5-7 January 1983

Total Page:16

File Type:pdf, Size:1020Kb

5-7 January 1983 NATIONAL ACADEMIES OF SCIENCE AND ENGINEERING NATIONAL RESEARCH COUNCIL of the UNITED STATES OF AMERICA UNITED STATES NATIONAL COMMITTEE International Union of Radio Science National Radio Science Meeting 5-7 January 1983 Sponsored by USNC/URSI in cooperation with Institute of Electrical and Electronics Engineers University of Colorado Boulder, Colorado U.S.A. National Radio Science Meeting 5-7 January 1983 Condensed Technical Program TliESDAY, 4 JANUARY 1300 IEEE-GAP AD COM Meeting Pacific Exchange Room, Broker Inn 2000-2400 USNC-URSI Meeting Broker Inn WEDNESDAY , 5 JANUARY 0900-1200 A-1 Measurement Principles and Practices-I CRl-46 B-1 Electromagnetic Theory CR2-6 F-1 CCIR Special Session on Propagation in Non-Ionized CR2-26 Media G-1 Ionospheric Modeling CRl-40 H-1 The Plasma Wave Environment of Jupiter CR2-28 J-1 Low Noise Receivers for Radio Astronomy CR0-30 1140-1200 H-2 General Topics CR2-28 1330-1700 A-2 Measurement Principles and Practices-II CRl-46 B-2 Guided Waves CR2-6 B-3 Numerical Methods CR0-14 C-1/J-2 Radar Astronomy CR0-30 E-1 Noise and Interference - Estimation and System Design CR0-12 F-2 Effects of Precipation on Microwave Systems - CR2-26 Depolarization, Space Diversity, Backscatter Intensity G-2 Ionospheric Scintillation CRl-40 I H-3 Wave Emissions From Natural Electron Beams in Space CR2-28 I\ 1645 Commission A Business Meeting CRl-46 1700 Commission C Business Meeting CR0-30 Commission F Business Meeting CR2-26 1730 Commission E Business Meeting CR0-12 Commission H Business Meeting CR2-28 I '1 I' L_ ---~------------- ___, I United States National Committee INTERNATIONAL UNION OF RADIO SCIENCE PROGRAM AND ABSTRACTS National Radio Science Meeting 5-7 January 1983 Sponsored by USNC/URSI in cooperation _ with IEEE groups and societies: Antennas and Propagation Circuits and Systems Communications Electromagnetic Compatibility Geoscience Electronics Information Theory Instrumentation and Measurement Microwave Theory and Techniques Nuclear and Plasma Sciences Quantum Electronics and Applications Hosted by: National Oceanic and Atmospheric Administration National Bureau of Standards National Telecommunications and Information Administration University of Colorado at Boulder and The Denver-Boulder Chapter, IEEE/APS NOTE: Programs and Abstracts of the USNC/URSI Meetings are available from: USNC/URSI National Academy of Sciences 2101 Constitution Avenue, N.W. Washington, DC 20418 at $2 for meetings prior to 1970, $3 for 1971-75 meetings, and $5 for 1976-83 meetings. The full papers are not published in any collected format; requests for them should be addressed to the authors who may have them published on their own initiative. Please note that these meetings are national. They are not organized by the International Union, nor are the programs available from the International Secretariat. ii MEMBERSHIP United States National Committee INTERNATIONAL UNION OF RADIO SCIENCE Chairman: Prof, Thomas B.A. Senior* Vice Chairman: Prof. Robert K. Crane* Secretary: Dr. Thomas E. Vanzandt* Immediate Past Chairman: Dr. C. Gordon Little* Members Representing Societies, Groups and Institutes: American Geophysical Union Dr. Christopher T. Russell Bioelectromagnetics Society Dr. James C. Lin Institute of Electrical & Electronic Engineering IEEE Antennas & Propagation Society Dr. Alan W. Love IEEE Communications Society Prof. Raymond Pickholtz IEEE Electromagnetic Compatibility Society IEEE Information Theory Group IEEE Microwave Theory & Techniques Society IEEE Quantum Electronics Society Prof, Herman A. Haus Optical Society of America Dr. Steven F. Clifford Liaison Representatives from Government Agencies: National Telecommunications & Information Administration Dr. Douglass D. Crombie National Science Foundation Dr. Vernon Pankonin Department of Comme·rce National Aeronautics & Space Administration Dr. Erwin R. Schmerling Federal Communications Commission Mr. William A. Daniel Department of Defense Dr. George L, Salton Department of the Army Lt. Col. Roberty Clayton, Jr. Department of the Navy Dr. Leo Young Department of the Air Force Dr. Allan C. Schell Members-at-Large: Dr. Sidney A. Bowhill Dr. Juergen E. Richter Dr. George W. Swenson, Jr. *Member of USNC-URSI Executive Committee iii Chairmen of the USNC-URSI Commissions: Commission A Dr. Helmut Hellwig Commission B Prof. Chalmers M. Butler Commission C Dr. Andrew J. Viterbi Commission D Drs. K.J. Button and A.A. Oliner Commission E Dr. Arthur A. Giordano Commission F Dr. Earl E. Gossard Commission G Dr. Kenneth Davies Commission H Dr. Robert F. Benson Commission J Prof. Mark A. Gordon Officers of URSI resident in the United States: (including Honorary Presidents) President Prof. William E. Gordon* Honorary President Prof. Henry G. Booker* Chairmen and Vice Chairmen of Commissions of URSI resident in the United States: Chairman of Commission C Prof. Jack K. Wolf Vice Chairman of Commission G Dr. Jules Aarons Foreign Secretary of the U.S. National Academy of Sciences Dr. Thomas F. Malone Chairman, Office of Physical Sciences-NRG Prof. William A. Fowler NRG Staff Officer Mr. Richard Y. Dow Honorary Members: Dr. Harold H. Beverage Dr. Ernst Weber *Member of USNC-URSI Executive Committee iv DESCRIPTION OF THE INTERNATIONAL UNION OF RADIO SCIENCE The International Union of Radio Science is one of 18 world scientific unions organized under the International Council of Scientific Unions (ICSU). It is commonly designated as URSI (from its French name, Union Radio Scientifique Internationale). Its aims are (1) to promote the scientific study of radio communications, (2) to aid and organize radio research requiring cooperation on an international scale and to encourage the discussion and publication of the results, (3) to facilitate agreement upon common methods of measurement and the standardization of measuring instruments, and (4) to stimulate and to coordinate studies of the scientific aspects of telecommunications using electromagnetic waves, guided and unguided. The International Union itself is an organizational framework to aid in promoting these objectives. The actual technical work is largely done by the National Committee in the various countries. The officers of the International Union are: President: W. E. Gordon (USA) Past President: W. N. Christiansen (Australia) Vice Presidents: A. L. Cullen (U.K.) A. P. Mitra (India) S. Okamura (Japan) A. Smolinski (Poland) Secretary-General: J. Van Bladel (Belgium) Honorary Presidents: G. Beynon (U.K.) H. G. Booker (USA) W. Dieminger (West Germany) I. Koga (Japan) J. A. Ratcliffe (U.K.) The Secretary-General's office and the headquarters of the organization are located at Avenue Albert Lancaster 32, B-1180 Brussels, Belgium. The Union is ·supported by contributions (dues) from 38 member countries. Additional funds for symposia and other scientific activities of the Union are provided by ICSU from contributions received for this purpose from UNESCO. The International Union, as of the XXth General Assembly held in Washington, D.C., in August 1981, has nine bodies called Commissions for centralizing studies in the principal technical fields. The names of the Commissions and their chairmen follow. V A. Electromagnetic Metrology V, Kose (FRG) B. Fields and Waves H, G. Unger (FRG) C. Signals and Systems J, K. Wolf (USA) D. Electronic and Optical Devices and Applications J, Le Mizee (France) E. Electromagnetic Noise and Interference S. Lundquist (Sweden) F. Remote Sensing and Wave Propagation D, Gjessing (Norway) G. Ionospheric Radio and Propagation P. Bauer (France) H. Waves in Plasmas M. Petit (France) J, Radio Astronomy V, Radhakrishnan (India) Every three years the International Union holds a meeting called the General Assembly, the next is the XXIst, to be held in Florence, Italy, in August/September, 1984. The Secretariat prepares and distributes the Proceedings of these General Assemblies. The International Union arranges international symposia on specific subjects pertaining to the work of one or several Commissions and also cooperates with other Unions in international symposia on subjects of joint interest. Radio is unique among the fields of scientific work in having a specific adaptability to large-scale international research programs, since many of the phenomena that must be studied are world-wide in extent and yet are in a measure subject to control by experimenters. Exploration of space and the extension of scientific observations to the space environment are dependent on radio for their research. One branch, radio astronomy, involves cosmic phenomena. URSI thus has a distinct field of usefulness in furnishing a meeting ground for the numerous workers in the manifold aspects of radio research; its meetings and committee activities furnish valuable means of promoting research through exchange of ideas. vi Steering Committee S. W. Maley, Chairman P. L. Jensen D. C. Chang C. G. Little D. Cook T. B. A. Senior R. Y. Dow T. E. Van Zandt Technical Program Committee T. E. Van Zandt, Chairman R. F. Benson E. Gossard C. M. Butler M. Grossi K. Davies M. Nesenbergs H. Hellwig A. D. Spaulding M. A. Gordon M. Kindren, Secretary to the Committee Vll MONDAY MORNING, 5 JAN., 0900-1200 MEASUREMENT PRINCIPLES AND PRACTICES - I Conunission A, Session 1, CRl-46 Chairman and Organizer: E. K. Miller, Lawrence Livermore National Laboratory, CA Al-1 SPECIAL SESSION ON MEASUREMENT PRINCIPLES AND PRACTICES: 0830 INTRODUCTION AND OVERVIEW: E. K. Miller, Lawrence Liver­ more National Laboratory, Livermore, CA 94550 The art of making scientific
Recommended publications
  • New Voyage to Rendezvous with a Small Asteroid Rotating with a Short Period
    Hayabusa2 Extended Mission: New Voyage to Rendezvous with a Small Asteroid Rotating with a Short Period M. Hirabayashi1, Y. Mimasu2, N. Sakatani3, S. Watanabe4, Y. Tsuda2, T. Saiki2, S. Kikuchi2, T. Kouyama5, M. Yoshikawa2, S. Tanaka2, S. Nakazawa2, Y. Takei2, F. Terui2, H. Takeuchi2, A. Fujii2, T. Iwata2, K. Tsumura6, S. Matsuura7, Y. Shimaki2, S. Urakawa8, Y. Ishibashi9, S. Hasegawa2, M. Ishiguro10, D. Kuroda11, S. Okumura8, S. Sugita12, T. Okada2, S. Kameda3, S. Kamata13, A. Higuchi14, H. Senshu15, H. Noda16, K. Matsumoto16, R. Suetsugu17, T. Hirai15, K. Kitazato18, D. Farnocchia19, S.P. Naidu19, D.J. Tholen20, C.W. Hergenrother21, R.J. Whiteley22, N. A. Moskovitz23, P.A. Abell24, and the Hayabusa2 extended mission study group. 1Auburn University, Auburn, AL, USA ([email protected]) 2Japan Aerospace Exploration Agency, Kanagawa, Japan 3Rikkyo University, Tokyo, Japan 4Nagoya University, Aichi, Japan 5National Institute of Advanced Industrial Science and Technology, Tokyo, Japan 6Tokyo City University, Tokyo, Japan 7Kwansei Gakuin University, Hyogo, Japan 8Japan Spaceguard Association, Okayama, Japan 9Hosei University, Tokyo, Japan 10Seoul National University, Seoul, South Korea 11Kyoto University, Kyoto, Japan 12University of Tokyo, Tokyo, Japan 13Hokkaido University, Hokkaido, Japan 14University of Occupational and Environmental Health, Fukuoka, Japan 15Chiba Institute of Technology, Chiba, Japan 16National Astronomical Observatory of Japan, Iwate, Japan 17National Institute of Technology, Oshima College, Yamaguchi, Japan 18University of Aizu, Fukushima, Japan 19Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA 20University of Hawai’i, Manoa, HI, USA 21University of Arizona, Tucson, AZ, USA 22Asgard Research, Denver, CO, USA 23Lowell Observatory, Flagstaff, AZ, USA 24NASA Johnson Space Center, Houston, TX, USA 1 Highlights 1.
    [Show full text]
  • Table of Contents (PDF)
    June 28, 2016 u vol. 113 u no. 26 From the Cover 7106 Topological defects in liquid crystals E3619 Translation control in Fragile X syndrome E3686 Voltage-sensing phosphatase activities E3782 Aerobic glycolysis and learning 7261 Electric field sensing by bumblebees Contents THIS WEEK IN PNAS Cover image: Pictured is a polarized 7003 In This Issue optical micrograph of a plastic sheet with an array of holes drilled into it and suspended in a nematic-phase liquid LETTERS (ONLINE ONLY) crystal. Lisa Tran et al. found that such a sheet induced arrays of topological E3590 Reduced nitrogen dominated nitrogen deposition in the United States, but its defect lines in a nematic liquid crystal. contribution to nitrogen deposition in China decreased The authors further demonstrated how Xuejun Liu, Wen Xu, Enzai Du, Yuepeng Pan, and Keith Goulding the energy of the liquid crystal and the E3592 Reply to Liu et al.: On the importance of US deposition of nitrogen dioxide, geometry of the holes affect the defect coarse particle nitrate, and organic nitrogen patterns. The findings might have Yi Li, Bret A. Schichtel, John T. Walker, Donna B. Schwede, Xi Chen, Christopher M. B. applications in electronic displays, Lehmann, Melissa A. Puchalski, David A. Gay, and Jeffrey L. Collett Jr. where nematic liquid crystals are widely used. See the article by Tran et al. on E3594 Rise and fall of nitrogen deposition in the United States pages 7106–7111. Image courtesy of Enzai Du Lisa Tran. E3596 Adult pelvic shape change is an evolutionary side effect Philipp Mitteroecker and Barbara Fischer E3597 Reply to Mitteroecker and Fischer: Developmental solutions to the obstetrical dilemma are not Gouldian spandrels Marcia S.
    [Show full text]
  • The Ball Lightning Conundrum
    most famous deadis due to ball lightning occun-ed in 1752 or 1753, when die Swedish sci­ entist Professor Georg Wilhelm Richman was The Ball attempting to repeat Benjamin Franklin's observa­ dons with a lightning rcxl. An eyewitness report­ ed that when Richman w;is "a foot away from the iron rod, the] looked at die elecuical indicator Lightning again; just then a palish blue ball of fire, ;LS big as a fist, came out of die rod without any contaa whatst:)ever. It went right to the forehead of die Conundrum professor , who in diat instant fell back without uttering a sound."' Somedmes a luminous globe is said to rapidly descend 6own die path of a linear lightning WILLIAM D STANSFIELD strike and stop near the ground at die impact site. It may dien hover motionless in mid-air or THE EXISTENCE OF BALL UGHTNING HAS move randomly, but most often horizontally, at been questioned for hundreds of years. Today, die relatively slow velocities of walking speed. the phenomenon is a realit>' accepted by most Sometimes it touches or bounces along or near scientists, but how it is foniied and maintiiined the ground, or travels inside buildings, along has yet to be tully explained. Uncritical observers walls, or over floors before being extingui.shed. of a wide variety of glowing atmospheric entities Some balls have been observed to travel along may be prone to call tliem bail lightning. Open- power lines or fences. Wind does not .seem to minded skepdas might wish to delay judgment have any influence on how diese balls move.
    [Show full text]
  • Modular Spacecraft with Integrated Structural Electrodynamic Propulsion
    NAS5-03110-07605-003-050 Modular Spacecraft with Integrated Structural Electrodynamic Propulsion Nestor R. Voronka, Robert P. Hoyt, Jeff Slostad, Brian E. Gilchrist (UMich/EDA), Keith Fuhrhop (UMich) Tethers Unlimited, Inc. 11807 N. Creek Pkwy S., Suite B-102 Bothell, WA 98011 Period of Performance: 1 September 2005 through 30 April 2006 Report Date: 1 May 2006 Phase I Final Report Contract: NAS5-03110 Subaward: 07605-003-050 Prepared for: NASA Institute for Advanced Concepts Universities Space Research Association Atlanta, GA 30308 NAS5-03110-07605-003-050 TABLE OF CONTENTS TABLE OF CONTENTS.............................................................................................................................................1 TABLE OF FIGURES.................................................................................................................................................2 I. PHASE I SUMMARY ........................................................................................................................................4 I.A. INTRODUCTION .............................................................................................................................................4 I.B. MOTIVATION .................................................................................................................................................4 I.C. ELECTRODYNAMIC PROPULSION...................................................................................................................5 I.D. INTEGRATED STRUCTURAL
    [Show full text]
  • Schedule Book
    Monday Morning, April 26, 2021 Live Session Room Live - Session LI-MoM1 Coatings for Flexible Electronics and Bio Applications Live Session Moderators: Dr. Jean Geringer, Ecole Nationale Superieure des Mines, France, Dr. Grzegorz (Greg) Greczynski, Linköping University, Sweden, Dr. Christopher Muratore, University of Dayton, USA, Dr. Barbara Putz, Empa, Switzerland 10:00am LI-MoM1-1 ICMCTF Chairs' Welcome Address, G. Greczynski, Linköping University, Sweden; C. Muratore, University of Dayton, USA 10:15am INVITED: LI-MoM1-2 Plenary Lecture: Organic Bioelectronics – Nature Connected, M. Berggren, Linköping University, Norrköping, Sweden 10:30am 10:45am 11:00am BREAK 11:15am INVITED: LI-MoM1-6 Flexible Printed Sensors for Biomechanical Measurements, T. Ng, University of California San Diego, USA 11:30am 11:45am INVITED: LI-MoM1-8 Flexible Electronics: From Interactive Smart Skins to In vivo Applications, D. Makarov, Helmholtz-Zentrum Dresden-Rossendorf e. V. (HZDR), Institute of Ion Beam Physics and Materials Research, Germany 12:00pm 12:15pm INVITED: LI-MoM1-10 Biomimetic Extracellular Matrix Coating for Titanium Implant Surfaces to Improve Osteointegration, S. Ravindran, P. Gajendrareddy, J. Hassan, C. Huang, University of Illinois at Chicago, USA 12:30pm 12:45pm LI-MoM1-12 Closing Remarks & Thank You!, C. Muratore, University of Dayton, USA; G. Greczynski, Linköping University, Sweden, USA Monday Morning, April 26, 2021 1 10:00 AM Monday Morning, April 26, 2021 Live Session Room Live - Session LI-MoM2 New Horizons in Boron-Containing Coatings Live Session Moderators: Mr. Marcus Hans, RWTH Aachen University, Germany, Dr. Helmut Riedl, TU Wien, Institute of Materials Science and Technology, Austria 11:00am LI-MoM2-1 Welcome & Thank You to Sponsors, M.
    [Show full text]
  • Hawaiian Volcanoes: from Source to Surface Site Waikolao, Hawaii 20 - 24 August 2012
    AGU Chapman Conference on Hawaiian Volcanoes: From Source to Surface Site Waikolao, Hawaii 20 - 24 August 2012 Conveners Michael Poland, USGS – Hawaiian Volcano Observatory, USA Paul Okubo, USGS – Hawaiian Volcano Observatory, USA Ken Hon, University of Hawai'i at Hilo, USA Program Committee Rebecca Carey, University of California, Berkeley, USA Simon Carn, Michigan Technological University, USA Valerie Cayol, Obs. de Physique du Globe de Clermont-Ferrand Helge Gonnermann, Rice University, USA Scott Rowland, SOEST, University of Hawai'i at M noa, USA Financial Support 2 AGU Chapman Conference on Hawaiian Volcanoes: From Source to Surface Site Meeting At A Glance Sunday, 19 August 2012 1600h – 1700h Welcome Reception 1700h – 1800h Introduction and Highlights of Kilauea’s Recent Eruption Activity Monday, 20 August 2012 0830h – 0900h Welcome and Logistics 0900h – 0945h Introduction – Hawaiian Volcano Observatory: Its First 100 Years of Advancing Volcanism 0945h – 1215h Magma Origin and Ascent I 1030h – 1045h Coffee Break 1215h – 1330h Lunch on Your Own 1330h – 1430h Magma Origin and Ascent II 1430h – 1445h Coffee Break 1445h – 1600h Magma Origin and Ascent Breakout Sessions I, II, III, IV, and V 1600h – 1645h Magma Origin and Ascent III 1645h – 1900h Poster Session Tuesday, 21 August 2012 0900h – 1215h Magma Storage and Island Evolution I 1215h – 1330h Lunch on Your Own 1330h – 1445h Magma Storage and Island Evolution II 1445h – 1600h Magma Storage and Island Evolution Breakout Sessions I, II, III, IV, and V 1600h – 1645h Magma Storage
    [Show full text]
  • W, A. Pavj-.:S VA -R,&2. ~L
    W, A. PaVJ-.:s VA -r,&2._~L NATIONAL ACADEMIES OF SCIENCE AND ENGINEERING NATIONAL RESEARCH COUNCIL of the UNITED STATES OF AMERICA UNITED STATES NATIONAL COMMITTEE International Union of Radio Science, National Radio Science Meeting 5-8 January 1993 Sponsored by USNC/URSI in cooperation with Institute of Electrical and Electronics Engineers University of Colorado Boulder, Colorado U.S.A. National Radio Science Meeting 5-8 January 1993 Condensed Technical Program Monday, 4 January 2000-2400 USNC-URSI Meeting Broker Inn Tuesday, 5 January 0835-1200 B-1 ANTENNAS CRZ-28 0855-1200 A-1 MICROWAVE MEASUREMENTS CRl-46 D-1 MICROWAVE, QUASisOPTICAL, AND ELECTROOPTICAL DEVICES CRl-9 G-1 COORDINATED CAMPAIGNS AND ACTIVE EXPERIMENTS CR0-30 J/H-1 RADIO AND RADAR ASTRONOMY OF THE SOLAR SYSTEM CRZ-26 1335-1700 B-2 SCATIERING CR2-28 F-1 SENSING OF ATMOSPHERE AND OCEAN CRZ-6 G-2 IONOSPHERIC PROPAGATION CHANNEL CR0-30 J/H-2 RADIO AND RADAR ASTRONOMY OF THE SOLAR SYSTEM CR2-26 1355-1700 A-2 EM FIELD MEASUREMENTS CRl-46 D-2 OPTOELECTRONICS DEVICES AND APPLICATION CRl-9 1700-1800 Commission A Business Meeting CRl-46 Commission C Business Meeting CRl-40 Commission D Business Meeting CRl-9 Commission G Business Meeting CR0-30 Wednesday, 6 January 0815-1200 PLENARY SESSION MATH 100 1335-1700 B-3 EM THEORY CRZ-28 D-3 MICROWAVE AND MILLIMETER AND RELATED DEVICES CRl-9 F-2 PROPAGATION MODELING AND SCATTERING CRZ-6 H-1 PLASMA WAYES IN THE IONOSPHERE AND THE MAGNETOSPHERE CRl-42 J-1 FIBER OPTICS IN RADIO ASTRONOMY CR2-26 1355-1700 E-1 HIGH POWER ELECTROMAGNETICS (HPE) AND INTERFERENCE PROBLEMS CRl-40 United States National Committee INTERNATIONAL UNION OF RADIO SCIENCE PROGRAM AND ABSTRACTS National Radio Science Meeting 5-8 January 1993 Sponsored by USNC/URSI in cooperation with IEEE groups and societies: Antennas and Propagation Circuits and Systems Communications Electromagnetic Compatibility Geoscience Electronics Information Theory ,.
    [Show full text]
  • Constraints on the Water, Chlorine, and Fluorine Content of the Martian Mantle
    Meteoritics & Planetary Science 1–13 (2016) doi: 10.1111/maps.12624 Constraints on the water, chlorine, and fluorine content of the Martian mantle 1* 2,3 4 Justin FILIBERTO , Juliane GROSS , and Francis M. MCCubbin 1Department of Geology, Southern Illinois University, 1259 Lincoln Dr, MC 4324, Carbondale, Illinois 62901, USA 2Department of Earth and Planetary Sciences, Rutgers University, 610 Taylor Road, Piscataway, New Jersey 08854, USA 3Department of Earth and Planetary Sciences, The American Museum of Natural History, New York, New York 10024, USA 4NASA Johnson Space Center, Mail Code XI2, 2101 NASA Parkway, Houston, Texas 77058, USA *Corresponding author. E-mail: fi[email protected] (Received 30 July 2015; revision accepted 22 January 2016) Abstract–Previous estimates of the volatile contents of Martian basalts, and hence their source regions, ranged from nearly volatile-free through estimates similar to those found in terrestrial subduction zones. Here, we use the bulk chemistry of Martian meteorites, along with Martian apatite and amphibole chemistry, to constrain the volatile contents of the Martian interior. Our estimates show that the volatile content of the source region for the Martian meteorites is similar to the terrestrial Mid-Ocean-Ridge Mantle source. Chlorine is enriched compared with the depleted terrestrial mantle but is similar to the terrestrial enriched source region; fluorine is similar to the terrestrial primitive mantle; and water is consistent with the terrestrial mantle. Our results show that Martian magmas were not volatile saturated; had water/chlorine and water/fluorine ratios ~0.4–18; and are most similar, in terms of volatiles, to terrestrial MORBs. Presumably, there are variations in volatile content in the Martian interior as suggested by apatite compositions, but more bulk chemical data, especially for fluorine and water, are required to investigate these variations.
    [Show full text]
  • Ball Lightning As a Self- Organized Complexity
    Ball Lightning as a Self- Organized Complexity Erzilia Lozneanu, Sebastian Popescu and Mircea Sanduloviciu Department of Plasma Physics “Al. I. Cuza” University 6600 Iasi, Romania [email protected] The ball lightning phenomenon is explained in the frame of a self-organization scenario suggested by experiments performed on the spontaneously generated complex spherical space charge configuration in plasma. Originated in a hot plasma, suddenly created in a point where a lightning flash strikes the Earth surface, the ball lightning appearance proves the ability of nature to generate, by self-organization, complex structures able to ensure their own existence by exchange of matter and energy with the surroundings. Their subsequent evolution depends on the environment where they are born. Under contemporary Earth conditions the lifetime of such complexities is relatively short. A similar self-organization mechanism, produced by simple sparks in the earl Earth's atmosphere (chemically reactive plasma) is suggested to explain the genesis of complexities able to evolve into prebiotic structures. 1. Introduction The enigmatic ball lightning phenomenon has stimulated the people interest for a very long time. Thus the ball lightning appearance was noted with more than a hundred years ago in prestigious periodicals as for example “Nature”. The vast literature on ball lightning comprises books entirely dedicated to this subject [1-3], review papers focussed on this topic [4-7], as well as data banks. The data banks contain collections of characteristics for lightning balls that where occasionally observed under different circumstances. For example, in the United States, lightning balls have been observed by about 5% of the adult population at some time of their lives [8].
    [Show full text]
  • Song of the Beauforts
    Song of the Beauforts Song of the Beauforts No 100 SQUADRON RAAF AND BEAUFORT BOMBER OPERATIONS SECOND EDITION Colin M. King Air Power Development Centre © Commonwealth of Australia 2008 This work is copyright. Apart from any use as permitted under the Copyright Act 1968, no part may be reproduced by any process without prior written permission. Inquiries should be made to the publisher. Approval has been received from the owners where appropriate for their material to be reproduced in this work. Copyright for all photographs and illustrations is held by the individuals or organisations as identified in the List of Illustrations. Disclaimer The views expressed in this work are those of the author and do not necessarily reflect the official policy or position of the Department of Defence, the Royal Australian Air Force or the Government of Australia. The Commonwealth of Australia will not be legally responsible in contract, tort or otherwise, for any statements made in this document. Release This document is approved for public release, distribution unlimited. Portions of this document may be quoted or reproduced without permission, provided a standard source credit is included. First published 2004 Second edition 2008 Published by the Air Power Development Centre National Library of Australia Cataloguing-in-Publication entry Author: King, Colin M. Title: Song of the Beauforts : No 100 Squadron RAAF and the Beaufort bomber operations / author, Colin M. King. Edition: 2nd ed. Publisher: Tuggeranong, A.C.T. : Air Power Development Centre, 2007. ISBN: 9781920800246 (pbk.) Notes: Includes index. Subjects: Beaufort (Bomber)--History. Bombers--Australia--History World War, 1939-1945--Aerial operations, Australian--History.
    [Show full text]
  • 1 Using Eletrodynamic Tethers to Perform Station
    USING ELETRODYNAMIC TETHERS TO PERFORM STATION-KEEPING MANEUVERS IN LEO SATELLITES Thais Carneiro Oliveira(1), and Antonio Fernando Bertachini de Almeida Prado(2) (1)(2) National Institute for Space Research (INPE), Av. dos Astronautas 1758 São José dos Campos – SP – Brazil ZIP code 12227-010,+55 12 32086000, [email protected] and [email protected] Abstract: This paper analyses the concept of using an electrodynamic tether to provide propulsion to a space system with an electric power supply and no fuel consumption. The present work is focused on orbit maintenance and on re-boost maneuvers for tethered satellite systems. The analyses of the results will be performed with the help of a practical tool called “Perturbation Integrals” and an orbit integrator that can include many external perturbations, like atmospheric drag, solar radiation pressure and luni-solar perturbation. Keywords: Electromagnetic Tether, Station-Keeping Maneuver, Orbital Maneuver, Tether Systems, Disturbing Forces. 1. Introduction Space tether is a promising and innovating field of study, and many articles, technical reports, books and even missions have used this concept through the recent decades. An overview of the space tethered flight tests missions includes the Gemini tether experiments, the OEDIPUS flights, the TSS-1 experiments, the SEDS flights, the PMG, TiPs, ATEx missions, etc [1-6]. This paper analyses the potential of using an electrodynamic tether to provide propulsion to a space system with an electric power supply and no fuel consumption. The present work is focused on orbit maintenance and re-boosts maneuvers for tethered satellite systems (TSS). This type of system consists of two or more satellites orbiting around a planet linked by a cable or a tether [7].
    [Show full text]
  • Arxiv:2003.07985V1
    Tether Capture of spacecraft at Neptune a,b b, J. R. Sanmart´ın , J. Pel´aez ∗ aReal Academia de Ingenier´ıa of Spain bUniversidad Polit´ecnica de Madrid, Pz. C.Cisneros 3, Madrid 28040, Spain Abstract Past planetary missions have been broad and detailed for Gas Giants, compared to flyby missions for Ice Giants. Presently, a mission to Neptune using electrodynamic tethers is under consideration due to the ability of tethers to provide free propulsion and power for orbital insertion as well as additional exploratory maneuvering — providing more mission capability than a standard orbiter mission. Tether operation depends on plasma density and magnetic field B, though tethers can deal with ill-defined density profiles, with the anodic segment self-adjusting to accommodate densities. Planetary magnetic fields are due to currents in some small volume inside the planet, magnetic-moment vector, and typically a dipole law approximation — which describes the field outside. When compared with Saturn and Jupiter, the Neptunian magnetic structure is significantly more complex: the dipole is located below the equatorial plane, is highly offset from the planet center, and at large tilt with its rotation axis. Lorentz-drag work decreases quickly with distance, thus requiring spacecraft periapsis at capture close to the planet and allowing the large offset to make capture efficiency (spacecraft-to-tether mass ratio) well above a no-offset case. The S/C might optimally reach periapsis when crossing the meridian plane of the dipole, with the S/C facing it; this convenient synchronism is eased by Neptune rotating little during capture. Calculations yield maximum efficiency of approximately 12, whereas a 10◦ meridian error would reduce efficiency by about 6%.
    [Show full text]