(12) Patent Application Publication (10) Pub. No.: US 2012/0027693 A1 Bean Et Al

Total Page:16

File Type:pdf, Size:1020Kb

(12) Patent Application Publication (10) Pub. No.: US 2012/0027693 A1 Bean Et Al US 2012002 7693A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2012/0027693 A1 Bean et al. (43) Pub. Date: Feb. 2, 2012 (54) METHODS AND COMPOSITIONS FOR Publication Classification PREVENTING AND RELIEVING MUSCLE (51) Int. Cl. CRAMPS AND FOR RECOVERY FROM A636/906 (2006.01) NEUROMUSCULAR RRTABILITY AND A6II 3/16 (2006.01) FATGUE FOLLOWING EXERCISE A6II 3/12 (2006.01) A6IP 2L/02 (2006.01) (76) Inventors: Bruce P. Bean, Waban, MA (US); A633/42 (2006.01) Donald MacKinnon, New York, A6II 3/94 (2006.01) NY (US); Roderick MacKinnon, A 6LX 3L/375 (2006.01) New York, NY (US) A69/68 (2006.01) A6II 3/19 (2006.01) (52) U.S. Cl. ........... 424/48; 424/739: 514/627: 514/678: (21) Appl. No.: 13/191,941 514/557; 424/601: 514/574: 514/474 (22) Filed: Jul. 27, 2011 (57) ABSTRACT The methods and compositions of the present invention are Related U.S. Application Data directed to the treatment or amelioration of muscle cramps using a composition that includes one or more TRPV1 chan (60) Provisional application No. 61/368,059, filed on Jul. nel activators, and/or one or more TRPA1 channel activators, 27, 2010. and/or one or more ASIC channel activators. Patent Application Publication Feb. 2, 2012 Sheet 1 of 8 US 2012/002 7693 A1 Figure 1 A : 1/800,000 Capsicum extract ...... .--------- B: 115,000 Cinnamon extract C: 1/12,000 Ginger extract lonomycin lonomycin A B C Patent Application Publication Feb. 2, 2012 Sheet 2 of 8 US 2012/002 7693 A1 Figure 2 Subject A Flexor hallucis brevis 8 Hz stim (5 Control #1 (12 min before TRP-Stim) 47 sec Cramp 2.g2 O Sec Control #2 (4 min before TRP-Stim) 46 sec cramp 11 min after TRP-Stim 4 Sec Cramp 2O min after TRP-Stim No cramp 2 1/2 hrs after TRP-Stim 1 sec Cramp Patent Application Publication Feb. 2, 2012 Sheet 3 of 8 US 2012/002 7693 A1 Figure 3 Subject B Flexor hallucis brevis CD Control 12-29 min after TRP-Stim ce 8 Hz gigof A 20 sec19Hz 10 Hz 12H2 12 Hz f 70 sec Cramp No cramp 14 Hz No cramp 2 hrs after TRP-Stim 4 hrs after TRP-Stim 10 Hz. D 10 Hz No cramp No cramp 12 Hz 12 Hz ? 4 sec Cramp N No Cramp 14 Hz 4 sec cramp No cramp Patent Application Publication Feb. 2, 2012 Sheet 4 of 8 US 2012/002 7693 A1 Figure 4 Subject C Flexor hallucis brevis 8. HZ 18 Hz Stil stim (D - (D 11 hrs after 1st TRP-Stim >i Control >i 52 sec cramp g 58 sec cramp op 5. 3. 20 Sec - o Shi 8 min after TRP-Stim 1 hrs 10 min after 1st TRP-Stim 54 sec cramp 27 sec cramp 15 min after TRP-Stim O min after 2nd TRP-Stim 8 sec Cramp No cramp 2O in after TRP-Stin 12 min after 2nd TRP-Stim No Cramp No cramp 2 hrs after TRP-Stim 22 min after 2nd TRP-Stim No Cramp No Cramp Patent Application Publication Feb. 2, 2012 Sheet 5 of 8 US 2012/002 7693 A1 Figure 5 Subject D (4 hrs after triathlon) Flexor hallucis brevis Control 13-30 min after 3hrs after TRP-Stim TRP-Stim S. 6 Hz 8 Hz 8 HZ 8 Hz 3. 172SeC Cram p No cramp No cramp 3. 50 sec 10 Hz O HZ 10 HZ 222 sec cramp No Cramp No cramp - - - 12 HZ 12 Hz No Cramp No cramp 4 hrs after 20 min after TRP-Stim 2nd TRP-Stim 10Hz 10Hz 58 sec Cramp No cramp 12 HZ 12 Hz 205 sec cramp No cramp -- - - - - a - 14 Hz No Cramp Patent Application Publication Feb. 2, 2012 Sheet 6 of 8 US 2012/002 7693 A1 Figure 6 Subject E Calf muscle Stimulation 28 Hz 20 Sec Control 59 sec cramp 3 min after TRP-Stim 3 Sec Cramp Patent Application Publication Feb. 2, 2012 Sheet 7 of 8 US 2012/002 7693 A1 Figure 7 Subject F Calf muscle 24 Hz Stimulation Control 96 sec cramp 4 min after TRP-Stim No cramp 40 min after TRP-Stim No Cramp Patent Application Publication Feb. 2, 2012 Sheet 8 of 8 US 2012/002 7693 A1 Figure 8 Subject G Spontaneous cramping of flexor hallucis brevis Voluntary toe flex Controit 8 sec Cramp Sec Control #2 5 sec Cramp O min after TRP-Stim No cramp Voluntary toe flex six 15 in after TRP-Stim No cramp US 2012/0027693 A1 Feb. 2, 2012 METHODS AND COMPOSITIONS FOR channel activators, TRPA1 channel activators, or ASIC chan PREVENTING AND RELEVING MUSCLE nel activators, or any combination thereof. CRAMIPS AND FOR RECOVERY FROM 0008. In still another aspect, the invention features a NEUROMUSCULAR RRTABILITY AND method for improving muscle recovery (e.g., muscle recovery FATGUE FOLLOWING EXERCISE following exercise) in a subject in need thereof, where the method includes administering to the Subject a composition CROSS-REFERENCE TO RELATED that includes an effective amount of one or more TRPV1 APPLICATIONS channel activators, TRPA1 channel activators, or ASIC chan nel activators, or any combination thereof. 0001. This application claims benefit of U.S. Provisional 0009. In any of the foregoing methods, the composition Application No. 61/368,059, filed on Jul. 27, 2010, which is can be, e.g., an oral formulation (e.g., a liquid, beverage, gel. hereby incorporated by reference in its entirety. semi-solid, frozen liquid, lozenge, hard candy, dissolving strip, or spray). BACKGROUND OF THE INVENTION 0010. In certain embodiments of any of the methods 0002. In general, the invention relates to methods and described herein, the composition is administered to the sub compositions for preventing, treating or ameliorating muscle ject prior to exercise, during exercise, or following exercise cramping and/or accelerating nerve-muscle recovery from (e.g., within 0-120 minutes prior to exercise, or within 0-360 exercise fatigue. minutes, 0-15 minutes, or 2-6 hours following exercise. 0003 Muscle cramps, the involuntary and forceful con 0011 Muscle cramps that can be treated or prevented traction of muscles, are often painful and can last for a pro using the methods and compositions described herein longed period of time. Muscle contractions and cramping can include, e.g., muscle cramps resulting from exercise, noctur be triggered by exercise and can also occur spontaneously nal cramps, and menstrual cramps. (e.g., nocturnal or night cramps). The underlying physiologi 0012. In particular embodiments of any of the methods cal mechanism of muscle cramping is unknown. Recent described herein, the composition includes an effective understanding has led to the hypothesis that cramping results amount of two or three different TRP channel activators inde from excessive electrical firing of the neurons (motor neu pendently selected from: rons) that project from the spinal cord and trigger contraction 0013 (a) capsacin or other capsaicinoids; of skeletal muscles (Schwellnus, Br J Sports Med. 43:401-8, 0014 (b) cinnamaldehyde or cinnamon oil; and 2009; Miller et al., MedSci Sports Exerc. 42:953-61, 2010). 0015 (c) gingerols. Recovery from strenuous exercise can be associated with 0016. In other embodiments of any of the methods neuromuscular irritability, associated with neuromuscular described herein, each channel activator, independently, fatigue, that may or may not be associated with the develop includes between 0.001% to 1% weight percent of a compo ment of frank cramps. Few treatments and therapeutic regi sition that is a solid, semi-solid, gel, or chewing gum, or 0.001 mens are available to alleviate this neuromuscular irritability. to 1% (v/v) of a composition that is a liquid, beverage, or 0004. There exists a need in the art for improved methods Spray. and compositions for preventing, treating, and ameliorating 0017. In still other embodiments of any of the methods muscle cramping and/or accelerating nerve-muscle recovery described herein, the composition is any of the compositions from exercise fatigue by reducing neuromuscular irritability. described herein. As shown herein, compositions that include activators of TRP 0018. The invention also features a composition formu and ASIC channels may be useful to prevent, treat, or ame lated for oral ingestion by a Subject. The composition liorate muscle cramping and/or accelerate nerve-muscle includes an effective amount of one or more channel activa recovery from, e.g., exercise fatigue. Further, these composi tors (e.g., one or more Substantially pure channel activators) tions can be useful in treating neuromuscular irritability that selected from TRPV1 channel activators, TRPA1 channel may or may not be associated with the development of frank activators, and ASIC channel activators. Desirably, the com Cramps. position is a liquid, beverage, gel, semi-solid, frozen liquid, lozenge, hard candy, dissolving Strip, or spray. SUMMARY OF THE INVENTION 0019 Desirably, the channel activator is capable of acti Vation of a channel in a gastroesophogeal neuron when 0005. The present invention is directed to the prevention, administered to a subject treatment or amelioration of muscle cramps and/or acceler 0020. The channel activators can be substantially pure or ating nerve-muscle recovery from exercise fatigue using a not substantially pure (e.g., part of a crude extract). composition with an activator of TRPV1 channels, an activa 0021. In certain embodiments, the channel activators are tor of TRPA1 channels, and/oran activator of ASIC channels. capable of activation of a channel in a gastroesophogeal neu 0006. In a first aspect, the invention features a method for ron when administered to a Subject.
Recommended publications
  • Colitis Caused by Non-Steroidal Anti-Inflammatory Drugs
    Postgrad Med J: first published as 10.1136/pgmj.62.730.773 on 1 August 1986. Downloaded from Postgraduate Medical Journal (1986) 62, 773-776 Colitis caused by non-steroidal anti-inflammatory drugs S. Ravi', A.C. Keat2 and E.C.B. Keat1 'Cuckfield Hospital, Cuckfield, West Sussex, and2Westminster Hospital, Horseferry Road, London SWIP2AP, UK. Summary: Four cases of acute proctocolitis associated with non-steroidal anti-inflammatory drug therapy are presented. The drugs implicated were flufenamic acid, mefenamic acid, naproxen and ibuprofen. After resolution of symptoms and signs of proctocolitis three of the four patients were subsequently rechallenged with the implicated drug: in each there was a rapid relapse. Introduction Ulcerative colitis is a disease of unknown aetiology Case reports with characteristic clinical features and a protracted course. A similar clinical picture, but running a shorter Case I and usually benign course, is occasionally seen follow- ing the administration of certain drugs. This was first A 77 year old woman was referred with intermittent noticed following the administration of antibiotics, bleeding per rectum for 6 months, associated for the often with pseudomembrane formation. Later, this last 2 months with bloody diarrhoea up to eight times was shown to be associated with infection by toxigenic daily. Previously, she had had troublesome symptoms Clostridium difficile. Until 1978, most cases were from osteoarthritis of her back and knees for which copyright. associated with treatment with clindamycin but since she had been prescribed flufenamic acid 200 mg thrice that time nearly all antibiotics have been implicated. daily. Her general health had remained good but she Other drugs capable of causing proctocolitis, though appeared pale and her haemoglobin was reduced to by different mechanisms, include phenindione (Keat & 8 g/dl.
    [Show full text]
  • Investigating the Influence of Polymers on Supersaturated
    Page 1 of 45 Molecular Pharmaceutics 1 2 3 4 5 6 7 Investigating the Influence of Polymers on 8 9 10 11 12 Supersaturated Flufenamic Acid Cocrystal Solutions 13 14 15 16 1 1 2 2 1 17 Minshan Guo , Ke Wang , Noel Hamill , Keith Lorimer and Mingzhong Li * 18 19 20 1School of pharmacy, De Montfort University, Leicester, UK 21 22 23 2Almac Science, Seagoe Industrial Estate, Craigavon, UK 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 ACS Paragon Plus Environment 1 Molecular Pharmaceutics Page 2 of 45 1 2 3 4 5 6 7 Table of contents graphic 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 ACS Paragon Plus Environment 2 Page 3 of 45 Molecular Pharmaceutics 1 2 3 Abstract 4 5 6 7 The development of enabling formulations is a key stage when demonstrating the effectiveness 8 9 10 of pharmaceutical cocrystals to maximize the oral bioavailability for poorly water soluble drugs. 11 12 Inhibition of drug crystallization from a supersaturated cocrystal solution through a fundamental 13 14 understanding of the nucleation and crystal growth is important. In this study, the influence of 15 16 17 the three polymers of polyethylene glycol (PEG), polyvinylpyrrolidone (PVP) and a copolymer 18 19 of N-vinly-2-pyrrodidone (60%) and vinyl acetate (40%) (PVP-VA) on the flufenamic acid 20 21 22 (FFA) crystallization from three different supersaturated solutions of the pure FFA and two 23 24 cocrystals of FFA-NIC CO and FFA-TP CO has been investigated by measuring nucleation 25 26 induction times and desupersaturation rates in the presence and absence of seed crystals.
    [Show full text]
  • Big Pain Assays Aren't a Big Pain with the Raptor Biphenyl LC Column
    Featured Application: 231 Pain Management and Drugs of Abuse Compounds in under 10 Minutes by LC-MS/MS Big Pain Assays Aren’t a Big Pain with the Raptor Biphenyl LC Column • 231 compounds, 40+ isobars, 10 drug classes, 22 ESI- compounds in 10 minutes with 1 column. • A Raptor SPP LC column with time-tested Restek Biphenyl selectivity is the most versatile, multiclass-capable LC column available. • Achieve excellent separation of critical isobars with no tailing peaks. • Run fast and reliable high-throughput LC-MS/MS analyses with increased sensitivity using simple mobile phases. The use of pain management drugs is steadily increasing. As a result, hospital and reference labs are seeing an increase in patient samples that must be screened for a wide variety of pain management drugs to prevent drug abuse and to ensure patient safety and adherence to their medication regimen. Thera- peutic drug monitoring can be challenging due to the low cutoff levels, potential matrix interferences, and isobaric drug compounds. To address these chal- lenges, many drug testing facilities are turning to liquid chromatography coupled with mass spectrometry (LC-MS/MS) for its increased speed, sensitivity, and specificity. As shown in the analysis below, Restek’s Raptor Biphenyl column is ideal for developing successful LC-MS/MS pain medication screening methodologies. With its exceptionally high retention and unique selectivity, 231 multiclass drug compounds and metabolites—including over 40 isobars—can be analyzed in just 10 minutes. In addition, separate panels have been optimized on the Raptor Biphenyl column specifically for opioids, antianxiety drugs, barbiturates, NSAIDs and analgesics, antidepressants, antiepileptics, antipsychotics, hallucinogens, and stimulants for use during confirmation and quantitative analyses.
    [Show full text]
  • Flufenamic Acid, Mefenamic Acid and Niflumic Acid Inhibit Single Nonselective Cation Channels in the Rat Exocrine Pancreas
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Volume 268, number 1, 79-82 FEBS 08679 July 1990 Flufenamic acid, mefenamic acid and niflumic acid inhibit single nonselective cation channels in the rat exocrine pancreas H. Gagelein*, D. Dahlem, H.C. Englert** and H.J. Lang** Max-Planck-Institutfir Biophysik, Kennedyallee 70, D-600 Frankfurt/Main 70, FRG Received 17 May 1990 The non-steroidal anti-inflammatory drugs, flufenamic acid, mefenamic acid and niflumic acid, block Ca2+-activated non-selective cation channels in inside-out patches from the basolateral membrane of rat exocrine pancreatic cells. Half-maximal inhibition was about 10 PM for flufenamic acid and mefenamic acid, whereas niflumic acid was less potent (IC,, about 50 PM). Indomethacin, aspirin, diltiazem and ibuprofen (100 /IM) had not effect. It is concluded that the inhibitory effect of flufenamate, mefenamate and niflumate is dependent on the specific structure, consisting of two phenyl rings linked by an amino bridge. Mefenamic acid; Flufenamic acid; Niflumic acid; Indomethacin; Non-selective cation channel; Rat exocrine pancreas 1. INTRODUCTION indomethacin, ibuprofen, diltiazem and acetylsalicylic acid (aspirin) were obtained from Sigma (Munich, FRG). The substances were dissolved in dimethylsulfoxide (DMSO, Merck, Darmstadt, FRG, Recently it was reported that the drug, 3 ’ ,5-dichloro- 0.1% of total volume) before addition to the measuring solution. diphenylamine-2-carboxylic acid (DCDPC), blocks DMSO alone had no effect on the single channel recordings. non-selective cation channels in the basolateral mem- 2.2. Methods brane of rat exocrine pancreatic cells [ 11.
    [Show full text]
  • Synthesis and Pharmacological Evaluation of Fenamate Analogues: 1,3,4-Oxadiazol-2-Ones and 1,3,4- Oxadiazole-2-Thiones
    Scientia Pharmaceutica (Sci. Pharm.) 71,331-356 (2003) O Osterreichische Apotheker-Verlagsgesellschaft m. b.H., Wien, Printed in Austria Synthesis and Pharmacological Evaluation of Fenamate Analogues: 1,3,4-Oxadiazol-2-ones and 1,3,4- Oxadiazole-2-thiones Aida A. ~l-~zzoun~'*,Yousreya A ~aklad',Herbert ~artsch~,~afaaA. 2aghary4, Waleed M. lbrahims, Mosaad S. ~oharned~. Pharmaceutical Sciences Dept. (Pharmaceutical Chemistry goup' and Pharmacology group2), National Research Center, Tahrir St. Dokki, Giza, Egypt. 3~nstitutflir Pharmazeutische Chemie, Pharrnazie Zentrum der Universitilt Wien. 4~harmaceuticalChemistry Dept. ,' Organic Chemistry Dept. , Helwan University , Faculty of Pharmacy, Ein Helwan Cairo, Egypt. Abstract A series of fenamate pyridyl or quinolinyl analogues of 1,3,4-oxadiazol-2-ones 5a-d and 6a-r, and 1,3,4-oxadiazole-2-thiones 5e-g and 6s-v, respectively, have been synthesized and evaluated for their analgesic (hot-plate) , antiinflammatory (carrageenin induced rat's paw edema) and ulcerogenic effects as well as plasma prostaglandin E2 (PGE2) level. The highest analgesic activity was achieved with compound 5a (0.5 ,0.6 ,0.7 mrnolkg b.wt.) in respect with mefenamic acid (0.4 mmollkg b.wt.). Compounds 6h, 61 and 5g showed 93, 88 and 84% inhibition, respectively on the carrageenan-induced rat's paw edema at dose level of O.lrnrnol/kg b.wt, compared with 58% inhibition of mefenamic acid (0.2mmoll kg b.wt.). Moreover, the highest inhibitory activity on plasma PGE2 level was displayed also with 6h, 61 and 5g (71, 70,68.5% respectively, 0.lmmolkg b.wt.) compared with indomethacin (60%, 0.01 mmolkg b.wt.) as a reference drug.
    [Show full text]
  • Supplementary Materials Evodiamine Inhibits Both Stem Cell and Non-Stem
    Supplementary materials Evodiamine inhibits both stem cell and non-stem-cell populations in human cancer cells by targeting heat shock protein 70 Seung Yeob Hyun, Huong Thuy Le, Hye-Young Min, Honglan Pei, Yijae Lim, Injae Song, Yen T. K. Nguyen, Suckchang Hong, Byung Woo Han, Ho-Young Lee - 1 - Table S1. Short tandem repeat (STR) DNA profiles for human cancer cell lines used in this study. MDA-MB-231 Marker H1299 H460 A549 HCT116 (MDA231) Amelogenin XX XY XY XX XX D8S1179 10, 13 12 13, 14 10, 14, 15 13 D21S11 32.2 30 29 29, 30 30, 33.2 D7S820 10 9, 12 8, 11 11, 12 8 CSF1PO 12 11, 12 10, 12 7, 10 12, 13 D3S1358 17 15, 18 16 12, 16, 17 16 TH01 6, 9.3 9.3 8, 9.3 8, 9 7, 9.3 D13S317 12 13 11 10, 12 13 D16S539 12, 13 9 11, 12 11, 13 12 D2S1338 23, 24 17, 25 24 16 21 D19S433 14 14 13 11, 12 11, 14 vWA 16, 18 17 14 17, 22 15 TPOX 8 8 8, 11 8, 9 8, 9 D18S51 16 13, 15 14, 17 15, 17 11, 16 D5S818 11 9, 10 11 10, 11 12 FGA 20 21, 23 23 18, 23 22, 23 - 2 - Table S2. Antibodies used in this study. Catalogue Target Vendor Clone Dilution ratio Application1) Number 1:1000 (WB) ADI-SPA- 1:50 (IHC) HSP70 Enzo C92F3A-5 WB, IHC, IF, IP 810-F 1:50 (IF) 1 :1000 (IP) ADI-SPA- HSP90 Enzo 9D2 1:1000 WB 840-F 1:1000 (WB) Oct4 Abcam ab19857 WB, IF 1:100 (IF) Nanog Cell Signaling 4903S D73G4 1:1000 WB Sox2 Abcam ab97959 1:1000 WB ADI-SRA- Hop Enzo DS14F5 1:1000 WB 1500-F HIF-1α BD 610958 54/HIF-1α 1:1000 WB pAkt (S473) Cell Signaling 4060S D9E 1:1000 WB Akt Cell Signaling 9272S 1:1000 WB pMEK Cell Signaling 9121S 1:1000 WB (S217/221) MEK Cell Signaling 9122S 1:1000
    [Show full text]
  • Determination of Capsaicinoid Profile of Some Peppers Sold in Nigerian Markets
    Available online www.jocpr.com Journal of Chemical and Pharmaceutical Research, 2014, 6(4):648-654 ISSN : 0975-7384 Research Article CODEN(USA) : JCPRC5 Determination of capsaicinoid profile of some peppers sold in Nigerian markets 1N. C. Nwokem *, 2C. O. Nwokem, 2Y. O. Usman, 1O. J. Ocholi, 2M. L. Batari and 3A. A. Osunlaja 1Department of Chemistry, Ahmadu Bello University, Zaria, Nigeria 2National Research Institute for Chemical Technology, Zaria, Nigeria 3Umar Suleiman College of Education, Gashua, Nigeria ____________________________________________________________________________________________ ABSTRACT The capsaicinoid profile of six different peppers sold in Nigerian markets was determined by Gas Chromatography- Mass Spectrometry. The capsaicinoids were extracted from the peppers using methanol as extractant and analyzed without need for derivatization. A total of eight (8) capsaicinoids were identified and quantitated: Capsaicin, Dihydrocapsaicin Dihydrocapsaicin 1, Dihydrocapsaicin 2, Norcapsaicin, Nordihydrocapsaicin 1, Nordihydrocapsaicin 2 and Nornordihydrocapsaicin though, not fully present in all the varieties. Dihydrocapsaicin 1, Dihydrocapsaicin 2, Nordihydrocapsaicin 1, Nordihydrocapsaicin 2 and Nornordihydrocapsaicin are isomers. Seven were identified in the Cameroun pepper variety, six in “Zaria atarugu” and Miango, and five in each of the remaining varieties. In all the peppers analyzed, capsaicin had the highest relative concentration, which ranged from 27.3% in the Cameroun variety to 49.38% in the “Zaria atarugu” variety. The sum of the relative concentrations of capsaicin and dihydrocapsaicin ranged from 47.03% in the “Miango” variety to 87.3% in the “Zaria atarugu” variety. Keywords: Capsaicinoids, Gas Chromatography-Mass Spectrometry, Methanol, Pepper ____________________________________________________________________________________________ INTRODUCTION Peppers are widely used in many parts of the world as a result of their valued sensory attributes; colour, purgency and aroma.
    [Show full text]
  • Determination of Capsaicinoids in Peppers by Microwave-Assisted Extraction–High-Performance Liquid Chromatography with fluorescence Detection Gerardo F
    Analytica Chimica Acta 578 (2006) 227–233 Determination of capsaicinoids in peppers by microwave-assisted extraction–high-performance liquid chromatography with fluorescence detection Gerardo F. Barbero, Miguel Palma ∗, Carmelo G. Barroso Grupo de Investigaci´on Qu´ımico Anal´ıtica del Vino y Productos Agroalimentarios, Departamento de Qu´ımica Analitica, Facultad de Ciencias, Universidad de C´adiz, Apartado 40, 11510 Puerto Real, C´adiz, Spain Received 30 March 2006; received in revised form 27 June 2006; accepted 28 June 2006 Available online 4 July 2006 Abstract A new method has been developed for the extraction of capsaicinoids (nordihydrocapsaicin, capsaicin, dihydrocapsaicin, homocapsaicin and homodihydrocapsaicin) in peppers employing microwave-assisted extraction. The parameters studied are: extraction solvent (methanol, ethanol, acetone, ethyl acetate and water), temperature (50–200 ◦C), sample quantity (0.1–1 g), volume of solvent (15–50 mL) and the extraction time (5–20 min). The results found for the optimum conditions are: 125 ◦C as extraction temperature, 25 mL of solvent, 0.5 g of freshly triturated peppers and extraction for 5 min, employing 100% ethanol as solvent. The capsaicinoids obtained were stable under the optimised extraction conditions. The resulting method presents a high degree of reproducibility (R.S.D. < 6%). © 2006 Elsevier B.V. All rights reserved. Keywords: Microwave-assisted extraction; Capsaicinoids; Peppers 1. Introduction Many techniques for the extraction of capsaicinoids from peppers have been studied, such as maceration [9], magnetic stir- Hot or spicy peppers are savoury food additives that are ring [10], Soxhlet [11,12], ultrasound-assisted extraction [13], widely utilised in many parts of the world, and are highly valued extraction by means of supercritical fluids [14], extraction by for their attributes of colour, pungency, and aroma.
    [Show full text]
  • Note: the Letters 'F' and 'T' Following the Locators Refers to Figures and Tables
    Index Note: The letters ‘f’ and ‘t’ following the locators refers to figures and tables cited in the text. A Acyl-lipid desaturas, 455 AA, see Arachidonic acid (AA) Adenophostin A, 71, 72t aa, see Amino acid (aa) Adenosine 5-diphosphoribose, 65, 789 AACOCF3, see Arachidonyl trifluoromethyl Adlea, 651 ketone (AACOCF3) ADP, 4t, 10, 155, 597, 598f, 599, 602, 669, α1A-adrenoceptor antagonist prazosin, 711t, 814–815, 890 553 ADPKD, see Autosomal dominant polycystic aa 723–928 fragment, 19 kidney disease (ADPKD) aa 839–873 fragment, 17, 19 ADPKD-causing mutations Aβ, see Amyloid β-peptide (Aβ) PKD1 ABC protein, see ATP-binding cassette protein L4224P, 17 (ABC transporter) R4227X, 17 Abeele, F. V., 715 TRPP2 Abbott Laboratories, 645 E837X, 17 ACA, see N-(p-amylcinnamoyl)anthranilic R742X, 17 acid (ACA) R807X, 17 Acetaldehyde, 68t, 69 R872X, 17 Acetic acid-induced nociceptive response, ADPR, see ADP-ribose (ADPR) 50 ADP-ribose (ADPR), 99, 112–113, 113f, Acetylcholine-secreting sympathetic neuron, 380–382, 464, 534–536, 535f, 179 537f, 538, 711t, 712–713, Acetylsalicylic acid, 49t, 55 717, 770, 784, 789, 816–820, Acrolein, 67t, 69, 867, 971–972 885 Acrosome reaction, 125, 130, 301, 325, β-Adrenergic agonists, 740 578, 881–882, 885, 888–889, α2 Adrenoreceptor, 49t, 55, 188 891–895 Adult polycystic kidney disease (ADPKD), Actinopterigy, 223 1023 Activation gate, 485–486 Aframomum daniellii (aframodial), 46t, 52 Leu681, amino acid residue, 485–486 Aframomum melegueta (Melegueta pepper), Tyr671, ion pathway, 486 45t, 51, 70 Acute myeloid leukaemia and myelodysplastic Agelenopsis aperta (American funnel web syndrome (AML/MDS), 949 spider), 48t, 54 Acylated phloroglucinol hyperforin, 71 Agonist-dependent vasorelaxation, 378 Acylation, 96 Ahern, G.
    [Show full text]
  • TRP CHANNELS AS THERAPEUTIC TARGETS TRP CHANNELS AS THERAPEUTIC TARGETS from Basic Science to Clinical Use
    TRP CHANNELS AS THERAPEUTIC TARGETS TRP CHANNELS AS THERAPEUTIC TARGETS From Basic Science to Clinical Use Edited by ARPAD SZALLASI MD, PHD Department of Pathology, Monmouth Medical Center, Long Branch, NJ, USA AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Academic Press is an imprint of Elsevier Academic Press is an imprint of Elsevier 125 London Wall, London, EC2Y 5AS, UK 525 B Street, Suite 1800, San Diego, CA 92101-4495, USA 225 Wyman Street, Waltham, MA 02451, USA The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, UK First published 2015 Copyright © 2015 Elsevier Inc. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher’s permissions policies and our arrangement with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein). Notices Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary. Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein.
    [Show full text]
  • Phytochem Referenzsubstanzen
    High pure reference substances Phytochem Hochreine Standardsubstanzen for research and quality für Forschung und management Referenzsubstanzen Qualitätssicherung Nummer Name Synonym CAS FW Formel Literatur 01.286. ABIETIC ACID Sylvic acid [514-10-3] 302.46 C20H30O2 01.030. L-ABRINE N-a-Methyl-L-tryptophan [526-31-8] 218.26 C12H14N2O2 Merck Index 11,5 01.031. (+)-ABSCISIC ACID [21293-29-8] 264.33 C15H20O4 Merck Index 11,6 01.032. (+/-)-ABSCISIC ACID ABA; Dormin [14375-45-2] 264.33 C15H20O4 Merck Index 11,6 01.002. ABSINTHIN Absinthiin, Absynthin [1362-42-1] 496,64 C30H40O6 Merck Index 12,8 01.033. ACACETIN 5,7-Dihydroxy-4'-methoxyflavone; Linarigenin [480-44-4] 284.28 C16H12O5 Merck Index 11,9 01.287. ACACETIN Apigenin-4´methylester [480-44-4] 284.28 C16H12O5 01.034. ACACETIN-7-NEOHESPERIDOSIDE Fortunellin [20633-93-6] 610.60 C28H32O14 01.035. ACACETIN-7-RUTINOSIDE Linarin [480-36-4] 592.57 C28H32O14 Merck Index 11,5376 01.036. 2-ACETAMIDO-2-DEOXY-1,3,4,6-TETRA-O- a-D-Glucosamine pentaacetate 389.37 C16H23NO10 ACETYL-a-D-GLUCOPYRANOSE 01.037. 2-ACETAMIDO-2-DEOXY-1,3,4,6-TETRA-O- b-D-Glucosamine pentaacetate [7772-79-4] 389.37 C16H23NO10 ACETYL-b-D-GLUCOPYRANOSE> 01.038. 2-ACETAMIDO-2-DEOXY-3,4,6-TRI-O-ACETYL- Acetochloro-a-D-glucosamine [3068-34-6] 365.77 C14H20ClNO8 a-D-GLUCOPYRANOSYLCHLORIDE - 1 - High pure reference substances Phytochem Hochreine Standardsubstanzen for research and quality für Forschung und management Referenzsubstanzen Qualitätssicherung Nummer Name Synonym CAS FW Formel Literatur 01.039.
    [Show full text]
  • Effects of Ambient Temperature on Feeding by Herbivorous Marsupials
    Effects of ambient temperature on feeding by herbivorous marsupials Phillipa K Beale A thesis submitted for the degree of Doctor of Philosophy of The Australian National University. ã Copyright by Phillipa K Beale 2019 All Rights Reserved February 2019 Declaration This thesis contains published work and work prepared for publication that has been co- authored with collaborating researchers. All the data presented in this work is original research and the contribution of each co-author is stated below. No part of this thesis has been submitted for any previous degree. The term “we” is used to acknowledge co- authors in Chapters 2-6 as they are prepared for publication. The term “I” is used in the Introduction and Synthesis sections. Chapter 1. A hot lunch for herbivores: physiological effects of elevated temperatures on mammalian feeding ecology Authors: Phillipa K Beale, Karen J Marsh, William J Foley, Ben D Moore Literature reviewed by Phillipa K Beale. Original manuscript written by Phillipa K Beale. All authors contributed ideas, edited and improved the manuscript. Chapter 2. Reduced hepatic detoxification in marsupial herbivores following moderate heat exposure Authors: Phillipa K Beale, Patrice K Connors, Karen J Marsh, M Denise Dearing, William J Foley Experimental idea conceived by all authors, and carried out by Phillipa K Beale and Patrice K Connors. Manuscript written by Phillipa K Beale, other authors contributed ideas, edited and improved the manuscript. Chapter 3. Changes in ambient temperature can be as important as plant secondary metabolites in limiting feeding in mammalian herbivore Authors: Phillipa K Beale, Karen J Marsh, Ben D Moore, Andrew K Krockenberger, William J Foley Experiments carried out by Phillipa K Beale.
    [Show full text]