Integrative Approach to Discovering Species Diversity Within the Mediterranean Group of the Bemisia Tabaci Complex

Total Page:16

File Type:pdf, Size:1020Kb

Integrative Approach to Discovering Species Diversity Within the Mediterranean Group of the Bemisia Tabaci Complex Integrative approach to discovering species diversity within the Mediterranean group of the Bemisia tabaci complex SOŇA VYSKOČILOVÁ A thesis submitted in partial fulfilment of the requirements of the University of Greenwich for the Degree of Doctor of Philosophy April 2019 DECLARATION I certify that the work contained in this thesis, or any part of it, has not been accepted in substance for any previous degree awarded to me, and is not concurrently being submitted for any degree other than that of Doctor of Philosophy being studied at the University of Greenwich. I also declare that this work is the result of my own investigations, except where otherwise identified by references and that the contents are not the outcome of any form of research misconduct. _____________________ _____________________ Soňa Vyskočilová Date Student _____________________ _____________________ Prof John Colvin Date First supervisor _____________________ _____________________ Prof Susan Seal Date Second supervisor ii ACKNOWLEDGEMENTS My profound gratitude belongs to my supervisors, Prof John Colvin and Prof Susan Seal, who nurtured my professional growth and made me feel welcome and valued since day one. I thank the University of Greenwich and the African Cassava Whitefly Project funded by The Bill and Melinda Gates Foundation for their financial support throughout the four years of my doctoral studies. I would like to acknowledge Dr Sharon van Brunschot and Dr Hua-Ling Wang for their help in generating the high-throughput sequencing data, as well as for numerous other occasions they advised me during my laboratory, insectary and/or computational work. I am grateful to Dr Paul Visendi who trained me in quality control of sequencing reads and performed the read mapping to endosymbiont genomes. I acknowledge Mitulkumar Patel and Nikunj Naik for extracting candidate genes from MED transcriptomes and Stephen Young for help with statistical analyses. My thanks also belong to Dr Habibu Mugerwa, Dr Moritz Bömer, Dr Gonçalo Silva, Dr Sophie Bouvaine, Rebecca Grimsley, Natalie Morley and Dr Simon Springate for their help and support during my laboratory and/or insectary work at NRI. I am indebted to Dr Wee Tek Tay for his expertise and encouragements that helped me publish, as well as his help with the sliding window analysis and facilitating my visit to Australia. I also acknowledge CSIRO Health and Biosecurity for hosting my visit in Canberra and its staff for fruitful discussions. Lastly, I appreciate the opportunity to mentor the intern Quentin Bédrune, who, besides broadening my music horizons, helped me to handle the insectary workload. I am very thankful for all my postgraduate peers inside and outside the Tower. I am proud of the NRI Postgraduate Society, the Medway Postgraduate Café and our regular events, which brought all students and staff closer together and made this journey much more enjoyable for all of us. I deeply wish that these efforts will keep their momentum and continue to be shaped by new “generations” of postgraduate students at NRI and the Medway campus. I am also grateful to Grzegorz Caban, without whom I would not have embarked on this PhD project; to my good friends inside and outside the campus always ready to listen and cheer me up; to London salsa scene occasionally unsticking me from the office chair; and to my family loving and supporting me all the way. iii ABSTRACT Bemisia tabaci is a complex of cryptic whitefly species, which includes some of the world’s most damaging agricultural pests. The Mediterranean (MED) putative species is globally invasive and its populations are often resistant to insecticides. The intra-species genetic variability identified in partial sequences of the mitochondrial cytochrome c oxidase 1 (mtCOI) gene has led to the recognition of four MED groups: Q1, Q2, Q3 and African silver-leafing (ASL). A lack of hybridisation between Q1 and ASL populations has been reported, but the taxonomic and biological significance of these groups remained unclear. The aim of this study, therefore, was to evaluate the species status of MED groups using an integrative approach, combining (i) molecular analyses of high-throughput sequencing-derived mitogenomes, (ii) reciprocal crossing experiments to investigate reproductive compatibility among Q1, Q2 and ASL populations and developing a molecular marker for hybrid verification, (iii) detection of bacterial endosymbionts and (iv) bioassays to compare their host-plant ranges and performances on 13 plants. Our mitogenome phylogeny showed close relationships among Q1 and Q2 populations, while ASL was placed outside the Q1/Q2 cluster with 100% bootstrap support. Using the mitogenomes as a reference enabled the identification of sequence errors in 155 of 289 published MED mtCOI haplotypes. Crossing experiments revealed that only Q1 from Spain and Q2 from Israel were compatible, confirming that they belong to the same species. In contrast, ASL from Uganda and Q1 from Sudan both failed to interbreed with any other population. Parental origin of the Q1xQ2 hybrids was verified by the novel nuclear marker GC1 and their fertility by backcrossing. The F2 offspring showed asymmetry in numbers and sex ratio. Hypotheses were formulated about the involvement of endosymbionts Rickettsia and/or Hamiltonella in the F2 asymmetry, and Wolbachia and/or Cardinium in the incompatibility between Spain Q1 and Sudan Q1 populations. Lastly, significant differences (P<0.05) in host use occurred amongst all four populations. Spain Q1 had the widest host range and Israel Q2 the narrowest, but the most distinct pattern of host use was observed for Uganda ASL. In addition, despite its name, we found no evidence of the capacity of ASL to induce silver-leafing symptoms in squash. From this combined evidence, we conclude that the ASL group belongs to a distinct biological species and we highlight the inconsistency between the biological species concept and the currently used species delimitation based on the partial mtCOI sequence and 3.5% nucleotide distance threshold. Accurate knowledge of the number and biology of cryptic species will allow more targeted and efficient design of pest control strategies. iv CONTENTS DECLARATION .......................................................................................................... ii ACKNOWLEDGEMENTS .......................................................................................... iii ABSTRACT ................................................................................................................ iv CONTENTS ................................................................................................................. v ABBREVIATIONS .................................................................................................... viii TABLES ...................................................................................................................... x FIGURES .................................................................................................................. xii 1. Introduction ........................................................................................................... 1 2. Literature review .................................................................................................... 6 2.1 Systematics of the B. tabaci species complex ....................................................... 6 2.1.1 Species conceptualisation and species delimitation ........................................ 6 2.1.2 A historical review of B. tabaci systematics and taxonomy ............................ 11 2.1.3 Systematics of the Mediterranean putative species ....................................... 22 2.2 Reproductive relationships within the B. tabaci species complex and the role of bacterial endosymbionts ............................................................................................ 25 2.2.1 Integrating the biological species concept with the molecular phylogeny of B. tabaci .................................................................................................................. 25 2.2.2. Inter-species competition and interference ................................................... 27 2.2.3 Bacterial endosymbionts of whiteflies and their role ...................................... 29 2.3 B. tabaci as an agricultural pest ........................................................................... 35 2.3.1 Life cycle, mating and development ............................................................... 35 2.3.2 Geographic spread and losses caused by the invasive B. tabaci species ..... 41 2.3.3 Pest management strategies ......................................................................... 46 2.4 Host-plant relations within the B. tabaci complex ................................................. 53 2.4.1 Host range of the B. tabaci species complex ................................................. 53 2.4.2 Host range of the Mediterranean putative species ......................................... 55 2.4.3 Whitefly detoxification mechanisms in response to plant defence ................. 57 3. Molecular characterisation of B. tabaci MED populations based on mtDNA...61 3.1 Introduction .......................................................................................................... 61 3.2 Material and Methods ........................................................................................... 63 3.2.1 Growing plants and rearing B. tabaci colonies ..............................................
Recommended publications
  • Vascular Plant Survey of Vwaza Marsh Wildlife Reserve, Malawi
    YIKA-VWAZA TRUST RESEARCH STUDY REPORT N (2017/18) Vascular Plant Survey of Vwaza Marsh Wildlife Reserve, Malawi By Sopani Sichinga ([email protected]) September , 2019 ABSTRACT In 2018 – 19, a survey on vascular plants was conducted in Vwaza Marsh Wildlife Reserve. The reserve is located in the north-western Malawi, covering an area of about 986 km2. Based on this survey, a total of 461 species from 76 families were recorded (i.e. 454 Angiosperms and 7 Pteridophyta). Of the total species recorded, 19 are exotics (of which 4 are reported to be invasive) while 1 species is considered threatened. The most dominant families were Fabaceae (80 species representing 17. 4%), Poaceae (53 species representing 11.5%), Rubiaceae (27 species representing 5.9 %), and Euphorbiaceae (24 species representing 5.2%). The annotated checklist includes scientific names, habit, habitat types and IUCN Red List status and is presented in section 5. i ACKNOLEDGEMENTS First and foremost, let me thank the Nyika–Vwaza Trust (UK) for funding this work. Without their financial support, this work would have not been materialized. The Department of National Parks and Wildlife (DNPW) Malawi through its Regional Office (N) is also thanked for the logistical support and accommodation throughout the entire study. Special thanks are due to my supervisor - Mr. George Zwide Nxumayo for his invaluable guidance. Mr. Thom McShane should also be thanked in a special way for sharing me some information, and sending me some documents about Vwaza which have contributed a lot to the success of this work. I extend my sincere thanks to the Vwaza Research Unit team for their assistance, especially during the field work.
    [Show full text]
  • New Data on the Whiteflies (Insecta: Hemiptera: Aleyrodidae) of Montenegro, Including Three Species New for the Country
    Acta entomologica serbica, 2015, 20: 29-41 UDC 595.754(497.16)"2012" DOI: 10.5281/zenodo.44654 NEW DATA ON THE WHITEFLIES (INSECTA: HEMIPTERA: ALEYRODIDAE) OF MONTENEGRO, INCLUDING THREE SPECIES NEW FOR THE COUNTRY CHRIS MALUMPHY1, SANJA RADONJIĆ2, SNJEŽANA HRNČIĆ2 and M ILORAD RAIČEVIĆ2 1 The Food and Environment Research Agency, Sand Hutton, YO41 1LZ, United Kingdom E-mail: [email protected] 2 Biotechnical Faculty of the University of Montenegro, Podgorica, Montenegro Abstract Collection data on nine species of whitefly collected in the coastal and central regions of Montenegro during October 2012 are presented. Three species are recorded from Montenegro for the first time: Aleuroclava aucubae (Kuwana), Aleurotuba jelinekii (Frauenfeld) and Bemisia afer (Priesner & Hosny) complex. Two of the species, A. aucubae and B. afer complex were found in Tološi, on Citrus sp. and Laurus nobilis, respectively. Aleurotuba jelinekii was found in Podgorica on Viburnum tinus. KEY WORDS: Whiteflies, Aleyrodidae, Montenegro Introduction Whiteflies comprise a single family, Aleyrodidae, which currently contains 1556 extant species in 161 genera (Martin & Mound, 2007). Fifty-six species occur outdoors in Europe and the Mediterranean basin (Martin et al., 2000). All whiteflies are phytophagous and have three developmental stages: egg, larval (with four larval instars) and adult. Many species are economically important plant pests of outdoor crops, ornamentals and indoor plantings. Feeding by immature whiteflies reduces plant vigor by depletion of plant sap, and foliage becomes contaminated with eliminated honeydew on which black sooty mold grows, thereby reducing the photosynthetic area and lowering the aesthetic appearance of ornamentals. Adults of a small number of species, most notably Bemisia tabaci (Gennadius), are important vectors of plant viruses (Jones, 2003).
    [Show full text]
  • EPPO Reporting Service, 1996, No. 2
    EPPO Reporting Service Paris, 1996-01-02 Reporting Service 1996, No. 02 CONTENTS 96/021 - EPPO Electronic Documentation Service 96/022 - Situation of Burkholderia (Pseudomonas) solanacearum in France and Portugal 96/023 - Fireblight foci in Puy-de-Dôme (FR) 96/024 - Toxoptera citricida found in Florida (US) 96/025 - Hyphantria cunea found in Tessin (CH) 96/026 - Bactrocera dorsalis trapped in California and Florida (US) 96/027 - Anastrepha ludens trapped in California (US) 96/028 - Further spread of Maconellicoccus hirsutus in the Caribbean 96/029 - Tilletia controversa is not present in Germany 96/030 - Present situation of citrus tristeza closterovirus in Spain 96/031 - Citrus whiteflies in Spain 96/032 - Proposed names for citrus greening bacterium and lime witches' broom phytoplasma 96/033 - Report of phytoplasma infection in European plums in Italy 96/034 - Susceptibility of potato cultivars to Synchytrium endobioticum 96/035 - Specific ELISA detection of the Andean strain of potato S carlavirus 96/036 - NAPPO quarantine lists for potato pests 96/037 - Studies on the possible use of sulfuryl fluoride fumigation against Ceratocystis fagacearum 96/038 - Treatments of orchid blossoms against Thrips palmi and Frankliniella occidentalis 96/039 - Soil solarization to control Clavibacter michiganensis subsp. michiganensis 96/040 - Metcalfa pruinosa: a new pest in Europe 96/041 - Phytophthora disease of common alder 96/042 - Potential spread of Artioposthia triangulata (New Zealand flatworm) and Australoplana sanguinea var. alba to continental Europe EPPO Reporting Service 96/021 EPPO Electronic Documentation Service EPPO Electronic Documentation is a new service developed by EPPO to make documents available in electronic form to EPPO correspondents.
    [Show full text]
  • (Hemiptera: Aleyrodidae), a New Invasive Citrus Pest in Ethiopia Difabachew K
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications: Department of Entomology Entomology, Department of 8-2011 Ecology and Management of the Woolly Whitefly (Hemiptera: Aleyrodidae), a New Invasive Citrus Pest in Ethiopia Difabachew K. Belay University of Nebraska-Lincoln, [email protected] Abebe Zewdu Ethiopian Institute of Agricultural Research John E. Foster University of Nebraska-Lincoln, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/entomologyfacpub Part of the Agriculture Commons, and the Entomology Commons Belay, Difabachew K.; Zewdu, Abebe; and Foster, John E., "Ecology and Management of the Woolly Whitefly H( emiptera: Aleyrodidae), a New Invasive Citrus Pest in Ethiopia" (2011). Faculty Publications: Department of Entomology. 636. http://digitalcommons.unl.edu/entomologyfacpub/636 This Article is brought to you for free and open access by the Entomology, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications: Department of Entomology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Belay, Zewdu, & Foster in J. Econ. Entomol. 104 (2011) 1 Published in Journal of Economic Entomology 104:4 (2011), pp 1329–1338. digitalcommons.unl.edu doi 10.1603/EC11017 Copyright © 2011 Entomological Society of America. Used by permission. Submitted 18 January 2011; accepted 7 June 2011. Ecology and Management of the Woolly Whitefly (Hemiptera: Aleyrodidae), a New Invasive Citrus Pest in Ethiopia Difabachew K. Belay,1,2 Abebe Zewdu,1 & John E. Foster2 1 Ethiopian Institute of Agricultural Research, Melkassa Research Center, P.O. Box 436, Nazareth, Ethiopia 2 University of Nebraska–Lincoln, 202 Entomology Hall, Lincoln, NE 68583-0816 Corresponding author — D.
    [Show full text]
  • (Gramineae) Background Concerned, It
    BLUMEA 31 (1986) 281-307 Generic delimitationof Rottboelliaand related genera (Gramineae) J.F. Veldkamp R. de Koning & M.S.M. Sosef Rijksherbarium,Leiden, The Netherlands Summary Generic delimitations within the Rottboelliastrae Stapf and Coelorachidastrae Clayton (for- mal name) are revised. Coelorachis Brongn., Hackelochloa O. Ktze, Heteropholis C.E. Hubb., in Ratzeburgia Kunth, and Rottboellia formosa R. Br, are to be included Mnesithea Kunth. Heteropholis cochinchinensis (Lour.) Clayton and its variety chenii (Hsu) Sosef & Koning are varieties of Mnesithea laevis (Retz.) Kunth. Robynsiochloa Jacq.-Félix is to be included in Rottboellia L.f. The necessary new combinations, a list of genera and representative species, and a key to the genera are given. In the Appendix a new species of Rottboellia, R. paradoxa Koning & Sosef, is described from the Philippines. The enigmatic species Rottboellia villosa Poir. is transferred to Schizachyrium villosum (Poir.) Veldk., comb. nov. Introduction Historical background The of the within the of taxa delimitation genera group represented by Rottboel- lia L. f. and its closest relatives, here taken in the sense of Clayton (1973), has always posed a considerable problem. former In times Rottboellia contained many species. It was divided up in various the of Hackel seemed most ways, but system 5 subgenera as proposed by (1889) authoritative: Coelorachis (Brongn.) Hack., Hemarthria (R. Br.) Hack., Peltophorus (Desv.) HackPhacelurus (Griseb.) Hack., and Thyrsostachys Hack. When at the end of the last century and in the beginning of the present one many large grass genera were split up, e.g. Andropogon, Panicum, Stapf (1917) raised Hackel's subgenera to generic rank, reviving some old names formerly treated as synonyms, and created several new of the of other unable finish his ones.
    [Show full text]
  • EPPO Reporting Service
    ORGANISATION EUROPEENNE EUROPEAN AND MEDITERRANEAN ET MEDITERRANEENNE PLANT PROTECTION POUR LA PROTECTION DES PLANTES ORGANIZATION EPPO Reporting Service NO. 11 PARIS, 2016-11 General 2016/202 New EU plant health regime 2016/203 Details on quarantine pests in Spain: 2015 situation 2016/204 New BBCH growth stage keys Pests 2016/205 Update on the situation of Anoplophora chinensis in Turkey and confirmed absence of A. glabripennis 2016/206 First reports of Drosophila suzukii in Bosnia and Herzegovina, Romania, Serbia and Turkey 2016/207 Zaprionus indianus and Z. tuberculatus: addition to the EPPO Alert List 2016/208 First report of Vespa velutina in the United Kingdom 2016/209 First report of Aleurothrixus (=Aleurotrachelus) trachoides in India 2016/210 First reports of Phytoliriomyza jacarandae in Greece, Portugal and Spain 2016/211 First report of Meloidogyne graminicola in Italy 2016/212 Previous finding of Meloidogyne ethiopica in Slovenia is now attributed to Meloidogyne luci Diseases 2016/213 First report of Xylella fastidiosa in Spain 2016/214 First report of Gnomoniopsis smithogilvyi in the United Kingdom 2016/215 Phytophthora pluvialis is causing a new disease on Pinus radiata in New Zealand 2016/216 First report of Chrysanthemum stem necrosis virus in the Republic of Korea 2016/217 Potato spindle tuber viroid detected in volunteer and wild plants in Western Australia (AU) 2016/218 Studies on seed transmission of four pospiviroids in horticultural plants Invasive plants 2016/219 Biological control of Impatiens glandulifera 2016/220 A prioritization process for invasive alien plants incorporating the requirements of the EU Regulation no. 1143/2014 2016/221 Assessment of the risks to Norwegian biodiversity from aquarium and garden pond plants 2016/222 Honolulu challenge – action on invasive alien species 21 Bld Richard Lenoir Tel: 33 1 45 20 77 94 E-mail: [email protected] 75011 Paris Fax: 33 1 70 76 65 47 Web: www.eppo.int EPPO Reporting Service 2016 no.
    [Show full text]
  • Reliable Molecular Identification of Nine Tropical Whitefly Species
    Reliable molecular identification of nine tropical whitefly species Tatiana M. Ovalle1, Soroush Parsa1,2, Maria P. Hernandez 1 & Luis A. Becerra Lopez-Lavalle1,2 1Centro Internacional de Agricultura Tropical (CIAT), Km 17, Recta Cali-Palmira, Cali, Colombia 2CGIAR Research Program for Root Tubers and Bananas, Lima, Peru Keywords Abstract COI, RFLP-PCR, Tropical whiteflies, Molecular identification. The identification of whitefly species in adult stage is problematic. Morphologi- cal differentiation of pupae is one of the better methods for determining identity Correspondence of species, but it may vary depending on the host plant on which they develop Luis A. Becerra Lopez-Lavalle, Centro which can lead to misidentifications and erroneous naming of new species. Poly- Internacional de Agricultura Tropical (CIAT) merase chain reaction (PCR) fragment amplified from the mitochondrial cyto- Km 17, Recta Cali-Palmira, Cali, Colombia. chrome oxidase I (COI) gene is often used for mitochondrial haplotype Tel: +57 2445 0000; Fax: +57 2445 0073; E-mail: [email protected] identification that can be associated with specific species. Our objective was to compare morphometric traits against DNA barcode sequences to develop and Funding Information implement a diagnostic molecular kit based on a RFLP-PCR method using the This should state that the CGIAR Reseach COI gene for the rapid identification of whiteflies. This study will allow for the Program for Root Tubers and Bananas rapid diagnosis of the diverse community of whiteflies attacking plants of eco- provided the resources to do this work. nomic interest in Colombia. It also provides access to the COI sequence that can be used to develop predator conservation techniques by establishing which Received: 4 April 2014; Revised: 20 June predators have a trophic linkage with the focal whitefly pest species.
    [Show full text]
  • Orange Spiny Whitefly, Aleurocanthus Spiniferus (Quaintance) (Insecta: Hemiptera: Aleyrodidae)1 Jamba Gyeltshen, Amanda Hodges, and Greg S
    EENY341 Orange Spiny Whitefly, Aleurocanthus spiniferus (Quaintance) (Insecta: Hemiptera: Aleyrodidae)1 Jamba Gyeltshen, Amanda Hodges, and Greg S. Hodges2 Introduction Africa (Van den Berg et al. 1990). More recently, orange spiny whitefly was reported from Italy (2008), Croatia Orange spiny whitefly, Aleurocanthus spiniferus Quaintance, (2012), and Montenegro (2013) (Radonjic et al. 2014). is a native pest of citrus in tropical Asia. In the early 1920s, Established populations of orange spiny whitefly are not yet pest outbreak infestation levels caused Japan to begin a known to occur in the continental US. biological control program. Primarily, orange spiny whitefly affects host plants by sucking the sap but it also causes indirect damage by producing honeydew and subsequently Description and Life History promoting the growth of sooty mold. Sooty mold is a Whiteflies have six developmental stages: egg, crawler (1st black fungus that grows on honeydew. Heavy infestations instar), two sessile nymphal instars (2nd and 3rd instars), of orange spiny whitefly, or other honeydew-producing the pupa (4th instar), and adult. Identification of the insects such as scales, mealybugs, aphids, and other whitefly Aleyrodidae is largely based upon characters found in the species, can cause sooty mold to completely cover the leaf pupal (4th instar) stage. The duration of the life cycle and surface and negatively affect photosynthesis. the number of generations per year are greatly influenced by the prevailing climate. A mild temperature with high Distribution relative humidity provides ideal conditions for growth and development. About four generations per year have The orange spiny whitefly has spread to Africa, Australia, been recorded in Japan (Kuwana et al.
    [Show full text]
  • 1.6 Parasitoids of Giant Whitefly
    UC Riverside UC Riverside Electronic Theses and Dissertations Title Life Histories and Host Interaction Dynamics of Parasitoids Used for Biological Control of Giant Whitefly (Aleurodicus dugesii) Cockerell (Hemiptera: Aleyrodidae) Permalink https://escholarship.org/uc/item/8020w7rd Author Schoeller, Erich Nicholas Publication Date 2018 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA RIVERSIDE Life Histories and Host Interaction Dynamics of Parasitoids Used for Biological Control of Giant Whitefly (Aleurodicus dugesii) Cockerell (Hemiptera: Aleyrodidae) A Dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Entomology by Erich Nicholas Schoeller March 2018 Dissertation Committee: Dr. Richard Redak, Chairperson Dr. Timothy Paine. Dr. Matthew Daugherty Copyright by Erich Nicholas Schoeller 2018 The Dissertation of Erich Nicholas Schoeller is approved: Committee Chairperson University of California, Riverside Acknowledgements This dissertation was made possible with the kind support and help of many individuals. I would like to thank my advisors Drs. Richard Redak, Timothy Paine, and Matthew Daugherty for their wisdom and guidance. Their insightful comments and questions helped me become a better scientist and facilitated the development of quality research. I would particularly like to thank Dr. Redak for his endless patience and unwavering support throughout my degree. I wish to also thank Tom Prentice and Rebeccah Waterworth for their support and companionship. Their presence in the Redak Lab made my time there much more enjoyable. I would like to thank all of the property owners who kindly allowed me to work on their lands over the years, as well as the many undergraduate interns who helped me collect and analyze data from the experiments in this dissertation.
    [Show full text]
  • Voltinism of Aleurothrixus Floccosus Maskel (Hemiptera: Aleyrodidae) in an Oasis Agroecosystem in the Atacama Desert, Tarapacá Region, Chile
    Páginas 000-000 B. SCIENTIFIC NOTES / NOTAS CIENTÍFICAS IDESIA (Chile) 2018 Voltinism of Aleurothrixus floccosus Maskel (Hemiptera: Aleyrodidae) in an oasis agroecosystem in the Atacama Desert, Tarapacá Region, Chile Voltinismo de Aleurothrixus floccosus Maskel (Hemiptera: Aleyrodidae) en un agroecosistema de oasis en el Desierto de Atacama, Región de Tarapacá, Chile Víctor Tello¹*, Osman Peralta¹, Tommy Rioja¹ ABSTRACT The number of generations of woolly whitefly [Aleurpthrixus floccosus (Maskell)] was determined on sweet orange orchards [Citrus sinensis (L.) Osbeck] in the Pica Oasis, Tarapacá Region, Chile. The essays lasted one year, from April 2010 to April 2011. Woolly whitefly presented 7 generations in the Pica Oasis, which overlap causing the constant presence of this pest in Pica. In the coldest months (autumn-winter) the cycle tends to be longer (65.5 days), while in the warmer months (spring-summer) the cycle lasts 45.5 days. In general, the cycle is completed at 52 days. Keywords: Generations, woolly whitefly, citrus, Pica. RESUMEN Se determinó el número de generaciones de la mosca blanca algodonosa de los cítricos [Aleurothrixus floccosus (Maskell)] en huertos de naranja dulce [Citrus sinensis (L.) Osbeck] en el Oasis de Pica, Región de Tarapacá, Chile. Los ensayos tuvieron una duración de un año, desde abril del 2010 hasta abril de 2011. La mosca blanca de los cítricos presentó 7 generaciones en el Oasis de Pica, cuyos estadios se superponen causando la presencia constante de esta plaga en Pica. En los meses más fríos (otoño-invierno) el ciclo tiende a ser más largo (65,5 días), mientras que en los meses más cálidos (primavera-verano) el ciclo dura 45,5 días.
    [Show full text]
  • Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring Within the Kahului Airport Environs, Maui, Hawai‘I: Synthesis Report
    Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring within the Kahului Airport Environs, Maui, Hawai‘i: Synthesis Report Prepared by Francis G. Howarth, David J. Preston, and Richard Pyle Honolulu, Hawaii January 2012 Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring within the Kahului Airport Environs, Maui, Hawai‘i: Synthesis Report Francis G. Howarth, David J. Preston, and Richard Pyle Hawaii Biological Survey Bishop Museum Honolulu, Hawai‘i 96817 USA Prepared for EKNA Services Inc. 615 Pi‘ikoi Street, Suite 300 Honolulu, Hawai‘i 96814 and State of Hawaii, Department of Transportation, Airports Division Bishop Museum Technical Report 58 Honolulu, Hawaii January 2012 Bishop Museum Press 1525 Bernice Street Honolulu, Hawai‘i Copyright 2012 Bishop Museum All Rights Reserved Printed in the United States of America ISSN 1085-455X Contribution No. 2012 001 to the Hawaii Biological Survey COVER Adult male Hawaiian long-horned wood-borer, Plagithmysus kahului, on its host plant Chenopodium oahuense. This species is endemic to lowland Maui and was discovered during the arthropod surveys. Photograph by Forest and Kim Starr, Makawao, Maui. Used with permission. Hawaii Biological Report on Monitoring Arthropods within Kahului Airport Environs, Synthesis TABLE OF CONTENTS Table of Contents …………….......................................................……………...........……………..…..….i. Executive Summary …….....................................................…………………...........……………..…..….1 Introduction ..................................................................………………………...........……………..…..….4
    [Show full text]
  • First Report of Aleurocanthus Spiniferus on Ailanthus Altissima: Profiling of the Insect Microbiome and Micrornas
    insects Article First Report of Aleurocanthus spiniferus on Ailanthus altissima: Profiling of the Insect Microbiome and MicroRNAs Giovanni Bubici 1,* , Maria Isabella Prigigallo 1 , Francesca Garganese 2, Francesco Nugnes 3 , Maurice Jansen 4 and Francesco Porcelli 2 1 Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, via Amendola 165/A, 70126 Bari, Italy; [email protected] 2 Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, via Amendola 165/A, 70126 Bari, Italy; [email protected] (F.G.); [email protected] (F.P.) 3 Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, via Università 133, 80055 Portici, Italy; [email protected] 4 Ministry of Agriculture, Nature and Food Quality, Laboratories Division, Netherlands Food and Consumer Product Safety Authority (NVWA), Geertjesweg 15, 6706 EA Wageningen, The Netherlands; [email protected] * Correspondence: [email protected] Received: 23 January 2020; Accepted: 27 February 2020; Published: 3 March 2020 Abstract: We report the first occurrence of the orange spiny whitefly (Aleurocanthus spiniferus; OSW) on the tree of heaven (Ailanthus altissima) in Bari, Apulia region, Italy. After our first observation in 2016, the infestation recurred regularly during the following years and expanded to the neighboring trees. Since then, we have also found the insect on numerous patches of the tree of heaven and other plant species in the Bari province. Nevertheless, the tree of heaven was not particularly threatened by the insect, so that a possible contribution by OSW for the control of such an invasive plant cannot be hypothesized hitherto.
    [Show full text]