Esca Studies of Core and Valence Electrons in Gases and Solids C

Total Page:16

File Type:pdf, Size:1020Kb

Esca Studies of Core and Valence Electrons in Gases and Solids C ESCA STUDIES OF CORE AND VALENCE ELECTRONS IN GASES AND SOLIDS C. Nordling To cite this version: C. Nordling. ESCA STUDIES OF CORE AND VALENCE ELECTRONS IN GASES AND SOLIDS. Journal de Physique Colloques, 1971, 32 (C4), pp.C4-254-C4-263. 10.1051/jphyscol:1971447. jpa- 00214648 HAL Id: jpa-00214648 https://hal.archives-ouvertes.fr/jpa-00214648 Submitted on 1 Jan 1971 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. JOURNAL DE PHYSIQUE Colloque C4, supplkment au no 10, Tome 32, Octobre 1971, page C4-254 ESCA STUDIES OF CORE AND VALENCE ELECTRONS IN GASES AND SOLIDS C. NORDLING (*) Institute of Physics, Box 530, S-751 21 Uppsala 1, Sweden Rbsumb. - Les processus electroniques dans les systkmes atomiques sont habituellement associes a l'kmission ou l'absorption de photons ou a remission d'electrons. L'ktude spectrosco- pique peut par consequent s'effectuer par l'analyse du rayonnement electromagnetique ou par la mesure de 1'6nergie cinetique des klectrons. Alors que la spectroscopie electromagn8tique dans le domaine optique se pratique depuis des siecles et depuis plusieurs decades pour les rayons X, l'electron lui-m&men'a pas ete tres utilise pour explorer la structure Blectronique et les processus electroniques. Cependant en raison du developpement ces dernikres annees de moyens experimen- taux pour I'analyse precise des spectres d'klectrons, ce type de spectroscopie a produit des rksultats tres encourageants qui montrent que la spectroscopie basee sur l'observation directe des electrons est une methode efficace d'etude des systkmes atomiques et mol6culaires. La spectroscopie des electrons fournit egalement des renseignements qu'on ne peut obtenir par d'autres types de mesure et il y aun grand nombre d'applications de ce nouveau type de spectroscopie. Noys exposerons brikvement le travail effectue par notre groupe k Uppsala dans le domaine de la spectroscopie des electrons pour les atomes et les mol6cules. Un expose plus etendu peut 6tre trouv6 dans les rkfkrences [I] et [2]. Abstract. - Electronic processes in atomic systems are usually associated with theemission or absorption of photons or the emission of electrons. The spectroscopic study of these processes can therefole be made by the analysis of the electromagnetic radiation or by a measurement of the kinetic energies of electrons. While electromagnetic spectroscopy in the optical region has been made for centuries and in the X-ray region for many decades the electron itself has not been used very much to probe the electronic structure and the electronic processes. However, following the development in recent years of experimental devices for the exact analysis of electron spectra this type of spectroscopy has now produced some very encouraging results which indicate that the spectroscopy based on the direct observation of the electrons is a powerful method for the study of atomic and molecular systems. Electron spectroscopy also produces information which cannot be obtained by other types of measurement and there is a multiplicity of applications for this new type of spectroscopy. A brief account will be given of the work which has been done by our group at Uppsala in the field of electron spectroscopy for atoms and molecules. A more comprehensive account until the present year is given in references [I] and [2]. 1. EIectron binding energies and photoionization dynamics in the noble gases. - Different modes have been used>to excite the electron spectra, viz X-rays, UV-radiation, and electron impact, and the energy (or momentum) analysis of the spectra is made in double focussing electron spectrometers of electro- static or magnetic type, see figure 1. When photons are used for the excitation the kinetic energies of the SPECTROMETER expelled electron are where Eb is the electron binding energy (ionization FIG. 1. - Different modes of excitation of electron spectra. energy). With X-ray quanta one can liberate electrons from all parts of the electronic structure, i. e. one can widths can be obtained but the technique is limited study both the atomic core and the valence electrons to the outermost parts of the electronic structure. in molecules and solids. This is the mode of excitation X-ray induced electron spectra from the noble that we have used in most cases. UV excitation has the gases are shown in figure 2. The spectra map out in advantage that electron lines with smaller inherent some detail the electronic structure of the noble gas Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1971447 ESCA STUDIES OF CORE AND VALENCE ELECTRONS IN GASES AND SOLIDS C4-255 c/120~, atoms, from the outer shells and as far into the atomic - 400- He Mg Ka core as attainable with the quantum energy of the magnesium Ka radiation, 1 253.6 eV. Electron emission from deeper lying shells was induced by harder radia- loo- tion, for example Cu Kcc. The electron binding energies 30 20 ' ' ev obtained for the noble gases are given in Table I (see 1s 2m0' Ne also ref. [2]). One can conveniently study the entire electronic structure by use of one and the same ins- trument and at a resolution close to the limit set by 1000 inherent width of the atomic levels. For example, the observed width at half maximum intensity of the neon o- 1 s line is 0.80 eV which is near the natural width 1. I 880k 870 860 " &I ' Lo ' 30 ' 20 ' 'ev of the exciting X-radiation. The spectrometer window was in this case approximately 0.2 eV. This high resolution is valuable for a more detailed study of e. g. C I>Z the dynamics of the K photo emission. Figure 3 8 100- 100 8 1 KINETIC ENERGY 100 FIG. 3. - Neon 1 s electron spectrum excited by Mg K radia- 690 680 670 " 210" 140" 70 tion at a pressure of 0.5 torr. The main peak (0)is the Ne l s line BINDING ENERGY excited by Mg Kal,z. The MgKX-ray satellites and KB radiation give the peaks with higher kinetic energy. The peaks with lower FIG. 2. - ESCA spectra from the noble gases excited energies (numbers 1-12) are due to shakeup, shake-off and by Mg Ka X-radiation. inelastic scattering. Binding energies for the noble gases (eV) (*) Reference value (from optical spectra). C4-256 C. NOR shows the electron spectrum from neon over an energy is an order of magnitude smaller, i. e. E,,,, E 1.8 eV, range of 130 eV around the Ne 1 s line. On both sides which is a reasonable numerical value. of the main line a number of satellite lines are observed. The intensities of these lines are less than 10 per cent 2. Autoionization and Auger electron spectra. - of the main line which in the figure has been reduced Electrons are used to excite autoionization and Auger in intensity by a factor of 20. electron spectra from gases. (Auger electron spectra The satellite lines have essentially three different are also excited by photons.) The electron energies are origins. The high energy lines are due to the high then independent of the energy of the bombarding energy satellite lines in the incoming X-radiation. particles : Photoelectrons from the neon 1 s shell induced by more energetic X-radiation will consequently have higher kinetic energy. The low energy part of the spectrum contains a number of fairly sharp peaks E" denotes the energy (above the first ionization energy) superposed on a broad continuum starting sharply of the excited atom in the autoionization process. E+ is around 362 eV and extending some 50 eV toward the energy of an atomic or molecular ion with an lower electron kinetic energies. The intensity of the inner (Auger) or outer (autoionization) shell vacancy, continuum and the distinct features 1 to 4 in figure 3, EC+ is the energy of the doubly ionized atom or measured relative to the main line, is found to be molecule in the Auger process. E,(i) denotes the bin- pressure dependent. These features are therefore ding energy of electron i (i = 1 is initial state vacancy interpreted as due to secondary collisions between in the Auger process, i = 2, 3 are the final state vacan- ejected photoelectrons and neutral atoms. The remai- cies). Thus from autoionization and Auger electron ning features 5 to 12in the spectrum are independent of spectra one obtains complementary information to pressure and are due to ionization processes at which that obtained from photoelectron spectra : from the a valence electron is simultaneously ejected or excited. autoionization spectra one obtains information on The former process is usually called shake-off and for highly excited states of the neutral atom or molecule the latter we have used the term shake-up. It turns out and from the Auger spectra one obtains information that lines 7-1 1 are due to shake-up processes to states on doubly ionized atoms and molecules. of the type 1 s 2 s2 2 p5 np2S and line 12 to a shake- As an example of an autoionization electron spec- up process of type 1 s 2 s 2 p6 ns2S. trum of a noble gas figure 4 shows a high resolution Lines 5 and 6 are interpreted as the Ka,,, satellite lines of 7 and 8 + 9.
Recommended publications
  • Chapter 8 2013
    described by Core Chapter 8 Electrons Wave Function e- filling spdf electronic configuration comprising (Orbital) Valence determined by Electrons described by Aufbau basis for Rules Periodic Quantum which involve Table Numbers which summarizes Orbital Pauli Hund’s which are Energy Exclusion Rule Periodic Properties Electron Configuration and Chemical Periodicity Quantum 4-quantum numbers specify the energy and location of Numbers electrons around a nucleus (all we can know). This numbers are the framework for the “electronic structure Orbital size of an atom”. Principal define & energy n = 1,2,3,.. s defines Name Symbol Permitted Values Property principal n positive integers (1,2,3...) orbital energy (size) Angular Orbital angular l orbital shape (0, 1, 2, and 3 momentum, l defines momentum integers from 0 to n-1 correspond to s, p, d, and f shape orbitals, respectively.) Magnetic Orbital magnetic integers from -l to 0 to +l orbital orientation in space defines ml ml orientation direction of e- spin spin m +1/2 or -1/2 Electron s Spin, ms defines spin Quantum Allowed Schrodinger’s equation gives an exact solution for H- Possible Orbitals Number Values atom, but does not for many electron-atoms. Electron- n Positive integers 1 2 3 electron repulsion in multi-electron split energy levels. 1,2,3,4.... Hydrogen Atom Multi-electron atoms 0 0 1 0 1 2 l 0 up to max Orbitals are of n-1 “degenerate” or Energy the same energy in Hydrogen! ml -l,...0...+l 0 0 -1 0 1 0 -1 0 1 -2-1 0 12 Orbital Name 1s 2s 2p 3s 3p 3d Electrons will Shapes or Boundry fill lowest Surface Plots energy orbitals first! Inner core electrons “shield” or “screen” outer 4-quantum numbers specify all the information we can know the energy electrons from the positive charge of the nucleus.
    [Show full text]
  • Ultrasoft Pseudopotentials for Lanthanide Solvation Complexes: Core Or Valence Character of the 4F Electrons Rodolphe Pollet, C
    Ultrasoft pseudopotentials for lanthanide solvation complexes: Core or valence character of the 4f electrons Rodolphe Pollet, C. Clavaguéra, J.-P. Dognon To cite this version: Rodolphe Pollet, C. Clavaguéra, J.-P. Dognon. Ultrasoft pseudopotentials for lanthanide solvation complexes: Core or valence character of the 4f electrons. Journal of Chemical Physics, American Institute of Physics, 2006, 124, pp.164103 - 1-6. 10.1063/1.2191498. hal-00083928 HAL Id: hal-00083928 https://hal.archives-ouvertes.fr/hal-00083928 Submitted on 21 Jul 2006 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Ultrasoft pseudopotentials for lanthanide solvation complexes: Core or valence character of the 4f electrons Rodolphe Pollet,∗ Carine Clavagu´era, Jean-Pierre Dognon Theoretical Chemistry Laboratory DSM/DRECAM/SPAM-LFP (CEA-CNRS URA2453) CEA/SACLAY, Bat. 522, 91191 GIF SUR YVETTE, FRANCE March 6, 2006 Abstract The 4f electrons of lanthanides, because of their strong localiza- tion in the region around the nucleus, are traditionally included in a pseudopotential core. This approximation is scrutinized by optimizing 3+ the structures and calculating the interaction energies of Gd (H2O) 3+ and Gd (NH3) microsolvation complexes within plane wave PBE cal- culations using ultrasoft pseudopotentials where the 4f electrons are included either in the core or in the valence space.
    [Show full text]
  • Chapter 7 Periodic Properties of the Elements Learning Outcomes
    Chapter 7 Periodic Properties of the Elements Learning Outcomes: Explain the meaning of effective nuclear charge, Zeff, and how Zeff depends on nuclear charge and electron configuration. Predict the trends in atomic radii, ionic radii, ionization energy, and electron affinity by using the periodic table. Explain how the radius of an atom changes upon losing electrons to form a cation or gaining electrons to form an anion. Write the electron configurations of ions. Explain how the ionization energy changes as we remove successive electrons, and the jump in ionization energy that occurs when the ionization corresponds to removing a core electron. Explain how irregularities in the periodic trends for electron affinity can be related to electron configuration. Explain the differences in chemical and physical properties of metals and nonmetals, including the basicity of metal oxides and the acidity of nonmetal oxides. Correlate atomic properties, such as ionization energy, with electron configuration, and explain how these relate to the chemical reactivity and physical properties of the alkali and alkaline earth metals (groups 1A and 2A). Write balanced equations for the reactions of the group 1A and 2A metals with water, oxygen, hydrogen, and the halogens. List and explain the unique characteristics of hydrogen. Correlate the atomic properties (such as ionization energy, electron configuration, and electron affinity) of group 6A, 7A, and 8A elements with their chemical reactivity and physical properties. Development of Periodic Table •Dmitri Mendeleev and Lothar Meyer (~1869) independently came to the same conclusion about how elements should be grouped in the periodic table. •Henry Moseley (1913) developed the concept of atomic numbers (the number of protons in the nucleus of an atom) 1 Predictions and the Periodic Table Mendeleev, for instance, predicted the discovery of germanium (which he called eka-silicon) as an element with an atomic weight between that of zinc and arsenic, but with chemical properties similar to those of silicon.
    [Show full text]
  • Relativistic Energy-Consistent Ab Initio Pseudopotentials — New Developments for Actinides
    Winterschool on Michael Dolg Actinide Chemistry Institut fur¨ Theoretische Chemie Helsinki Universit¨at zu K¨oln December 10-14, 2007 Relativistic Energy-consistent Ab Initio Pseudopotentials — New Developments for Actinides. ‘Stuttgart-(Dresden→Bonn→Cologne)‘ PPs: http://www.theochem.uni-stuttgart.de Valence orbital densities and core densities of Th 30+ 12+ 4+ Th Th Th 1.0 + 0.9 Σ 2 1 0.8 σ 5f 0.7 0.6 ThO 7sp e R 1 h =7 2 h =8 3 h =9 0.5 0.4 6d density (a.u.) 7s 0.3 0.2 0.1 4 h − 1=7 5 h − 1=8 0.0 0 1 2 3 4 5 6 7 8 radius (a.u.) Contents • Short introduction to energy-consistent relativistic pseudopotentials • What we currently can provide for lanthanides and actinides: Wood-Boring adjusted scalar-relativistic (one-component) large-core (Ln 4f-in-core, An 5f-in-core) and small-core (Ln 4f-in-valence, An 5f-in-valence) pseudopotentials, valence spin-orbit operators in the small core case and corresponding valence basis sets of different quality (VDZ to VQZ) and contraction schemes (segmented, generalized) based on ANOs. – some general considerations concerning the choice of the core: small-core vs. large-core PPs; f-in-core PPs (superconfiguration model (R.W.Field); feudal model (B.Bursten) ?) – calibration for atoms/molecules – examples for applications • What we would like to have for lanthanides and actinides: Multi-configuration Dirac-Hartree-Fock/Dirac-Coulomb-Breit adjusted relativistic (two- and one-component) small-core pseudopotentials and corresponding correlation- consistent valence basis sets.
    [Show full text]
  • QMEPC Discovery of Light's Medium Explains Why Gravity Is Larger and Weaker Odin Von Aesir* PO Box 50252, Austin, TX 78763, 925-202-6631, USA
    Research & Reviews: Journal of Pure and Applied Physics QMEPC Discovery of Light's Medium Explains Why Gravity Is Larger and Weaker Odin Von Aesir* PO Box 50252, Austin, TX 78763, 925-202-6631, USA Review Article Received date: 17/11/2015 ABSTRACT Accepted date: 25/02/2016 The MEPC – The Magnetic Electron Plasma Cloud – is plasma solely Published date: 30/03/2016 composed of electrons that is the source and recipient of electrons that exist outside of the atom. The ramifications of this are nothing short of *For Correspondence phenomenal, because it not only explains where electrons come from and how they are available for distribution around the atomic nucleus, but it also Odin Von Aesir, Po Box 50252, Austin, TX explains: 78763, 925-202-6631, USA • What occupies the space in between the atoms? E-mail: [email protected] • The existence of a hierarchy of forces surrounding the atomic core, • Why gravity is larger and weaker than the other known forces, Keywords: Ramifications; Hierarchy; Proximity; • What the medium of light is, Stratosphere • Why light is both a particle and a wave, and • What dark matter and dark energy are? INTRODUCTION Furthermore, the MEPC makes logical sense of the quirkiness of quantum mechanics and the progression of time and space, because it explains the composition and connection of everything. It even gives an insight into the makeup of the atomic nucleus itself [1]. It is common knowledge that the space that surrounds us and that separates us from each other and other things here on earth is composed of air molecules that are made up of even smaller atoms.
    [Show full text]
  • What Is XPS? X‐Ray Photoelectron Spectroscopy (XPS) Is a Surface Analytical Technique, Which Is Based Upon the Photoelectric Effect
    What is XPS? X‐ray photoelectron spectroscopy (XPS) is a surface analytical technique, which is based upon the photoelectric effect. Each atom in the surface has core electron with the characteristic binding energy that is conceptually, not strictly, equal to the ionization energy of that electron. When an X‐ray beam directs to the sample surface, the energy of the X‐ray photon is adsorbed completely by the core electron of an atom. If the photon energy, h , is large enough, the core electron will then escape from the atom and emit out of the surface. The emitted electron with the kinetic energy of Ek is referred to as the photoelectron. The binding energy of the core electron is given by the Einstein relationship: Where h is the X‐ray photon energy (for monochromatic Al Ka, h = 1486.6eV);Ek is the kinetic energy of photoelectron, which can be measured by the energy analyzer; and Φ is the work function induced by the analyzer, about 4%7e5eV. Since the work function, Φ, can be compensated artificially, it is eliminated, giving the binding energy as follows: For insulating samples, once the photoelectrons are emitted out of the sample surface, a positive charge zone will establish quickly in the sample surface. As a result, the sample surface acquires a positive potential (varying typically from several volts to tens of volts) and the kinetic energies of core electrons are reduced by the same amount,C. It can be seen that the surface charging results in the shift of the XPS peaks to higher binding energy.
    [Show full text]
  • Understanding the Role of Water on Electron-Initiated Processes and Radical Chemistry
    Understanding the Role of Water on Electron- Initiated Processes and Radical Chemistry September 26-28, 2002 • Pacific Northwest National Laboratory • Richland, Washington Plane B Plane A Report Sponsored by the Division of Chemical Sciences Office of Basic Energy Sciences June 10, 2003 Cover illustrations: TOP LEFT: Secondary electrons produced by fast ion tracks in radioactive waste. TOP CENTER: Singly occupied molecular orbital (SOMO) for the solvated electron (blue shape) – in the e (H2O)8 cluster surrounded by a continuum dielectric model. Thick lines indicate hydrogen bonds from solvating waters to the electron. (D. A. Dixon and C. G. Zhan) TOP RIGHT: Snapshot from a molecular dynamics simulation of the HOMO of the charge- transfer-to-solvent triplet state for I–. (S. E. Bradforth and P. Jungwirth) BOTTOM LEFT: Optimized structure of a 72-molecule water cluster starting from an initial hexagonal ice Ih configuration with the TTM2-F potential (S. S. Xantheas and C. J. Burnham) BOTTOM RIGHT: Difference in charge density between free water molecules and a pentamer with an ice like local structure (M. Nyberg, L. Pettersson and A. Nilsson) ii June 10, 2003 Understanding the Role of Water on Electron-Initiated Processes and Radical Chemistry Report of the Workshop held at Pacific Northwest National Laboratory, September 26-28, 2002 Sponsored by the Chemical Sciences Division, Office of Basic Energy Sciences, Department of Energy Organizing Committee Bruce C. Garrett, Pacific Northwest National Laboratory Steven D. Colson, Pacific Northwest National Laboratory David A. Dixon, Pacific Northwest National Laboratory Allan H. Laufer, Office of Basic Energy Sciences, DOE Douglas Ray, Pacific Northwest National Laboratory Writing Team Leaders Donald M.
    [Show full text]
  • Periodic Properties of the Elements
    Periodic Properties of the Elements Review Questions 8.1 A periodic property is one that is predictable based on the element's position within the periodic table. 8.2 The relative size of the sodium and potassium ions is important to nerve signal transmission. The pumps and channels within cell membranes are so sensitive that they can distinguish between the sizes of these two ions and selectively allow only one or the other to pass. The movement of ions is the basis for the transmission of nerve signals in the brain and throughout the body. 8.3 The first attempt to organize the elements according to similarities in their properties was made by the German chemist Johann Dobereiner. He grouped elements into triads; three ele- ments with similar properties. A more complex approach was attempted by the English chemist John Newlands. He organized elements into octaves, analogous to musical notes. When arranged this way, the properties of every eighth element were similar. The modern periodic table is credited primarily to the Russian chemist Dmitri Mendeleev. Mendeleev's table is based on the periodic law, which states that when elements are arranged in order of increasing mass, their properties recur periodically. Mendeleev arranged the ele- ments in a table in which mass increased from left to right and elements with similar proper- ties fell in the same columns. 8.5 Meyer proposed an organization of the known elements based on some periodic properties. Moseley listed elements according to the atomic number rather than atomic mass. This resolved the problems in Mendeleev's table where an increase in atomic mass did not corre- late with similar properties.
    [Show full text]
  • Development and Applications of Relativistic Correlation Consistent Basis Sets for Lanthanide Elements and Accurate Ab Initio T
    DEVELOPMENT AND APPLICATIONS OF RELATIVISTIC CORRELATION CONSISTENT BASIS SETS FOR LANTHANIDE ELEMENTS AND ACCURATE AB INITIO THERMOCHEMISTRY AND SPECTROSCOPY By QING LU A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY WASHINGTON STATE UNIVERSITY Department of Chemistry MAY 2017 © Copyright by QING LU, 2017 All Rights Reserved © Copyright by QING LU, 2017 All Rights Reserved To the Faculty of Washington State University: The members of the Committee appointed to examine the dissertation of QING LU find it satisfactory and recommend that it be accepted Kirk A. Peterson, Ph.D., Chair Aurora E. Clark, Ph.D. Ursula Mazur, Ph.D. James A. Brozik, Ph.D. ii ACKNOWLEDGEMENT Having been at this step, I feel difficult to hold my emotions and think logically. So for whoever read this part, please tolerate with my ramblings. Chronologically, the first person I want to acknowledge is Prof. Ming Xian, as he offered me to the WSU grad school. Unfortunately, things didn’t work out well during my first year as I had no idea how to do research at that time. Nonetheless, I still have a good time there and I want to appreciate the help from Dr. Jia Pan and Dr. Nelmi Devarie, who were in Prof. Xian’s group and gave me lots of help. Oh, I should also thank the graduate director and search committee, whose names I forget, in the University of New Hampshire, as they gave me the first offer to cheer me up when I was applying for a US grad school back in China, and allowed me to turn down their offer after I had accepted their offer.
    [Show full text]
  • Example Exercise 6.1 Periodic Law Find the Two Elements in the Fifth Row of the Periodic Table That Violate the Original Periodic Law Proposed by Mendeleev
    Example Exercise 6.1 Periodic Law Find the two elements in the fifth row of the periodic table that violate the original periodic law proposed by Mendeleev. Solution Mendeleev proposed that elements be arranged according to increasing atomic mass. Beginning with Rb, each of the elements in the fifth row increases in atomic mass until iodine. Although the atomic numbers of Te (52) and I (53) increase, the atomic masses of Te (127.60) and I (126.90) do not. Experimentally, it is I and not Te, with properties similar to those of F, Cl, and Br. Practice Exercise Find a pair of elements in the periodic table with atomic numbers less than 20 that are an exception to the original periodic law. Answer: Ar and K Concept Exercise The modern periodic law states that elements are arranged according to increasing (atomic mass/atomic number). (Circle the correct choice.) Answer: See Appendix G. Introductory Chemistry: Concepts and Critical Thinking, 6th Edition © 2011 Pearson Education, Inc. Charles H. Corwin Example Exercise 6.2 Groups and Periods of Elements Select the symbol of the element that fits each of the following descriptions: (a) the alkali metal in the fourth period (b) the halogen in the third period (c) the rare earth with the lowest atomic mass (d) the metal in Group VIIB/7 and Period 4 Solution Referring to the periodic table in Figure 6.3, we have (a) K (b) Cl (c) Sc (d) Mn Figure 6.3 Names of Groups and Periods The common names of groups and periods are shown for selected families and series.
    [Show full text]
  • Electron Configuration of Ions
    • In 2002, there were 115 elements known. • The majority of the elements were discovered between 1735 and 1843. • How do we organize 115 different elements in a meaningful way that will allow us to make predictions about undiscovered elements? • Arrange elements to reflect the trends in chemical and physical properties. • First attempt (Mendeleev and Meyer) arranged the elements in order of increasing atomic weight. • Certain elements were missing from this scheme. Example: In 1871, Mendeleev noted that As properly belonged underneath P and not Si, which left a missing element underneath Si. He predicted a number of properties for this element. In 1886 Ge was discovered. The properties of Ge match Mendeleev’s predictions well. • Modern periodic table: arrange elements in order of increasing atomic number. • Electrons ordinarily occupy orbitals of the lowest energy available. • No two electrons in the same atom may have all four quantum numbers alike. • Pauli exclusion principle: one atomic orbital can accommodate no more than two electrons, and these electrons must have opposing spins. • Of a group of orbitals of identical energy, electrons enter empty orbitals whenever possible (Hund’s rule). • Electrons in half-filled orbitals have parallel spins (same direction). • Core electrons: electrons in [Noble Gas]. The spdf notation •Valence electrons: electrons outside of [Noble Gas]. uses numbers to designate a principal shell and letters (s, p, d, f) to identify a subshell; a superscript indicates the number of electrons in a designated subshell. N: orbital (box) diagram • The periodic table can be used as a guide for electron configurations. • The period number is the value of n.
    [Show full text]
  • 19920024495.Pdf
    Z d I The First Mission of the Tethered Satellite System Table of Contents A Line To The Universe 1 The First Tethered Satellite System Mission 2 Major Tethered Satellite System Elements 6 Tether Dynamics 10 TSS-1 Science Background 14 TSS-1 Science Investigations 23 Mission Scenario 28 TSS-1 Crew 30 A Line To The Future 32 Quick Reference To Experiments And Investigators 35 For Further Reading 36 Glossary Of Abbreviations And Acronyms 37 N/ A ORIGINAL PAGE National Aeronautics and PHQTOGRAPH, Space Administration il A Line To The Universe The first Tethered Satellite System (TSS-1) will soon be launched aboard the Space Shuttle. Circling Earth at an altitude of 296 kilometers (kin), the reusable tether system will be well within the tenuous, electrically charged layer of the atmosphere known as the iono- sphere. There, a satellite attached to the orbiter by a thin conducting cord, or tether, will be reeled from the Shuttle payload bay. This will grant scientists experi- mental capabilities never before possible. On this mission, the satellite will be deployed 20 km above the Shuttle. The conducting tether will generate high voltage and electrical currents as it moves through the ionosphere and allow scientists to examine the electrodynamics of a conducting tether system. These studies will not only increase our understanding of physical processes in the near-Earth space environment but will also help provide an explanation for events witnessed elsewhere in the solar system. In addition, the Deployment of the Tethered Satellite System upward mission will explore the mechanical dynamics of teth- from the Shuttle On TSS-I allows scientists to gather ered systems, providing information that will improve data on performance, while providing an excellent future missions and possibly lead to a variety of future platform for a variety of plasma physics and electro@- =....
    [Show full text]