The Control of Pollen Tube Growth Downloaded from by Guest on 02 October 2021 KATHLEEN L

Total Page:16

File Type:pdf, Size:1020Kb

The Control of Pollen Tube Growth Downloaded from by Guest on 02 October 2021 KATHLEEN L Articles Sperm Delivery in Flowering Plants: The Control of Pollen Tube Growth Downloaded from https://academic.oup.com/bioscience/article/57/10/835/232382 by guest on 02 October 2021 KATHLEEN L. WILSEN AND PETER K. HEPLER Although most people think of pollen merely as an allergen, its true biological function is to facilitate sexual reproduction in flowering plants. The angiosperm pollen grain, upon arriving at a receptive stigma, germinates, producing a tube that extends through the style to deliver its cargo to the ovule, thereby fertilizing the egg, and completing the life cycle of the plant. The pollen tube grows rapidly, exclusively at its tip, and produces a cell that is highly polarized both in its outward shape and its internal cytoplasmic organization. Recent studies reveal that the growth oscillates in rate. Many underlying physiological processes, including ionic fluxes and energy levels, also oscillate with the same periodicity as the growth rate, but usually not with the same phase. Current research focuses on these phase relationships in an attempt to decipher their hierarchical sequence and to provide a physiological explanation for the factors that govern pollen tube growth. Keywords: actin cytoskeleton, ion dynamics, molecular switches, oscillatory growth, pollen tube n animals, meiosis produces gametes that fuse to do the sperm of protists, bryophytes, ferns, and some gymno- Iform a zygote during sexual reproduction. The life cycle of sperms. Instead, the pollen grain may travel a great distance, flowering plants, referred to as an alternation of generations, transported by wind or an animal carrier (e.g., bird, bat, is more complex. Here, a multicellular diploid generation, insect), before alighting on a receptive stigma and germi- known as the sporophyte generation, alternates with a multi- nating. The sperm cells then travel in the cytoplasm of the cellular haploid generation, known as the gametophyte gen- large vegetative cell of the pollen tube to their target. A eration. Meiosis does not directly produce gametes. Rather, pollen tube is thus the tricellular male gametophyte gener- cells of the sporophyte generation undergo meiosis to produce ation that emerges from a pollen grain to bring about haploid spores, which in turn divide mitotically to give rise double fertilization. to the gamete-producing gametophyte generation. The em- Pollen tube growth is fast and highly polarized, with new bryo sac, which bears the ovule and is embedded in the material being added at the tip, which is called the apex. flower, constitutes the female gametophyte generation. The Secretory vesicles inside the pollen tube transport the cellu- pollen grain is the male gametophyte generation produced lar building blocks required for growth to the apex, where they from microspores in the anthers of flowering plants, and are incorporated into the extending pollen tube by exocyto- consists of a vegetative cell and a generative cell. Either in the sis (Hepler et al. 2006). This process is so efficient that a grain or during pollen tube growth, depending on the species, pollen tube from Zea mays (corn) can attain growth rates of the generative cell undergoes mitosis to give rise to two sperm up to 1 centimeter (cm) per hour, or approximately 3 micro- cells (Raven et al. 1999). meters (µm) per second, making it one of the fastest-grow- Double fertilization is a hallmark of flowering plants ing cells known. With the added realization that cell elongation (Dresselhaus 2006). In addition to the fusing of one sperm cell can be visualized under carefully controlled in vitro conditions, with an egg cell to give rise to an embryo, the second sperm the pollen tube becomes an excellent model system for stud- cell fuses with the two polar nuclei in the central cell of the ies of plant cell growth. Clearly, it is ideal for enhancing our female gametophyte to produce the nutritive triploid tissue understanding of other cells undergoing tip growth, such as of the endosperm. The embryo and endosperm are packaged root hairs, fungal hyphae, and fern and moss protonemata, as a seed, which becomes encased in a fruit formed from the but the pollen tube may also serve as an effective model for ovary and, in some instances, from additional floral parts. It will be apparent, therefore, that double fertilization is not only necessary for sexual reproduction in flowering plants but Kathleen L. Wilsen (e-mail: [email protected]) works in the School also essential for the production of much of the food that we of Biological Sciences at the University of Northern Colorado in Greeley. eat, including nuts, seeds, grains, and fruits. Peter K. Hepler (e-mail: [email protected]) works in the Biology and Plant Because the sperm of flowering plants have no flagella, they Biology Graduate Program at the University of Massachusetts in Amherst. do not depend on water to transport them to the ovule, as © 2007 American Institute of Biological Sciences. www.biosciencemag.org November 2007 / Vol. 57 No. 10 • BioScience 835 Articles the many plant cells that exhibit diffuse growth. In defense of so-called clear zone (figure 1). Although lacking certain in- this assertion, we note the similarity in cell wall structure and clusions, the extreme apex contains numerous secretory vesi- composition and membrane trafficking machinery between cles, as well as elements of the endoplasmic reticulum (ER), pollen tubes and other plant cells. mitochondria, and Golgi dictyosomes (figure 2). These vesi- In this article we describe the structure and physiology of cles are of particular interest because they contain the cell wall a growing pollen tube, focusing on several processes believed precursors, which are delivered to the apex of the pollen to be key in the regulation of growth. We exploit the fact that tube, where their contents are secreted to the wall, allowing pollen tube growth oscillates, as do many underlying physi- the cell perimeter to extend. Although mitochondria, Golgi ological processes and structural elements. Through an analy- dictyosomes, and elements of the ER are abundant in the clear sis of the temporal and spatial ordering of these many factors, zone, they are not confined to this region; they are present we provide insight into the basic regulatory events that con- throughout the pollen-tube shank (Parton et al. 2003, Lovy- Downloaded from https://academic.oup.com/bioscience/article/57/10/835/232382 by guest on 02 October 2021 trol pollen tube growth. Although we include data from Wheeler et al. 2007). pollen tubes of different species (e.g., Arabidopsis and Nico- Cytoskeletal elements, including both actin microfilaments tiana), we focus in particular on those from the lily family (e.g., and microtubules, are ubiquitous components of the pollen the Easter lily, Lilium longiflorum), which, because of their tube (Hepler et al. 2001). In lily pollen tubes, microtubules relatively large size and their readiness to germinate in vitro form a prominent collar at the base of the clear zone (Lovy- and grow at in vivo rates, have been the subject of many Wheeler et al. 2005); their function, however, is not clear. The insightful studies. depolymerization of microtubules with oryzalin has no effect on pollen tube growth or organelle positioning in vitro (Lovy- Growing pollen tubes are highly organized Wheeler et al. 2007). Nevertheless, recent studies show that Whereas the diameter of a pollen grain is between 10 and 100 some cytoplasmic components, including mitochondria and µm (lily pollen is about 60 µm), the length of a pollen tube Golgi vesicles, move slowly along microtubules, indicating that is much greater, and can reach several centimeters (approx- these cytoskeletal elements may indeed contribute to the imately 10 cm in lily) as it grows through the tissues of the style control of pollen tube growth (Romagnoli et al. 2007). to deliver the sperm cells to the embryo sac. The growing lily In contrast to microtubules, a dynamic actin cytoskeleton pollen tube is around 15 µm in diameter (figure 1) and has is widely acknowledged to be essential for pollen tube growth an apical dome that is roughly hemispherical in shape. As the (Hepler et al. 2001). Although there is agreement that the pollen tube grows, callose plugs are laid down in the shank shank of the pollen tube contains longitudinal bundles of actin in such a manner that the cytoplasm remains in the apical end parallel to the axis of growth, the organization of these mi- of the growing tube. Because of this mechanism, pollen tubes crofilaments in the clear zone has been widely debated. have been described as moving cells, in that a fixed plug of Lovy-Wheeler and colleagues (2005) resolved this issue by em- cytoplasm containing floating sperm cells moves forward as ploying an improved method of fixation, followed by label- the cell wall extends (Sanders and Lord 1992). ing with antiactin antibodies, and analysis with confocal Both light and electron microscopy reveal that organelles microscopy. This study confirmed that a cortical fringe of actin have a particular arrangement inside a pollen tube (figures 1, is a consistent feature of the clear zone, and that the extreme 2; Hepler et al. 2001). Most of the pollen tube is granular in apex contains relatively few actin filaments (figure 3; Lovy- appearance because of a rich supply of starch-containing Wheeler et al. 2005). plastids, or amyloplasts (figure 1). However, amyloplasts and The actin cytoskeleton serves three important functions in vacuoles are excluded from the extreme apex, creating the growing pollen tubes. First, actin microfilaments, together with the motor protein myosin (myosin XI in lily), drive cyto- plasmic streaming. This process is thought to transport the secretory vesicles from their point of origin to the apical end of the pollen tube, where they ultimately empty their contents into the expanding cell wall (Yokota and Shimmen 2006).
Recommended publications
  • HUNTIA a Journal of Botanical History
    HUNTIA A Journal of Botanical History VOLUME 15 NUMBER 2 2015 Hunt Institute for Botanical Documentation Carnegie Mellon University Pittsburgh The Hunt Institute for Botanical Documentation, a research division of Carnegie Mellon University, specializes in the history of botany and all aspects of plant science and serves the international scientific community through research and documentation. To this end, the Institute acquires and maintains authoritative collections of books, plant images, manuscripts, portraits and data files, and provides publications and other modes of information service. The Institute meets the reference needs of botanists, biologists, historians, conservationists, librarians, bibliographers and the public at large, especially those concerned with any aspect of the North American flora. Huntia publishes articles on all aspects of the history of botany, including exploration, art, literature, biography, iconography and bibliography. The journal is published irregularly in one or more numbers per volume of approximately 200 pages by the Hunt Institute for Botanical Documentation. External contributions to Huntia are welcomed. Page charges have been eliminated. All manuscripts are subject to external peer review. Before submitting manuscripts for consideration, please review the “Guidelines for Contributors” on our Web site. Direct editorial correspondence to the Editor. Send books for announcement or review to the Book Reviews and Announcements Editor. Subscription rates per volume for 2015 (includes shipping): U.S. $65.00; international $75.00. Send orders for subscriptions and back issues to the Institute. All issues are available as PDFs on our Web site, with the current issue added when that volume is completed. Hunt Institute Associates may elect to receive Huntia as a benefit of membership; contact the Institute for more information.
    [Show full text]
  • Plant Physiology General the Main Light Sensitive Pigment Able to Absorb Solar Energy in Both Plants and Algae Is
    Plant Physiology General the main light sensitive pigment able to absorb solar energy in both plants and algae is chlorophyll Photosynthesis this chlorophyll is contained with the chloroplasts probably the most characteristic “thing” that plants plants also have other “accessory pigments”: “do” is photosynthesis carotenoids – mainly yellow, orange almost all plants are autotrophs but usually their colors are masked by an abundance of !use energy from the sun to make sugar and chlorophyll other organic molecules out of simple fall colors are seen as a deciduous plant shuts down nutrients and chlorophyll is broken down and recycled leaving the colors of the other pigments photosynthesis requires carbon dioxide & water reds come from anthocyanins made to protect leaves as they recycle nutrients from the breakdown of chlorophyll CO2 enters through stomata or pores [Application] water is absorbed through roots researchers are studying the structure of the chloroplasts to light improve efficiency in the design of solar collectors CO2 + H2O sugar + O2 chlorophyll (glucose) today (2006) the most efficient solar cells capture only ~17% of solar energy that lands on them, while plant [photosynthesis converts water and carbon dioxide cell capture 30-40% to sugar and oxygen] !these sugars can then be broken down as needed for energy photosynthesis uses several chemical pigment to absorb the energy from sunlight Plants: Plant Physiology - General, Ziser, Lecture Notes, 2012.10 1 Plants: Plant Physiology - General, Ziser, Lecture Notes, 2012.10 2 Plant
    [Show full text]
  • BIL 161: Environment and Development: the Effects of Environmental Variables on Seed Germination
    BIL 161: Environment and Development: The Effects of Environmental Variables on Seed Germination The seed is more than just a plant waiting to happen. It is a complex marvel of evolution, a miniature life-support system that responds to environmental cues in order to give the embryo nestled within the best chance of survival. I. Characteristics and Classification of Plants Plants share synapomorphies that set them apart from other organisms. 1. true tissues (of types unique to plants) 2. waxy cuticle (to prevent desiccation) 3. stomates (microscopic gas exchange pores on the leaves) 4. apical meristems (permanent embryonic tissue for constant growth) 5. multicellular sex organs (male antheridia and female archegonia) 6. walled spores produced in structures called sporangia 7. embryo development inside the female parent 8. secondary metabolites (alkaloids, tannins, flavonoids, etc.) 9. heteromorphic alternation of generations The most primitive plants do not produce seeds at all, but rather release spores into the environment where they grow into a second life cycle stage, called the gametophyte. In seed plants, the life cycle is highly derived. Seed plants still make spores, but each spore grows into a gametophyte that is little more than a bit of tissue that gives rise to gametes. In the male parts of the plant, each spore develops into a sperm-producing male gametophyte known as pollen. In the female parts of the plant, meiosis occurs inside a structure known as the ovule, which will eventually give rise to the seed. Plants can broadly be classified as follows. A. Bryophytes – non-vascular plants (mosses, liverworts and hornworts) B.
    [Show full text]
  • Plant Physiology
    PLANT PHYSIOLOGY Vince Ördög Created by XMLmind XSL-FO Converter. PLANT PHYSIOLOGY Vince Ördög Publication date 2011 Created by XMLmind XSL-FO Converter. Table of Contents Cover .................................................................................................................................................. v 1. Preface ............................................................................................................................................ 1 2. Water and nutrients in plant ............................................................................................................ 2 1. Water balance of plant .......................................................................................................... 2 1.1. Water potential ......................................................................................................... 3 1.2. Absorption by roots .................................................................................................. 6 1.3. Transport through the xylem .................................................................................... 8 1.4. Transpiration ............................................................................................................. 9 1.5. Plant water status .................................................................................................... 11 1.6. Influence of extreme water supply .......................................................................... 12 2. Nutrient supply of plant .....................................................................................................
    [Show full text]
  • Pollen Tube Guidance by Pistils Ensures Successful Double Fertilization Ravishankar Palanivelu∗ and Tatsuya Tsukamoto
    Advanced Review Pathfinding in angiosperm reproduction: pollen tube guidance by pistils ensures successful double fertilization Ravishankar Palanivelu∗ and Tatsuya Tsukamoto Sexual reproduction in flowering plants is unique in multiple ways. Distinct multicellular gametophytes contain either a pair of immotile, haploid male gametes (sperm cells) or a pair of female gametes (haploid egg cell and homodiploid central cell). After pollination, the pollen tube, a cellular extension of the male gametophyte, transports both male gametes at its growing tip and delivers them to the female gametes to affect double fertilization. The pollen tube travels a long path and sustains its growth over a considerable amount of time in the female reproductive organ (pistil) before it reaches the ovule, which houses the female gametophyte. The pistil facilitates the pollen tube’s journey by providing multiple, stage-specific, nutritional, and guidance cues along its path. The pollen tube interacts with seven different pistil cell types prior to completing its journey. Consequently, the pollen tube has a dynamic gene expression program allowing it to continuously reset and be receptive to multiple pistil signals as it migrates through the pistil. Here, we review the studies, including several significant recent advances, that led to a better understanding of the multitude of cues generated by the pistil tissues to assist the pollen tube in delivering the sperm cells to the female gametophyte. We also highlight the outstanding questions, draw attention to opportunities created by recent advances and point to approaches that could be undertaken to unravel the molecular mechanisms underlying pollen tube–pistil interactions. 2011 Wiley Periodicals, Inc.
    [Show full text]
  • Ap09 Biology Form B Q2
    AP® BIOLOGY 2009 SCORING GUIDELINES (Form B) Question 2 Discuss the patterns of sexual reproduction in plants. Compare and contrast reproduction in nonvascular plants with that in flowering plants. Include the following topics in your discussion: (a) alternation of generations (b) mechanisms that bring female and male gametes together (c) mechanisms that disperse offspring to new locations Four points per part. Student must write about all three parts for full credit. Within each part it is possible to get points for comparing and contrasting. Also, specific points are available from details provided about nonvascular and flowering plants. Discuss the patterns of sexual reproduction in plants (4 points maximum): (a) Alternation of generations (4 points maximum): Topic Description (1 point each) Alternating generations Haploid stage and diploid stage. Gametophyte Haploid-producing gametes. Dominant in nonvascular plants. Double fertilization in flowering plants. Gametangia; archegonia and antheridia in nonvascular plants. Sporophyte Diploid-producing spores. Heterosporous in flowering plants. Flowering plants produce seeds; nonvascular plants do not. Flowering plants produce flower structures. Sporangia (megasporangia and microsporangia). Dominant in flowering plants. (b) Mechanisms that bring female and male gametes together (4 points maximum): Nonvascular Plants (1 point each) Flowering Plants (1 point each) Aquatic—requires water for motile sperm Terrestrial—pollination by wind, water, or animal Micropyle in ovule for pollen tube to enter Pollen tube to carry sperm nuclei Self- or cross-pollination Antheridia produce sperm Gametophytes; no antheridia or archegonia Archegonia produce egg Ovules produce female gametophytes/gametes Pollen: male gametophyte that produces gametes © 2009 The College Board. All rights reserved. Visit the College Board on the Web: www.collegeboard.com.
    [Show full text]
  • Botanical Origin, Pollen Profile, and Physicochemical Properties of Algerian Honey from Different Bioclimatic Areas
    foods Article Botanical Origin, Pollen Profile, and Physicochemical Properties of Algerian Honey from Different Bioclimatic Areas Mounia Homrani 1 , Olga Escuredo 2 , María Shantal Rodríguez-Flores 2 , Dalache Fatiha 1, Bouzouina Mohammed 3, Abdelkader Homrani 1 and M. Carmen Seijo 2,* 1 Laboratory of Sciences and Technics of Animal Production (LSTPA), Abdelhamid Ibn Badis University (UMAB), 27000 Mostaganem, Algeria; [email protected] (M.H.); [email protected] (D.F.); [email protected] (A.H.) 2 Department of Vegetal Biology and Soil Sciences, Faculty of Sciences, University of Vigo, As Lagoas, 32004 Ourense, Spain; [email protected] (O.E.); [email protected] (M.S.R.-F.) 3 Laboratory of Vegatal Protection, Abdelhamid Ibn Badis University (UMAB), 27000 Mostaganem, Algeria; [email protected] * Correspondence: [email protected] Received: 27 May 2020; Accepted: 9 July 2020; Published: 16 July 2020 Abstract: The palynological and physicochemical analysis of 62 honey samples produced in different biogeographical areas of Algeria was conducted. Results showed high variety in the botanical origin of samples and their physicochemical profile. Twenty-six samples were polyfloral honey, 30 were unifloral honey from different botanical sources such as Eucalyptus, Citrus, Apiaceae, Punica, Erica, Rosmarinus, Eriobotrya, or Hedysarum, and 6 were characterized as honeydew honey. Pollen analysis allowed the identification of 104 pollen types belonging to 51 botanical families, whereas the physicochemical profile showed important variations between samples. Multivariate techniques were used to compare the characteristics of samples from different biogeographical areas, showing significant differences between humid-area samples, located in the northeast of the country, and samples taken in semiarid, subhumid, and arid zones.
    [Show full text]
  • Lesson 6: Plant Reproduction
    LESSON 6: PLANT REPRODUCTION LEVEL ONE Like every living thing on earth, plants need to make more of themselves. Biological structures wear out over time and need to be replaced with new ones. We’ve already looked at how non-vascular plants reproduce (mosses and liverworts) so now it’s time to look at vascular plants. If you look back at the chart on page 17, you will see that vascular plants are divided into two main categories: plants that produce seeds and plants that don’t produce seeds. The vascular plants that do not make seeds are basically the ferns. There are a few other smaller categories such as “horse tails” and club mosses, but if you just remember the ferns, that’s fine. So let’s take a look at how ferns make more ferns. The leaves of ferns are called fronds, and brand new leaves that have not yet totally uncoiled are called fiddleheads because they look like the scroll-shaped end of a violin. Technically, the entire frond is a leaf. What looks like a stem is actually the fern’s equivalent of a petiole. (Botanists call it a stipe.) The stem of a fern plant runs under the ground and is called a rhizome. Ferns also have roots, like all other vascular plants. The roots grow out from the bottom of the rhizome. Ferns produce spores, just like mosses do. At certain times of the year, the backside of some fern fronds will be covered with little dots called sori. Sori is the plural form, meaning more than one of them.
    [Show full text]
  • Membrane Potentials in Amoeba Proteus
    J. Exp. Biol. (1966), 45, 251-267 251 With 10 text-figures Printed in Great Britain MEMBRANE POTENTIALS IN AMOEBA PROTEUS BY M. S. BINGLEY R.A.F. Institute of Aviation Medicine, Farnborough, Hants. {Received 16 February 1966) INTRODUCTION The possibility that the initiation of pseudopods together with the direction of cytoplasmic streaming may be induced by local depolarization of the membrane has been advanced from time to time for many years past. But is it difficult to find a direct statement to this effect in the literature. Amici (1818) suggested an electrical theory to account for streaming in plant cells and more recently Kitching (1961) considers the possibility of depolarization of the cell surface initiating contraction. When he discussed Hahnert's work (Hahnert, 1932) on the response of amoebae to electricity he pointed out that movement of the pseudopods towards the cathode may be an enhancement of 'local currents associated with local excitation'. It is one thing to put forward a hypothesis but another to obtain convincing measurements which are free from the suspicion of doubt and artifact. Membrane potentials were first seriously measured in Amoeba proteus by Telkes in 1931. Using large electrodes, she obtained low values of membrane potential but produced extremely valuable information on various depolarizing agents such as potassium and sodium chloride. Buchtal & Peterfi (1936) obtained low values of potential for A. proteus. Wolfson (1943) produced convincing values for membrane potential in Chaos chaos and, using electrodes of large diameter, he obtained potentials as high as workers using more modern micro- electrodes. More recently Riddle (1962) working on PeUomyxa caroHnensis recorded values of — 90 mV.
    [Show full text]
  • Cytoplasmic Streaming and Microtubules in the Coenocytic Marine Alga, Caulerpa Prolifera
    J. Cell Sci. 2, 465-472 (1967) 465 Printed in Great Britain CYTOPLASMIC STREAMING AND MICROTUBULES IN THE COENOCYTIC MARINE ALGA, CAULERPA PROLIFERA D. D. SABNIS AND W. P. JACOBS Biology Department, Princeton University, Princeton, N.J., U.S.A. SUMMARY Two distinct patterns of cytoplasmic streaming in the leaf of Caulerpa prolifera are described. Broad, longitudinally running, two-way streams are restricted to the endoplasm of one leaf surface. Also present are large numbers of narrow, two-way streams that coil helically through- out the endoplasm surrounding the central vacuole. Numerous unique bundles of aggregated, evenly spaced, oriented microtubules are distributed within the inner cytoplasm some distance from the cell wall. Cortical microtubules, as described for other plant material, have been only very infrequently encountered in Caulerpa and appear to be sparsely distributed. Apart from the prominent bundles of oriented microtubules, no other significant ultrastructural differences were noted between the stationary ectoplasm and streaming endoplasm. The possible cyto- skeletal role of the oriented microtubules in the development and maintenance of asymmetries in organ differentiation is discussed in relation to their direct or indirect influence on the directional migration of cytoplasmic components. INTRODUCTION Although there have been numerous reports of the occurrence of microtubular and microfibrillar elements in the cytoplasm of a variety of cell types, only a limited number of publications has described these structures in algal cells (Berkaloff, 1966; Nagai & Rebhun, 1966). The possible functions of cytoplasmic microtubules and microfilaments in the plant cell have been the subjects of some considerable con- jecture and controversy. Microtubules have been considered to play a role in the laying down of secondary walls in differentiating tissue (Wooding & Northcote, 1964), and cell-plate formation in dividing cells (Pickett-Heaps & Northcote, 1966).
    [Show full text]
  • Genetic and Biochemical Mechanisms of Pollen Wall Development
    Review Genetic and Biochemical Mechanisms of Pollen Wall Development 1 1 1 1,2 Jianxin Shi, Meihua Cui, Li Yang, Yu-Jin Kim, and 1,3, Dabing Zhang * The pollen wall is a specialized extracellular cell wall matrix that surrounds male Trends gametophytes and plays an essential role in plant reproduction. Uncovering the Pollen wall development exhibits con- fi mechanisms that control the synthesis and polymerization of the precursors of served and diversi ed features. pollen wall components has been a major research focus in plant biology. We Genes associated with pollen wall devel- review current knowledge on the genetic and biochemical mechanisms under- opment are coordinately regulated. lying pollen wall development in eudicot model Arabidopsis thaliana and mono- The synthesis of exine and anther cutin cot model rice (Oryza sativa), focusing on the genes involved in the biosynthesis, may share common pathways in rice. transport, and assembly of various precursors of pollen wall components. The conserved and divergent aspects of the genes involved as well as their regula- tion are addressed. Current challenges and future perspectives are also highlighted. Pollen Wall Development The pollen wall is the complex multiple-layer outer surface of pollen. It is essential for plant reproduction because of its role in rendering male gametophytes resistant to various biotic and abiotic stresses, as well as its function in male–female interaction, fertilization, and seed production [1]. The underlying genetic, molecular, and biochemical mechanisms of pollen wall development have long defied unraveling, but this is changing fast. Several excellent reviews have summarized the genes and enzymes associated with the biosynthesis and transport of the lipidic and phenolic precursors necessary for the formation of the outer pollen wall named exine 1 Joint International Research – [1 4] (see Glossary).
    [Show full text]
  • Differential Organelle Movement on the Actin Cytoskeleton in Lily Pollen Tubes
    Cell Motility and the Cytoskeleton (2007) Differential Organelle Movement on the Actin Cytoskeleton in Lily Pollen Tubes Alenka Lovy-Wheeler,1 Luis Ca´rdenas,2 Joseph G. Kunkel,1 and Peter K. Hepler1* 1Department of Biology and Plant Biology Graduate Program, Morrill Science Center III, University of Massachusetts, Amherst, Massachusetts 2Departamento de Biologı´a Molecular de Plantas, Instituto de Biotechnologı´a, Cuernavaca, Morelos, Me´xico We have examined the arrangement and movement of three major compart- ments, the endoplasmic reticulum (ER), mitochondria, and the vacuole during oscillatory, polarized growth in lily pollen tubes. These movements are de- pendent on the actin cytoskeleton, because they are strongly perturbed by the anti-microfilament drug, latrunculin-B, and unaffected by the anti-microtubule agent, oryzalin. The ER, which has been labeled with mGFP5-HDEL or cyto- chalasin D tetramethylrhodamine, displays an oscillatory motion in the pollen tube apex. First it moves apically in the cortical region, presumably along the cortical actin fringe, and then periodically folds inward creating a platform that transects the apical domain in a plate-like structure. Finally, the ER reverses its direction and moves basipetally through the central core of the pollen tube. When subjected to cross-correlation analysis, the formation of the platform precedes maximal growth rates by an average of 3 s (35–408). Mitochondria, labeled with Mitotracker Green, are enriched in the subapical region, and their movement closely resembles that of the ER. The vacuole, labeled with car- boxy-dichlorofluorescein diacetate, consists of thin tubules arranged longitudi- nally in a reticulate network, which undergoes active motion.
    [Show full text]