 LEROY MCMASTER. is seen to be 12.2, in good agreement with Kopp’s number. The atomic volume of divalent carbon in the carbon monoxide is 23. It is interest- ing to note that, if acetylene be assumed to have a divalent and a tetra- valent carbon atom, i. e., the acetylidene structure, its atomic volume agrees exactly with that found experimentally. We have endeavored to produce addition compounds of acetylene and hydrobromic at low temperatures. Acetylene is quite soluble in this acid, but solutions containing even 50% of acetylene show no tendency to pre- cipitate compounds at temperatures as low as -115’. With liquids having high vapor pressures at their freezing points, such as hydrobromic and hydriodic acid, but particularly with acetylene, the phenomenon of freezing and boiling occurring simultaneously is shown in a striking way. Liquid acetylene in a sealed tube can be supercooled about 5’. As crystallization takes place the remaining liquid boils furiously. MCGILLUNIVERSITY. [CONTRIBUTIONFROM THE CHEMICALLABORATORY OF WASHINGTONUNIVERSITY. ] THE PREPARATION AND PROPERTIES OF THE NEUTRAL AMMONIUM SALTS OF ORGANIC ACIDS. BY LEROYMCMASTER. Received January 31, 1914. As stated in two previous papers,’ most of the ammonium salts of organic acids described in the literature are the acid salts instead of the neutral salts Many of the “neutral” salts purchased have also been found to be “acid.” This is due to the fact that they have been pre- pared by neutralizing the aqueous solution of the organic acid with am- monia water or ammonium carbonate and the solution allowed to evaporate to crystallization. The salts thus formed are generally hydrolyzed and the acid salt results.
    [Show full text]
  • Final Copy 2020 05 12 Leen
    This electronic thesis or dissertation has been downloaded from Explore Bristol Research, http://research-information.bristol.ac.uk Author: Leendertz-Ford, Anna S T Title: Anatomy of Seventeenth-Century Alchemy and Chemistry General rights Access to the thesis is subject to the Creative Commons Attribution - NonCommercial-No Derivatives 4.0 International Public License. A copy of this may be found at https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode This license sets out your rights and the restrictions that apply to your access to the thesis so it is important you read this before proceeding. Take down policy Some pages of this thesis may have been removed for copyright restrictions prior to having it been deposited in Explore Bristol Research. However, if you have discovered material within the thesis that you consider to be unlawful e.g. breaches of copyright (either yours or that of a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please contact [email protected] and include the following information in your message: •Your contact details •Bibliographic details for the item, including a URL •An outline nature of the complaint Your claim will be investigated and, where appropriate, the item in question will be removed from public view as soon as possible. ANATOMY OF SEVENTEENTH-CENTURY ALCHEMY AND CHEMISTRY ANNA STELLA THEODORA LEENDERTZ-FORD A dissertation submitted to the University of Bristol in accordance with the requirements for the degree of Doctor of Philosophy in the Faculty of Arts, School of Philosophy.
    [Show full text]
  • Title Students' Understanding of Acid, Base And
    Title Students’ understanding of acid, base and salt reactions in qualitative analysis Author(s) Kim-Chwee Daniel Tan, Ngoh-Khang Goh, Lian-Sai Chia and David F. Treagust Source School Science Review, 84(308), 89-97 Published by The Association for Science Education This document may be used for private study or research purpose only. This document or any part of it may not be duplicated and/or distributed without permission of the copyright owner. The Singapore Copyright Act applies to the use of this document. Students' understanding of ;ed towards materials, acid, base and salt ing young people and 'dialogue and debate' reactions in qualitative e and particle physics. analysis jal exhibits at school neighbouring schools, Kim-Chwee Daniel Tan, Ngoh-Khang Goh, Lian-Sai Chia :recent Awards can be and David F. Treagust Conventional methods of teaching QA do not seem to help students understand the reactions involved. This new instructional package may help. The topic qualitative analysis (QA) is an important specified in the syllabus. J\s students are assessed >\RC component of the national grade I 0 chemistry mainly on their written observations, the main ~hysics and Astronomy practical examinations in Singapore. During the emphasis of QA practical work is getting correct esearch Council practical examinations, grade 10 students ( 15- to 17- results and writing 'standard' observations. Thus, years-old) are required to carry out a series of many students merely follow instructions given in the procedures using chemicals. apparatus and worksheets, and seldom think about what they are appropriate techniques. They also need to observe and doing (Tan et ul., 2001 ).
    [Show full text]
  • Experiment # 9: the Henderson-Hasselbalch Equation
    Experiment # 9: The Henderson-Hasselbalch Equation A buffer is commonly defined as a solution that resists changes in pH when a small amount of acid or base is added or when the solution is diluted with pure solvent. This property is extremely useful in maintaining the pH of a chemical system at an optimum value to appropriately influence the reaction kinetics or equilibrium processes. A buffer solution actually is a mixture of a weak acid and its conjugate base or a mixture of a weak base and its conjugate acid. The conjugate forms are commonly referred to as “salts”. For a typical weak acid, the dissociation equilibrium is represented as: + + Acid l H + Base; Ka = [H ] [Base] [Acid] according to the Bronsted-Lowry concept. If a pure weak acid is dissolved in a pure solvent the concentrations of H+ and conjugate Base will be equal, neglecting autoprotolysis of the solvent. Rearranging the dissociation constant equation and solving for [H+ ] gives: [H +] 1/2 = [Ka (Acid)] . If other factors governing conjugate base concentration are present in the system (either as added salt of the weak acid or as added base to partially neutralize the acid), the concentrations of H+ and conjugate Base will no longer be the same. Under these conditions, the equation for [H+ ] becomes: + [H ] = Ka [Acid]/[Base] = K [Acid]/[Base]. Taking negative logarithms of both sides of the above equation gives: + -log ([H ]) = -log (Ka ) – log ([Acid]/[Salt]) or pH = pKa – log ([Acid]/[Salt]). Upon inversion of the argument the last log term becomes positive, as: pH = pKa + log ([Salt]/[Acid]).
    [Show full text]
  • Ammonium Soaps
    United States Department of Agriculture Agricultural Marketing Service | National Organic Program Document Cover Sheet https://www.ams.usda.gov/rules-regulations/organic/national-list/petitioned Document Type: ☐ National List Petition or Petition Update A petition is a request to amend the USDA National Organic Program’s National List of Allowed and Prohibited Substances (National List). Any person may submit a petition to have a substance evaluated by the National Organic Standards Board (7 CFR 205.607(a)). Guidelines for submitting a petition are available in the NOP Handbook as NOP 3011, National List Petition Guidelines. Petitions are posted for the public on the NOP website for Petitioned Substances. ☒ Technical Report A technical report is developed in response to a petition to amend the National List. Reports are also developed to assist in the review of substances that are already on the National List. Technical reports are completed by third-party contractors and are available to the public on the NOP website for Petitioned Substances. Contractor names and dates completed are available in the report. Ammonium Soaps Crops 1 2 Identification of Petitioned Substance 3 4 Chemical Names: CAS Numbers: 5 Anhydrous Ammonium Soaps 84776-33-0 (Ammonium soaps of fatty acids C8 – 6 C18) 7 Other Name: 63718-65-0 (Ammonium nonanoate) 8 Ammonium Soaps 9 Ammonium Salt of Fatty Acids Other Codes: 10 Perlargonic Acid, Ammonium Salt EPA Registration No.: 66702-7-39609 11 (Ammonium soaps of fatty acids) 12 Trade Names: EPA PC Code: 031801 (Ammonium salts of fatty 13 Hinder® acids (C8 – C18) 14 15 16 Summary of Petitioned Use 17 18 Ammonium soaps have been approved by the United States Department of Agriculture’s (USDA) National 19 Organic Program (NOP) for a range of uses pertaining to crop production.
    [Show full text]