Journal of Child Neurology

Total Page:16

File Type:pdf, Size:1020Kb

Journal of Child Neurology Journal of Child Neurology http://jcn.sagepub.com/ Topical Review Article: Organic Acidurias: A Review. Part 1 Pinar T. Ozand and Generoso G. Gascon J Child Neurol 1991 6: 196 DOI: 10.1177/088307389100600302 The online version of this article can be found at: http://jcn.sagepub.com/content/6/3/196 Published by: http://www.sagepublications.com Additional services and information for Journal of Child Neurology can be found at: Email Alerts: http://jcn.sagepub.com/cgi/alerts Subscriptions: http://jcn.sagepub.com/subscriptions Reprints: http://www.sagepub.com/journalsReprints.nav Permissions: http://www.sagepub.com/journalsPermissions.nav Citations: http://jcn.sagepub.com/content/6/3/196.refs.html >> Version of Record - Jul 1, 1991 What is This? Downloaded from jcn.sagepub.com at UNIVERSITE LAVAL on July 1, 2014 Topical Review Article Organic Acidurias: A Review. Part 1 Pinar T. Ozand, MD, PhD; Generoso G. Gascon, MD Organic acidemias are disorders of intermediary metabolism that lead to accumulation of organic acids in biologic fluids, disturb acid-base balance, and derange intracellular biochemical pathways. Their clinical presentation reflects the resul- tant systemic disease and progressive encephalopathy. While in some organic acidemias, disturbed acid-base metabolism is the predominant presenting feature, in others it is less prominent or even absent. The etiologies of the more than 50 different phenotypes include impaired metabolism of branched-chain amino acids, vitamins, glucose, lipids, glutathione, and γ-aminobutyric acid and defects of oxidative phosphorylation. Most organic acidemias present with neurologic man- ifestations, which include acutely or subacutely progressive encephalopathy that involves different parts of the nervous system. The age of presentation and the associated systemic, hematologic, and immune findings provide additional guidelines for differential diagnosis. We summarize major organic acidemias, while emphasizing their usual and unusual neurologic presentations. (J Child Neurol 1991;6:196-219). organic acid is a compound that generates exercise. An excessive rate of production, however, nprotons at the prevailing pH of the human will lead to overt metabolic acidosis, as in diabetic organism. The accumulation of an organic acid in ketoacidosis. Another disorder, glycogen storage cells and fluids (plasma, cerebrospinal fluid, or disease type 1, is associated with impaired gluconeo- urine) indicates impaired intermediary metabolism genesis and produces significant hyper-lactic aci- and leads to a disease state called organic acidemia demia under normal physiologic conditions or 3 or organic aciduria. Since isovaleric acidemia, the following a load of a sugar, such as fructose.3 oldest known and treated, was described in 1966,12 more than 50 phenotypically different organic aci- Excess Organic Acids demias are now known, thanks to gas chromatogra- Besides ketone bodies and lactate, other organic phy/mass spectrometry (GC/MS). acids may be produced in excess. While they are barely detectable under normal physiologic condi- tions, such compounds accumulate in large amounts Pathogenesis when an enzyme activity related to their further breakdown is deficient. Traditionally, the term or- Ketonuria and Hyper- Lactic Acidemia ganic acidemia has been confined to these latter Many organic acids are produced during the catabo- conditions. Good examples are methylmalonic aci- lism of carbohydrates, lipids, and amino acids. Un- demia,4 propionic acidemia,5 isovaleric acidemia,66 der usual physiologic conditions, the protons and 3-hydroxy-3-methylglutaric aciduria secondary generated by these compounds are neutralized by to 3-hydroxy-3-methylglutaryl coenzyme A (CoA) the buffer systems available in cells and biologic flu- lyase deficiency.’ The accumulation of such organic ids. Examples of normally compensated metabolic acids not only causes compensated or overt acidosis acidosis are ketone body production in the fasting but is usually associated with grave systemic or neu- state and lactic acid accumulation following vigorous rologic disease. The primary enzyme deficiency re- sponsible for the generation of these compounds Received Nov 9, 1990. Received revised Feb 26, 1991. Ac- causes significant derangements of intracellular and cepted for publication March 4, 1991. mitochondrial metabolism. From the Department of Pediatrics (Drs Ozand and Gascon), and Biological and Medical Research (Dr Ozand), King Faisal Spe- cialist Hospital and Research Centre, Riyadh, Saudi Arabia. Interference With Intracellular Metabolism Address correspondence to Dr Ozand, Department of Pedi- An is the accumulation of and atrics (MBC-58), King Faisal Specialist Hospital and Research Cen- example glutaric tre, PO Box 3354, Riyadh 11211, Kingdom of Saudi Arabia. 3-methylglutaric acids in glutaric aciduria type 1.8 196 Downloaded from jcn.sagepub.com at UNIVERSITE LAVAL on July 1, 2014 These two compounds accumulate because the en- Mitochondriopathies zyme responsible for further metabolism of glutaryl- Energy is generated by adenosine triphosphate syn- CoA, glutaryl-CoA dehydrogenase, is deficient.8 The thesis in a specific cellular organelle, the mitochon- disease is diagnosed by the accumulation of these drion, while electrons are transported to oxygen. two organic acids in biologic fluids. This accumula- The transport of electrons requires several cofactors tion is usually associated with compensated meta- and a complex protein machinery whose synthesis is bolic acidosis and causes mild overt acidosis only controlled both by cellular and mitochondrial DNA.19 when excessive glutaryl-CoA is produced from a Any derangement in this process will lead to the ac- load of the precursor.’ Nevertheless, glutaric acid- cumulation of lactate or fatty acid intermediates. By uria type 1 may remain inconsequential, except that definition, such disorders should be included in or- the intracellular accumulation of glutaryl-CoA inhib- ganic acidemias, since not only do they lead to the its glutamate decarboxylase,l° ie, the synthesis of generation of protons that alters the buffer metabo- y-aminobutyric acid in the central nervous system lism, but they also lead to progressive disease be- and the malate-aspartate shuttle in the liver.11 The cause of the derangement of intracellular pathways first of these events is possibly responsible for necro- affecting many aspects of normal cell function. How- sis of the basal ganglia IO, 12 and the second, for hypo- ever, they are commonly considered as mitochondri- glycemia.11 opathies because a distinct cell organelle is Another example is the accumulation of methyl- implicated .20 We shall include some mitochondriop- malonyl-CoA intramitochondrially in patients with athies in this review because their symptom complex methylmalonic acidemia.44 Increased excretion of shows significant overlap with other organic aci- methylmalonic acid results from its increased hy- demias. drolysis. Hyperammonemial3 and hypoglycemia 14 result from inhibitory effects of methylmalonyl-CoA Aminoaciduria Versus Organic Aciduria on ureagenesis and on pyruvate carboxylase (and Disorders of amino acid metabolism are associated hence on gluconeogenesis). with the accumulation of organic acids but are not These two examples can be extended to other or- usually classified within the organic acidemias. ganic acidemias. These disease states lead to accumu- Branched-chain aminoacidemia or maple syrup lation of organic acids in biologic fluids that might urine disease, for example, is caused by the defi- cause compensated or overt metabolic acidosis but ex- ciency of a dehydrogenase specific for branched- ert most of their progressive neurologic and systemic chain 2-keto acids.21 This leads to significant effects as a result of increasing derangements of the elevation of three branched-chain amino acids-leu- intracellular biochemical pathways. cine, isoleucine, and valine-as well as significant accumulation of their 2-keto acids. Maple syrup Interference With Energy Metabolism urine disease can be diagnosed by detection of either Glycolysis and ketone body and fatty acid utilization amino acids or 2-keto acids in urine. Traditionally, it constitute the bulk of energy metabolism in humans. is considered an aminoacidemia, since it is primarily These pathways culminate in the generation of four diagnosed through the increased levels of branched- organic acids: pyruvate, lactate, 3-ketobutyrate (ace- chain amino acids. A related disorder, dihydrolipoyl toacetate), and 3-hydroxybutyrate, the turnover and dehydrogenase (or E3) deficiency, is caused by the pool of which are large.15,16 The pool size and rate of deficiency of one component of the branched-chain metabolism of these organic acids show significant 2-ketoacid dehydrogenase component, the E3.22 This increase and decrease under normal physiologic unit is shared by other dehydrogenases, such as conditions, since they are finely tuned by hormones pyruvate dehydrogenase, and 2-ketoglutaric dehy- through secondary messengers. 17,11 It is therefore drogenase. Therefore, in E3 deficiency, in addition not surprising to observe significant increases in to a moderate accumulation of branched-chain their levels, leading to compensated or overt meta- amino acids and their 2-keto intermediates, derange- bolic acidosis when the intracellular pathways are ment of several enzymes occurs. E3 deficiency is deranged secondary to the accumulation of organic therefore traditionally classified
Recommended publications
  • Hyperammonemia in Review: Pathophysiology, Diagnosis, and Treatment
    Pediatr Nephrol DOI 10.1007/s00467-011-1838-5 EDUCATIONAL REVIEW Hyperammonemia in review: pathophysiology, diagnosis, and treatment Ari Auron & Patrick D. Brophy Received: 23 September 2010 /Revised: 9 January 2011 /Accepted: 12 January 2011 # IPNA 2011 Abstract Ammonia is an important source of nitrogen and is the breakdown and catabolism of dietary and bodily proteins, required for amino acid synthesis. It is also necessary for respectively. In healthy individuals, amino acids that are not normal acid-base balance. When present in high concentra- needed for protein synthesis are metabolized in various tions, ammonia is toxic. Endogenous ammonia intoxication chemical pathways, with the rest of the nitrogen waste being can occur when there is impaired capacity of the body to converted to urea. Ammonia is important for normal animal excrete nitrogenous waste, as seen with congenital enzymatic acid-base balance. During exercise, ammonia is produced in deficiencies. A variety of environmental causes and medica- skeletal muscle from deamination of adenosine monophos- tions may also lead to ammonia toxicity. Hyperammonemia phate and amino acid catabolism. In the brain, the latter refers to a clinical condition associated with elevated processes plus the activity of glutamate dehydrogenase ammonia levels manifested by a variety of symptoms and mediate ammonia production. After formation of ammonium signs, including significant central nervous system (CNS) from glutamine, α-ketoglutarate, a byproduct, may be abnormalities. Appropriate and timely management requires a degraded to produce two molecules of bicarbonate, which solid understanding of the fundamental pathophysiology, are then available to buffer acids produced by dietary sources. differential diagnosis, and treatment approaches available.
    [Show full text]
  • Ovulation-Selective Genes: the Generation and Characterization of an Ovulatory-Selective Cdna Library
    531 Ovulation-selective genes: the generation and characterization of an ovulatory-selective cDNA library A Hourvitz1,2*, E Gershon2*, J D Hennebold1, S Elizur2, E Maman2, C Brendle1, E Y Adashi1 and N Dekel2 1Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Utah Health Sciences Center, Salt Lake City, Utah 84132, USA 2Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel (Requests for offprints should be addressed to N Dekel; Email: [email protected]) *(A Hourvitz and E Gershon contributed equally to this paper) (J D Hennebold is now at Division of Reproductive Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon 97006, USA) Abstract Ovulation-selective/specific genes, that is, genes prefer- (FAE-1) homolog, found to be localized to the inner entially or exclusively expressed during the ovulatory periantral granulosa and to the cumulus granulosa cells of process, have been the subject of growing interest. We antral follicles. The FAE-1 gene is a -ketoacyl-CoA report herein studies on the use of suppression subtractive synthase belonging to the fatty acid elongase (ELO) hybridization (SSH) to construct a ‘forward’ ovulation- family, which catalyzes the initial step of very long-chain selective/specific cDNA library. In toto, 485 clones were fatty acid synthesis. All in all, the present study accom- sequenced and analyzed for homology to known genes plished systematic identification of those hormonally with the basic local alignment tool (BLAST). Of those, regulated genes that are expressed in the ovary in an 252 were determined to be nonredundant.
    [Show full text]
  • Mapping Influenza-Induced Posttranslational Modifications On
    viruses Article Mapping Influenza-Induced Posttranslational Modifications on Histones from CD8+ T Cells Svetlana Rezinciuc 1, Zhixin Tian 2, Si Wu 2, Shawna Hengel 2, Ljiljana Pasa-Tolic 2 and Heather S. Smallwood 1,3,* 1 Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38163, USA; [email protected] 2 Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA; [email protected] (Z.T.); [email protected] (S.W.); [email protected] (S.H.); [email protected] (L.P.-T.) 3 Children’s Foundation Research Institute, Memphis, TN 38105, USA * Correspondence: [email protected]; Tel.: +1-(901)-448–3068 Academic Editor: Italo Tempera Received: 10 October 2020; Accepted: 2 December 2020; Published: 8 December 2020 Abstract: T cell function is determined by transcriptional networks that are regulated by epigenetic programming via posttranslational modifications (PTMs) to histone proteins and DNA. Bottom-up mass spectrometry (MS) can identify histone PTMs, whereas intact protein analysis by MS can detect species missed by bottom-up approaches. We used a novel approach of online two-dimensional liquid chromatography-tandem MS with high-resolution reversed-phase liquid chromatography (RPLC), alternating electron transfer dissociation (ETD) and collision-induced dissociation (CID) on precursor ions to maximize fragmentation of uniquely modified species. The first online RPLC separation sorted histone families, then RPLC or weak cation exchange hydrophilic interaction liquid chromatography (WCX-HILIC) separated species heavily clad in PTMs. Tentative identifications were assigned by matching proteoform masses to predicted theoretical masses that were verified with tandem MS. We used this innovative approach for histone-intact protein PTM mapping (HiPTMap) to identify and quantify proteoforms purified from CD8 T cells after in vivo influenza infection.
    [Show full text]
  • Second-Tier DNA Confirmation of Newborn Screening Results
    Second-tier DNA Confirmation of Newborn Screening by Targeted Next Generation Sequencing Edwin Naylor, Ph.D. MPH Andy Bhattacharjee , Ph.D. Erik Puffenberger, Ph.D.; Kevin Strauss, MD; Holmes Morton, MD Newborn Screening & Clinical Genomics 1961 1990’s 2010-2012 2 Robert Guthrie Development of develops simple automated MS/MS Newborn Screening screening across (NBS) several disorders Current de facto standard 2 Why Newborn Genomics? • Mendelian Diseases disproportionately affect Newborns - ~3500 genetic diseases with molecular basis - >10% of NICU admissions are genetic Clinical manifestation of Genetic diseases - Current NBS tests limited to 29+ diseases CHROMOSOMAL - 2nd tier DNA testing to validate biochemical results MULTI-FACTORIAL SINGLE GENE (MENDELIAN) • Advantage of NGS based DNA testing individuals # of Affected - Find causal variants (rare/novel) in gene(s) - A ‘universal’ NGS approach avoids repeated, serial BIRTH PUBERTY ADULT single gene testing Gelehrter TD, Collins FS, Ginsburg D. Principles of - Current Sanger sequencing is expensive ($3-10K) and Medical Genetics. 2nd ed. Baltimore, MD: Williams & slow (3 months to 1 year) Wilkins; 1998:1-42 NICU- Neonatal Intensive Care Unit NBS-Newborn Screening 3 NGS-Next Generation Sequencing Why Targeted (Exome) Sequencing for now? NGS Sequencing * Genomic DNA from Causal Mutations in Affected Individuals Exons/Target Regions Fold Test Menu Cost ($) Throughput Efficiency Whole Genome (Res.) 7,666* 1 1 Exome (Res) 1,200 15 95 Neonate Panel (Clinical) <1000 150 >1140 •Majority of known disease-causing mutations in exons •Exome = protein-encoding parts of genes •Targeted NGS is Cost & Throughput Efficient *Saunders et al., (2012) Rapid Whole Genome Sequencing for Genetic Disease Diagnosis in NICUs 4 Workflow for 2nd Tier Newborn Screening Sample 2h DNA Capture 92h Raw Data 10h Analysis 1h+ Isolation & Sequencing Management & Interpretation 8 samples, 105 Hrs, <$10,000 = Real Neonatal Genomics! 5 Workflow for 2nd Tier Newborn Screening Sample •High M.Wt.
    [Show full text]
  • Supplement 1 Overview of Dystonia Genes
    Supplement 1 Overview of genes that may cause dystonia in children and adolescents Gene (OMIM) Disease name/phenotype Mode of inheritance 1: (Formerly called) Primary dystonias (DYTs): TOR1A (605204) DYT1: Early-onset generalized AD primary torsion dystonia (PTD) TUBB4A (602662) DYT4: Whispering dystonia AD GCH1 (600225) DYT5: GTP-cyclohydrolase 1 AD deficiency THAP1 (609520) DYT6: Adolescent onset torsion AD dystonia, mixed type PNKD/MR1 (609023) DYT8: Paroxysmal non- AD kinesigenic dyskinesia SLC2A1 (138140) DYT9/18: Paroxysmal choreoathetosis with episodic AD ataxia and spasticity/GLUT1 deficiency syndrome-1 PRRT2 (614386) DYT10: Paroxysmal kinesigenic AD dyskinesia SGCE (604149) DYT11: Myoclonus-dystonia AD ATP1A3 (182350) DYT12: Rapid-onset dystonia AD parkinsonism PRKRA (603424) DYT16: Young-onset dystonia AR parkinsonism ANO3 (610110) DYT24: Primary focal dystonia AD GNAL (139312) DYT25: Primary torsion dystonia AD 2: Inborn errors of metabolism: GCDH (608801) Glutaric aciduria type 1 AR PCCA (232000) Propionic aciduria AR PCCB (232050) Propionic aciduria AR MUT (609058) Methylmalonic aciduria AR MMAA (607481) Cobalamin A deficiency AR MMAB (607568) Cobalamin B deficiency AR MMACHC (609831) Cobalamin C deficiency AR C2orf25 (611935) Cobalamin D deficiency AR MTRR (602568) Cobalamin E deficiency AR LMBRD1 (612625) Cobalamin F deficiency AR MTR (156570) Cobalamin G deficiency AR CBS (613381) Homocysteinuria AR PCBD (126090) Hyperphelaninemia variant D AR TH (191290) Tyrosine hydroxylase deficiency AR SPR (182125) Sepiaterine reductase
    [Show full text]
  • Newborn Screening Laboratory Manual of Services
    Newborn Screening Laboratory Manual of Services Test Panel: Please see the following links for a detailed description of testing in the Newborn Screening section. Information about the Newborn Screening program is available here. Endocrine Disorders Congenital adrenal hyperplasia (CAH) Congenital hypothyroidism (TSH) Hemoglobinopathies Sickle cell disease (FS) Alpha (Barts) Sickle βeta Thalassemia (FSA) Other sickling hemoglobinopathies such as: FAS FAC FAD FAE Homozygous conditions such as: FC FD FE Metabolic Disorders Biotinidase deficiency Galactosemia Cystic fibrosis (CF) first tier screening for elevated immunoreactive trypsinogen (IRT) Cystic fibrosis second tier genetic mutation analysis on the top 4% IRT concentrations. Current alleles detected : F508del, I507del, G542X, G85E, R117H, 621+1G->T, 711+1G->T, R334W, R347P, A455E, 1717-1G->A, R560T, R553X, G551D, 1898+1G->A, 2184delA, 2789+5G->A, 3120+1G->A, R1162X, 3659delC, 3849+10kbC->T, W1282X, N1303K, IVS polyT T5/T7/T9 *Currently validating a mutation panel that includes the above alleles in addition to the following: 1078delT, Y122X, 394delTT, R347H, M1101K, S1255X, 1898+5G->T, 2183AA->G, 2307insA, Y1092X, 3876delA, 3905insT, S549N, S549R_1645A->C, S549R-1647T->G, S549R-1647T->G, V520F, A559T, 1677delTA, 2055del9->A, 2143delT, 3199del6, 406-1G->A, 935delA, D1152H, CFTRdele2, E60X, G178R, G330X, K710X, L206W, Q493X, Q890X, R1066C, R1158X, R75X, S1196X, W1089X, G1244E, G1349D, G551S, R560KT, S1251N, S1255P Amino acid disorders Phenylketonuria (PKU) / Hyperphenylalaninemia Maple
    [Show full text]
  • Counsyl Foresight™ Carrier Screen Disease List
    COUNSYL FORESIGHT™ CARRIER SCREEN DISEASE LIST The Counsyl Foresight Carrier Screen focuses on serious, clinically-actionable, and prevalent conditions to ensure you are providing meaningful information to your patients. 11-Beta-Hydroxylase- Bardet-Biedl Syndrome, Congenital Disorder of Galactokinase Deficiency Deficient Congenital Adrenal BBS1-Related (BBS1) Glycosylation, Type Ic (ALG6) (GALK1) Hyperplasia (CYP11B1) Bardet-Biedl Syndrome, Congenital Finnish Nephrosis Galactosemia (GALT ) 21-Hydroxylase-Deficient BBS10-Related (BBS10) (NPHS1) Gamma-Sarcoglycanopathy Congenital Adrenal Bardet-Biedl Syndrome, Costeff Optic Atrophy (SGCG) Hyperplasia (CYP21A2)* BBS12-Related (BBS12) Syndrome (OPA3) Gaucher Disease (GBA)* 6-Pyruvoyl-Tetrahydropterin Bardet-Biedl Syndrome, Cystic Fibrosis GJB2-Related DFNB1 Synthase Deficiency (PTS) BBS2-Related (BBS2) (CFTR) Nonsyndromic Hearing Loss ABCC8-Related Beta-Sarcoglycanopathy and Deafness (including two Cystinosis (CTNS) Hyperinsulinism (ABCC8) (including Limb-Girdle GJB6 deletions) (GJB2) Muscular Dystrophy, Type 2E) D-Bifunctional Protein Adenosine Deaminase GLB1-Related Disorders (SGCB) Deficiency (HSD17B4) Deficiency (ADA) (GLB1) Biotinidase Deficiency (BTD) Delta-Sarcoglycanopathy Adrenoleukodystrophy: GLDC-Related Glycine (SGCD) X-Linked (ABCD1) Bloom Syndrome (BLM) Encephalopathy (GLDC) Alpha Thalassemia (HBA1/ Calpainopathy (CAPN3) Dysferlinopathy (DYSF) Glutaric Acidemia, Type 1 HBA2)* Canavan Disease Dystrophinopathies (including (GCDH) (ASPA) Alpha-Mannosidosis Duchenne/Becker Muscular
    [Show full text]
  • Mutation of the Fumarase Gene in Two Siblings with Progressive Encephalopathy and Fumarase Deficiency T
    Mutation of the Fumarase Gene in Two Siblings with Progressive Encephalopathy and Fumarase Deficiency T. Bourgeron,* D. Chretien,* J. Poggi-Bach, S. Doonan,' D. Rabier,* P. Letouze,I A. Munnich,* A. R6tig,* P. Landneu,* and P. Rustin* *Unite de Recherches sur les Handicaps Genetiques de l'Enfant, INSERM U393, Departement de Pediatrie et Departement de Biochimie, H6pital des Enfants-Malades, 149, rue de Sevres, 75743 Paris Cedex 15, France; tDepartement de Pediatrie, Service de Neurologie et Laboratoire de Biochimie, Hopital du Kremlin-Bicetre, France; IFaculty ofScience, University ofEast-London, UK; and IService de Pediatrie, Hopital de Dreux, France Abstract chondrial enzyme (7). Human tissue fumarase is almost We report an inborn error of the tricarboxylic acid cycle, fu- equally distributed between the mitochondria, where the en- marase deficiency, in two siblings born to first cousin parents. zyme catalyzes the reversible hydration of fumarate to malate They presented with progressive encephalopathy, dystonia, as a part ofthe tricarboxylic acid cycle, and the cytosol, where it leucopenia, and neutropenia. Elevation oflactate in the cerebro- is involved in the metabolism of the fumarate released by the spinal fluid and high fumarate excretion in the urine led us to urea cycle. The two isoenzymes have quite homologous struc- investigate the activities of the respiratory chain and of the tures. In rat liver, they differ only by the acetylation of the Krebs cycle, and to finally identify fumarase deficiency in these NH2-terminal amino acid of the cytosolic form (8). In all spe- two children. The deficiency was profound and present in all cies investigated so far, the two isoenzymes have been found to tissues investigated, affecting the cytosolic and the mitochon- be encoded by a single gene (9,10).
    [Show full text]
  • Child Neurology: Hereditary Spastic Paraplegia in Children S.T
    RESIDENT & FELLOW SECTION Child Neurology: Section Editor Hereditary spastic paraplegia in children Mitchell S.V. Elkind, MD, MS S.T. de Bot, MD Because the medical literature on hereditary spastic clinical feature is progressive lower limb spasticity B.P.C. van de paraplegia (HSP) is dominated by descriptions of secondary to pyramidal tract dysfunction. HSP is Warrenburg, MD, adult case series, there is less emphasis on the genetic classified as pure if neurologic signs are limited to the PhD evaluation in suspected pediatric cases of HSP. The lower limbs (although urinary urgency and mild im- H.P.H. Kremer, differential diagnosis of progressive spastic paraplegia pairment of vibration perception in the distal lower MD, PhD strongly depends on the age at onset, as well as the ac- extremities may occur). In contrast, complicated M.A.A.P. Willemsen, companying clinical features, possible abnormalities on forms of HSP display additional neurologic and MRI abnormalities such as ataxia, more significant periph- MD, PhD MRI, and family history. In order to develop a rational eral neuropathy, mental retardation, or a thin corpus diagnostic strategy for pediatric HSP cases, we per- callosum. HSP may be inherited as an autosomal formed a literature search focusing on presenting signs Address correspondence and dominant, autosomal recessive, or X-linked disease. reprint requests to Dr. S.T. de and symptoms, age at onset, and genotype. We present Over 40 loci and nearly 20 genes have already been Bot, Radboud University a case of a young boy with a REEP1 (SPG31) mutation. Nijmegen Medical Centre, identified.1 Autosomal dominant transmission is ob- Department of Neurology, PO served in 70% to 80% of all cases and typically re- Box 9101, 6500 HB, Nijmegen, CASE REPORT A 4-year-old boy presented with 2 the Netherlands progressive walking difficulties from the time he sults in pure HSP.
    [Show full text]
  • Inherited Metabolic Disease
    Inherited metabolic disease Dr Neil W Hopper SRH Areas for discussion • Introduction to IEMs • Presentation • Initial treatment and investigation of IEMs • Hypoglycaemia • Hyperammonaemia • Other presentations • Management of intercurrent illness • Chronic management Inherited Metabolic Diseases • Result from a block to an essential pathway in the body's metabolism. • Huge number of conditions • All rare – very rare (except for one – 1:500) • Presentation can be non-specific so index of suspicion important • Mostly AR inheritance – ask about consanguinity Incidence (W. Midlands) • Amino acid disorders (excluding phenylketonuria) — 18.7 per 100,000 • Phenylketonuria — 8.1 per 100,000 • Organic acidemias — 12.6 per 100,000 • Urea cycle diseases — 4.5 per 100,000 • Glycogen storage diseases — 6.8 per 100,000 • Lysosomal storage diseases — 19.3 per 100,000 • Peroxisomal disorders — 7.4 per 100,000 • Mitochondrial diseases — 20.3 per 100,000 Pathophysiological classification • Disorders that result in toxic accumulation – Disorders of protein metabolism (eg, amino acidopathies, organic acidopathies, urea cycle defects) – Disorders of carbohydrate intolerance – Lysosomal storage disorders • Disorders of energy production, utilization – Fatty acid oxidation defects – Disorders of carbohydrate utilization, production (ie, glycogen storage disorders, disorders of gluconeogenesis and glycogenolysis) – Mitochondrial disorders – Peroxisomal disorders IMD presentations • ? IMD presentations • Screening – MCAD, PKU • Progressive unexplained neonatal
    [Show full text]
  • Glutaric Acidemia Type 1
    Glutaric acidemia type 1 What is glutaric acidemia type 1? Glutaric acidemia type 1 is an inherited disease characterized by episodes of severe brain dysfunction that result in spasticity, low muscle tone, and seizures.1,2 Individuals with glutaric acidemia type 1 have defects in the glutaryl-CoA dehydrogenase enzyme, which breaks down the amino acids lysine, hydroxylysine, and tryptophan. The symptoms of glutaric acidemia type 1 are due to the build-up of these amino acids and their metabolites in the body, primarily affecting the brain.1 Glutaric acidemia type 1 is also known as glutaric aciduria type 1.2 What are the symptoms of glutaric acidemia type 1 and what treatment is available? The severity of symptoms of glutaric acidemia type 1 can vary widely, even within families. Newborns may have macrocephaly (large head size) with no other signs or symptoms. Symptoms typically begin within months after birth and are often triggered by illness or fasting. Symptoms may include2: • Hypotonia (low muscle tone) • Feeding difficulties • Poor growth • Swelling of the brain • Spasticity (abnormally tight muscles) • Dystonia (sustained muscle contractions causing twisting movements and abnormal posture) • Seizures • Developmental delays • Coma, and possibly death, especially if untreated Individuals tend to have a reduced life expectancy. Approximately 10% of individuals die within the first decade; more than half do not survive past 35 years of age. 3 There is no cure for glutaric acidemia type 1, and treatment is aimed at preventing episodes of brain dysfunction and seizures. Treatment generally includes a low protein diet and nutrition supplements, and a feeding tube may be required for some individuals.
    [Show full text]
  • Nutrition 102 – Class 3
    Nutrition 102 – Class 3 Angel Woolever, RD, CD 1 Nutrition 102 “Introduction to Human Nutrition” second edition Edited by Michael J. Gibney, Susan A. Lanham-New, Aedin Cassidy, and Hester H. Vorster May be purchased online but is not required for the class. 2 Technical Difficulties Contact: Erin Deichman 574.753.1706 [email protected] 3 Questions You may raise your hand and type your question. All questions will be answered at the end of the webinar to save time. 4 Review from Last Week Vitamins E, K, and C What it is Source Function Requirement Absorption Deficiency Toxicity Non-essential compounds Bioflavonoids: Carnitine, Choline, Inositol, Taurine, and Ubiquinone Phytoceuticals 5 Priorities for Today’s Session B Vitamins What they are Source Function Requirement Absorption Deficiency Toxicity 6 7 What Is Vitamin B1 First B Vitamin to be discovered 8 Vitamin B1 Sources Pork – rich source Potatoes Whole-grain cereals Meat Fish 9 Functions of Vitamin B1 Converts carbohydrates into glucose for energy metabolism Strengthens immune system Improves body’s ability to withstand stressful conditions 10 Thiamine Requirements Groups: RDA (mg/day): Infants 0.4 Children 0.7-1.2 Males 1.5 Females 1 Pregnancy 2 Lactation 2 11 Thiamine Absorption Absorbed in the duodenum and proximal jejunum Alcoholics are especially susceptible to thiamine deficiency Excreted in urine, diuresis, and sweat Little storage of thiamine in the body 12 Barriers to Thiamine Absorption Lost into cooking water Unstable to light Exposure to sunlight Destroyed
    [Show full text]