Geochemistry and Petrology of the Alkalic Igneous Complex at Magnet Cove, Arkansas

Total Page:16

File Type:pdf, Size:1020Kb

Geochemistry and Petrology of the Alkalic Igneous Complex at Magnet Cove, Arkansas Geochemistry and Petrology of the Alkalic Igneous Complex at Magnet Cove, Arkansas GEOLOGICAL SURVEY PROFESSIONAL PAPER 425 Prepared in cooperation with the Defense Minerals Procurement Agency Geochemistry and Petrology of the Alkalic Igneous Complex at Magnet Cove, Arkansas By R. L. ERICKSON and L. V. BLADE GEOLOGICAL SURVEY PROFESSIONAL PAPER 425 Prepared in cooperation with the Defense Minerals Procurement Agency UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1963 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director The U.S. Geological Survey Library has cataloged this publication as follows: Erickson, Ralph Leroy, 1923 Geochemistry and petrology of the alkalic igneous complex at Magnet Cove, Arkansas, by R. L. Erickson and L. V. Blade. Washington, U.S. Govt. Print. Off., 1963. v, 95 p. maps (part fold., 1 col., in pocket) diagrs., tables. 29 em. (U.S. Geological Survey. Professional paper 425) Prepared in cooperation with the Defense Minerals Procurement Agency. Bibliography: p. 90-91. (Continued on next card) Erickson, Ralph Leroy, 1923 Geochemistry and petrology of the alkalic igneous complex at Magnet Cove, Arkansas, 1963. (Card 2) 1. Geochemistry Arkansas Magnet Cove. 2. Petrology Arkan­ sas Magnet Cove. 3. Rocks, Igneous. 4. Rocks Analysis. I. Blade, Lawrence Vernon, 1917- joint author. II. U.S. Defense Minerals Procurement Agency. III. Title: The alkalic igneous com­ plex at Magnet Cove, Arkansas. (Series) For sale by the Superintendent of Documents, U.S. Government Printing Office Washington 25, B.C. CONTENTS Page Page Abstract-_----_-_-___-______________.____. 1 Dikes Continued Introdu ction _ _____________________________ 1 Dikes within the complex Continued Location and surface features.__________ 2 Aplite_ ________-______-_--_-_---___ 47 Previous work_________________________ 2 Eudialyte-nepheline syenite pegmatite- 47 Scope and methods of work.____________ 2 Garnet f ourchite_ _ ________________ 49 Acknowledgments__ _________________ 4 Dikes outside the complex _______________ 49 Veins________________________________ General geology.__________________________ 5 54 Contact zone_______________________________ Age of the rocks.______________________ 5 56 Metamorphosed Arkansas novaculite______ 56 Structure _________________________________ 6 Metamorphosed Stanley shale___.__.____.__ 57 Igneous complex_________________________ 6 Geochemistry ______________________________ 59 Outer ring____________________________ 7 Rocks_ ___-_______---_-------__-_-__-__ 59 Sphene-nepheline syenite.__________ 7 Variation diagrams______________________ 62 Garnet-pseudoleucite syenite______ 10 Minerals__ ___________________________ 65 Miscellaneous syenites____________ 15 Feldspar_ - ____--__---___-__-_____ 69 Feldspathoidal leucosyenite. 15 Nepheline_ _________________________ 70 Sphene-cancrinite syenite.______ 16 Zeolite. ___________________________ 70 Sphene-garnet-nepheline syenite. 16 Pyroxene._________________________ 70 Jacupirangite and sphene pyroxenite. 17 Garnet.___________________________ 74 Garnet-biotite melteigite.___________ 21 Biotite_ ___________________________ 74 Intermediate ring._____________________ 23 Apatite_______--__-_---_-__-_____ 74 Altered phonolite._________________ 23 Magnetite. ________________________ 74 Undivided trachyte-phonolite_ ______ 25 Perovskite.__-________--__-___-____ 77 Inner core_________________________ 27 Sphene ____________________________ 77 Ijolite_ ___________________________ 28 Pyrite___________________________ 77 Fine-grained ijolite_______________ 30 Calcite__________________________ 77 Carbonatite. ______________________ 34 Geochemistry of niobium ________________ 78 Lime-silicate rock__________________ 39 Rutile and brookite.________________ 78 Dikes..__-__________________________ 39 Carbonatite_______--____- __________ 79 Dikes within the complex.______________ 39 Igneous rocks and minerals__________ 79 Tinguaite.._ ______________________ 39 Radioactivity __________________--_---_-____ 83 Sodalite trachyte._________________ 42 Age relations of the rocks______-_-----______- 83 Analcime-olivine melagabbro. _______ 42 Origin_ ____________________________________ 84 Nepheline syenite pegmatite. _______ 44 Economic geology________________________ 89 Trachyte porphyry_______________ 46 References cited.___________________________ 90 Miscellaneous trachytes.___________ 47 Index.____________________________________ 93 ILLUSTRATIONS [Plates are In pocket] PLATE Map of bedrock geology of Magnet Cove igneous area, Hot Spring County, Ark. Map showing relation of igneous rocks of the Gulf Coastal region to the Ouachita geosyncline. Map showing relation of the igneous complex to total intensity aeromagnetic contours in the Magnet Cove area. Page FIGURE 1. Index map and generalized geology of the Magnet Cove area___________________________________________ 3 2. Isogonic chart of Magnet Cove_______________________________________________________________ _____ 4 3. Map showing distribution of Jacupirangite inferred from high magnetometer readings _______________________ 17 4. Map showing location of igneous dikes in relation to the Magnet Cove intrusive complex, Garland and Hot Spring Counties, Ark___________________________________________________________ _____________ 50 5. Ternary diagram showing igneous rocks of the complex plotted against atomic proportions of the major elements. 63 6. Ternary diagram showing igneous rocks of the complex plotted against atomic proportions of Ca-Na+K-Si___ 64 7. Ternary diagram showing igneous rocks of the complex plotted against atomic proportions of Na-E_-Ca_ ______ 65 8. Ternary diagram showing igneous rocks of the complex plotted against atomic proportions of Fe-Mg-Na-f-K__ 67 m IV CONTENTS Page FIGURE 9. Lime variation diagram_______._____________________________________________________________________ 68 10. Variation diagram showing composition of material (A) subtracted from an olivine basalt to produce magma of the weighted-average composition of the Magnet Cove complex. _____________-_---_-___--_------------- 86 11. Variation diagram showing composition of rocks and residual magmas for the main periods of intrusion at Magnet Cove__________________________________________________________________________________________ 88 TABLES Page TABLE 1. Spectrographic sensitivities of the elements______-______--__-_-________________-___-___-______----_-_ 7 2. Analyses, norm, and modes of sphene-nepheline syenite________-_______________________________________ 9 3. Spectrographic analyses of mineral separates of sphene-nepheline syenite___-____________________________ 10 4. Analyses, norms, and modes of garnet-pseudoleucite syenite____-___________---_-------_------_-------- 12 5. Analyses, norm, and modes of garnet-nepheline syenite____________-__-___--___--_--_------_--_-----_- 13 6. Spectrographic analyses of mineral separates of garnet-pseudoleucite syenite___________________________ 14 7. Spectrographic analyses of mineral separates of garnet-nepheline syenite________________________________ 15 8. Analyses, norm, and mode of feldspathoidal leucosyenite_____________-______-___---_-_--_---_--_-_-- 16 9. Analyses, norm, and modes of jacupirangite-__________________________________..___-__--_------__---- 18 10. Analyses, norms, and modes of sphene pyroxenite__________-__-_--__-_----------_-------_----_------- 19 11. Spectrographic analyses of mineral separates of jacupirangite.-_____--_-________________--_---__---____ 20 12. Spectrographic analyses of mineral separates of sphene pyroxenite____________________________________ 21 13. Analyses, norm, and mode of garnet-biotite melteigite_________-___-_______--_---_---_-------__------- 22 14. Spectrographic analyses of mineral separates of garnet-biotite melteigite___-__--_____--_------------_-_- 22 15. Analyses and norms of altered phonolite____.________________-___-_-_--_--_----_-----------_-------- 24 16. Analyses, norms, and mode of the undivided trachyte-phonolite___________-________-_-_-_---__------_ 27 17. Analyses, norms, and modes of biotite-garnet ijolite and garnet ijolite__________________________________ 29 18. Average and type urtite, ijolite, and melteigite__________________________________---__----------_--__ 30 19. Spectrographic analyses of mineral separates of biotite-garnet ijolite-,.______________--__-_-__----_-_____ 31 20. Spectrographic analyses of mineral separates of garnet ijolite_______-__-__---__----_---_---_--__------- 32 21. Analyses, norms, and mode of fine-grained ijolite____________________________________________________ 33 22. Descriptive logs of core holes..________________________-______---_--------___-----_---------------_ 34 23. Analyses of carbonatite__________________________________---__---_--_----------_--_------_----_--_ 35 24. Analyses of saprolite of carbonatite_ ________ _________ ______----____----_-_---_---__--------_------- 36 25. Spectrographic analyses of mineral separates from carbonatite._____________-______--___-_--_-_--______ 37 26. Composition of kimzeyite______________________________________._--_--_-____--_--_------_-__------- 38 27. Spectrographic analyses of mineral separates of lime-silicate rock____--_-_______________________________ 40 28. Analyses and norm of tinguaite___________-________-_-_-__---_--------_-------__------------------- 41 29. Analyses and norm of sodalite trachyte____________________--__-__-_-----_---_---__--~------------- 42 30. Analyses, norm, and mode of
Recommended publications
  • Summary of the Mineral Information Package for the Khanneshin Carbonatite Area of Interest
    Chapter 21A. Summary of the Mineral Information Package for the Khanneshin Carbonatite Area of Interest Contribution by Robert D. Tucker, Harvey E. Belkin, Klaus J. Schulz, Stephen G. Peters, and Kim P. Buttleman Abstract The Khanneshin carbonatite is a deeply dissected igneous complex of Quaternary age that rises approximately 700 meters above the flat-lying Neogene sediments of the Registan Desert, Helmand Province, Afghanistan. The complex consists almost exclusively of carbonate-rich intrusive and extrusive igneous rocks, crudely circular in outline, with only three small hypabyssal plugs of leucite phonolite and leucitite outcropping in the southeastern part of the complex. The complex is broadly divisible into a central intrusive vent (or massif), approximately 4 kilometers in diameter, consisting of coarse-grained sövite and brecciated and agglomeratic barite-ankerite alvikite; a thin marginal zone (less than 1 kilometer wide) of outwardly dipping (5°–45°). Neogene sedimentary strata; and a peripheral apron of volcanic and volcaniclastic strata extending another 3–5 kilometers away from the central intrusive massif. Small satellitic intrusions of biotite-calcite carbonatite, no larger than 400 meters in diameter, crop out on the southern and southeastern margin of the central intrusive massif. In the 1970s several teams of Soviet geologists identified prospective areas of interest for uranium, phosphorus, and light rare earth element (LREE) mineralization in four regions of the carbonatite complex. High uranium concentrations are reported in two regions; the greatest concentrations are confined to silicified shear zones in sandy clay approximately 1.1 kilometers southwest of the peripheral part of the central vent. An area of phosphorus enrichment, primarily occurring in apatite, is present in coarse-grained agglomeratic alvikite, with abundant fenite xenoliths, approximately 750 meters south of the periphery of the central vent.
    [Show full text]
  • Feldspar and Nepheline Syenite 2016
    2016 Minerals Yearbook FELDSPAR AND NEPHELINE SYENITE [ADVANCE RELEASE] U.S. Department of the Interior January 2020 U.S. Geological Survey Feldspar and Nepheline Syenite By Arnold O. Tanner Domestic survey data and tables were prepared by Raymond I. Eldridge III, statistical assistant. In 2016, feldspar production in the United States was representing 46% of the 2016 production tonnages listed in estimated to be 470,000 metric tons (t) valued at $33.1 million, tables 1 and 2. an almost 10% decrease in quantity and a 11% decrease in Feldspar was mined in six States (table 3). North Carolina value compared with 2015 (table 1). Exports of feldspar in 2016 was by far the leading producer State; the remaining five were, decreased by 61% to 5,890 t, valued at $1.5 million, and imports in descending order of estimated output, Virginia, California, of feldspar decreased by 69% to 36,900 t, valued at $3.4 million. Idaho, Oklahoma, and South Dakota. Production was from Imports of nepheline syenite (predominantly from Canada) 10 mines and beneficiating facilities—4 in North Carolina, 2 in increased by 27% to about 572,000 t valued at $73 million. California, and 1 in each of the 4 remaining States (table 3). World production of feldspar in 2016 was 23.4 million metric I-Minerals Inc. continued the mine permitting process for tons (Mt) (tables 1, 7). its Helmer-Bovill project in north-central Idaho; the mine Feldspars, which constitute about 60% of the earth’s crust, would produce potassium feldspar, halloysite, kaolin, and are anhydrous aluminosilicate minerals of two main groupings: quartz.
    [Show full text]
  • Petrographic Study of a Quartz Diorite Stock Near Superior, Pinal County, Arizona
    Petrographic study of a quartz diorite stock near Superior, Pinal County, Arizona Item Type text; Thesis-Reproduction (electronic); maps Authors Puckett, James Carl, 1940- Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 23/09/2021 23:40:37 Link to Item http://hdl.handle.net/10150/554062 PETROGRAPHIC STUDY OF A QUARTZ DIORITE STOCK NEAR SUPERIOR, PINAL COUNTY, ARIZONA by James Carl Puckett, Jr. A Thesis Submitted to the Faculty of the DEPARTMENT OF GEOLOGY In Partial Fulfillment of the Requirements For the Degree of MASTER OF SCIENCE In the Graduate College THE UNIVERSITY OF ARIZONA 1 9 7 0 STATEMENT BY AUTHOR This thesis has been submitted in partial fulfillment of re­ quirements for an advanced degree at The University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library. Brief quotations from this thesis are allowable without special permission, provided that accurate acknowledgment of source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in his judg­ ment the proposed use of the material is in the interests of scholar­ ship. In all other instances, however, permission must be obtained from the author.
    [Show full text]
  • Geology and Tectonic Setting of the Kamloops Group, South
    GEOLOGY AND TECTONIC SETTING OF THE KAMLOOPS GROUP, SOUTH- CENTRAL BRITISH COLUMBIA by THOMAS EDWARD EWING B.A., The Colorado College, 1975 M.S., New Mexico Institute of Mining and Technology, 1977 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES Department of Geological Sciences We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA February 1981 © Thomas Edward Ewing, 1981 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of r.pnlnpiVal Sri PTirp.S The University of British Columbia 2075 Wesbrook Place Vancouver, Canada V6T 1W5 Date February 17, 1981 ABSTRACT The Kamloops Group is a widespread assemblage of Eocene volcanic and sedimentary rocks in south-central British Columbia. Detailed mapping of the type area near Kamloops has resulted in its subdivision into two formations and thirteen formal and informal members. The Tranquille Formation, 0-450 metres thick, consists of lacustrine sediments which grade upward into pillowed flows, hyaloclastite breccia and aquagene tuff. The overlying Dewdrop Flats Formation, with nine members, consists of up to 1000 metres of basalt to andesite phreatic breccia, flow breccia and flat-lying flows.
    [Show full text]
  • Nd, Pb and Sr Isotopic Data from the Napak Carbonatite-Nephelinite Centre, Eastern Uganda: an Example of Open-System Crystal Fractionation
    Contrib Mineral Petrol (1994) 115:356-366 Contributions tO Mineralogy and Petrology Springer-Verlag 1994 Nd, Pb and Sr isotopic data from the Napak carbonatite-nephelinite centre, eastern Uganda: an example of open-system crystal fractionation Antonio Simonetti and Keith Bell Ottawa-Carleton Geoscience Centre, Department of Earth Sciences, Carleton University, Ottawa, Ontario K1S 5B6, Canada Received June 30, 1992 / Accepted May 25, 1993 Abstract. Nd, Pb and Sr isotopic data from nephelinite magmas cannot be in equilibrium with a lherzolitic mantle lavas from the Tertiary nephelinite-carbonatite complex source (Bultitude and Green 1968, 1971; Allen et al. 1975; of Napak, eastern Uganda, show large isotopic variations Merrill and Wyllie 1975), but are probably the products of that can only be attributed to open-system behaviour. small ( < 5%) degrees of partial melting of a carbonated Possible explanations of the data include mixing between (high C02/H20 ratio) peridotite or pyrolite at high pres- nephelinitic melts derived from an isotopically heterogen- sures (Brey and Green 1977; Brey 1978; Olafsson and eous mantle, or interaction between a HIMU melt and Eggler 1983; Wallace and Green 1988). Experimental re- mafic granulites. In both models crystal fractionation, sults are consistent with derivation of a primary involving olivine and clinopyroxene, played an important nephelinitic liquid from an amphibole peridotite at pres- role. Major element chemistry, textural evidence and iso- sures of 20 to 25 kbar (Olafsson and Eggler 1983; Eggler topic data from clinopyroxene phenocrysts from the ol- 1989). ivine-bearing nephelinites, suggest that the pyroxenes did The eastern branch of the East African Rift Valley not crystallize from their host liquids.
    [Show full text]
  • GEOLOGY of the SLEETMUTE A-5, A-6, B-5, and B-6 QUADRANGLES, SOUTHWESTERN ALASKA by John Decker, R.R
    GEOLOGY OF THE SLEETMUTE A-5, A-6, B-5, AND B-6 QUADRANGLES, SOUTHWESTERN ALASKA by John Decker, R.R. Reifenstuhl, M.S. Robinson, C.F. Waythomas, and J.G. Clough Professional Report 99 1995 Published by Alaska Department of State of Alaska Department of Natural Resources NATURAL DIVISION OF GEOLOGICAL & GEOPHYSICAL SURVEYS GEOLOGY OF THE SLEETMUTE A-5, Ad, B-5, AND B-6 QUADRANGLES, SOUTHWESTERN ALASKA by John Decker, R.R. Reifenstuhl, M.S. Robinson, C.F. Waythomas, and J.G. Clough Professional Report 99 Division of Geological & Geophysical Surveys Cover photo: Northwest-vergent isocline of veryfine-grained sandstone of the Lower(?) and Upper Cretaceous Kuskokwim Group. The outcrop of medium- bedded sandstone is 1.5 miles west of Kiokluk Lake in the Sleetmute B-6 Quadrangle (map unit Kkm). The hammer handle in the photo is 46 cm Fairbanks, Alaska long. Photo by R.R. Reifenstuhl. 1995 STATE OF ALASKA Tony Knowles, Governor DEPARTMENT OF NATURAL RESOURCES John Shively, Commissioner DIVISION OF GEOLOGICAL & GEOPHYSICAL SURVEYS Milton A. Wiltse, Acting Director and State Geologist Division of Geological & Geophysical Surveys publications may be in- spected at the following locations. Address mail orders to the Fairbanks office. Alaska Division of Geological University of Alaska Anchorage Library & Geophysical Surveys 321 1 Providence Drive 794 University Avenue, Suite 200 Anchorage, Alaska 99508 Fairbanks, Alaska 99709-3645 Elmer E. Rasmuson Library Alaska Resource Library University of Alaska Fairbanks 222 W. 7th Avenue Fairbanks, Alaska 99775-1005 Anchorage, Alaska 995 13-7589 Alaska State Library State Office Building, 8th Floor 333 Willoughby Avenue Juneau, Alaska 998 11-057 1 This publication released by the Division of Geological & Geophysical Surveys, text was produced and printed in Fairbanks, Alaska by Graphics North and maps were printed in Colorado Springs, Colorado by Pikes Peak Lithographing Co., at a cost of $9.50 per copy.
    [Show full text]
  • Deadhorse Creek Rare Earth Property
    Deadhorse Creek Rare Earth Property Walsh and Grain Townships Thunder Bay Mining Division, Ontario 48° 51' 7.671" N, 86 39' 45.028" W NTS Mapsheet 42D and 42E Assessment Report Prepared for Canadian International Minerals Inc. Suite 950 – 789 West Pender Street Vancouver, B.C., V6C 1H2 Report Prepared by: 31 October, 2011 1 Contents 1 Contents 1 Contents .......................................................................................................................................................................... 1 2 Figures ............................................................................................................................................................................. 2 3 Tables .............................................................................................................................................................................. 4 4 Summary ......................................................................................................................................................................... 5 5 Introduction .................................................................................................................................................................... 6 6 Reliance on other experts ............................................................................................................................................... 6 7 Property description and location .................................................................................................................................
    [Show full text]
  • Mineralogy, Geochemistry and Petrology of a Pyrochlore-Bearing Carbonatite at Seabrook Lake, Ontario
    Mineralogy, Geochemistry and Petrology of a Pyrochlore-bearing Carbonatite at Seabrook Lake, Ontario by Myron John Osateriko B.Sc, University of British Columbia, 1965 A Thesis Submitted in Partial Fulfilment ' of the Requirements for the Degree of MASTER OF SCIENCE in the Department of GEOLOGY We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA April, 1967 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that th3 Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Depa rtment The University of British Columbia Vancouver 8, Canada i ABSTRACT The Seabrook Lake carbonatite complex is one of the smallest of nine known carbonatite complexes in central Ontario. The complex, which is one-half square mile in area and pear- shaped in plan, consists of fenitized granite and breccia, mafic breccia, ijolite and related breccia, and carbonatite. The bulbous northern part of the complex consists of a plug-like core of carbonatite surrounded by mafic breccia and carbonatite dykes. The narrow southern part consists of ijolite and related breccia. Enveloping all of these rocks.is a fenitized aureole which grades outward to unaltered granite that underlies much of the surrounding area. The carbonatite is composed of calcite with the following minor mineral, in decreasing order of abundance: goethite, microcline, magnesioriebeckite-riebeckite, magnetite-ulvospinel, apatite, hematite, pyrite, albite, biotite, chlorite, pyrochlore, brookite, sphene, ferroan dolomite (ankerite?), aegirine, chalcopyrite, wollastonite and quartz.
    [Show full text]
  • Geology of the Cluggerfluorite Deposit
    Revista Brasileira de Geociências 17(3): 288-294, setembro de 1987 GEOLOGY OF THE CLUGGE RFLUORITE DEPOSIT. MATO PRETO. PARANÁ. BRAZIL ROBERT E. JENK INS n- ABSTRACT The Mato Preto fluorite deposite are located in the Ribeira River valley 80 km NNE from Curitiba, Paraná, Brazil. They consist of three known orebodies and numerous minar occurrences wi­ thin an area of about 15 km ê. Clugger, the largest dcposit, is a hydrothermnl replacemcnt and fracture-fil­ ling type in a brecciated and sheared contact zone among carbonatitc, nephellne syenitc, phonolite, and tin­ guaite of the Cretaceous-Paleocene age Mato Preto Igneous Complex. Fluorite occurs LS four subparallel but coalescing ore lenses which forro envelopes about dikes of phonolite-tinguaite and have strlke lengths of 250 m, aggregate thickness up to 80 m, and extend to at least 120 m in depth . Dikes and Ienses strike N50-55E and dip steeply to the northwest. Fluorite forms matrix replacemcnts and crosscutting veins in premineral and intermineral breccias adjacent to dikes. Fluorite mineralizatioo has been introduced in at least two pulses and is associated with barite-celestlre, apatite, rare earth minerais, and sulfides. Late explosive venting of the system has formed pipes of volcanic breccia with crackle breccia in ore adjacent. Fluorite along breakage planes is recrystallized into monomineralic veinlets. Mineralization is associated with fracture controlled epidote aJteration, but major silicification apparently predates ore. The c1ugger deposit was probably fonne d at low pressures and temperatures, possibly within a vent of a now-eroded Mato Preto volcano. RESUMO Os depósitos de Iluorita de Mato Preto situam-se no vale do Rio Ribeira, 80 km a NNE de Curitiba,Paraná.
    [Show full text]
  • Plate Tectonics, Volcanic Petrology, and Ore Formation in the Santa Rosalia Area, Baja California, Mexico
    Plate tectonics, volcanic petrology, and ore formation in the Santa Rosalia area, Baja California, Mexico Item Type text; Thesis-Reproduction (electronic) Authors Schmidt, Eugene Karl, 1947- Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 01/10/2021 01:50:58 Link to Item http://hdl.handle.net/10150/555057 PLATE TECTONICS, VOLCANIC PETROLOGY, AND ORE FORMATION IN THE SANTA ROSALIA AREA, BAJA CALIFORNIA, MEXICO by Eugene Karl Schmidt A Thesis Submitted to the Faculty of the DEPARTMENT OF GEOSCIENCES In Partial Fulfillment of the Requirements For the Degree of MASTER OF SCIENCE In the Graduate College THE UNIVERSITY OF ARIZONA 1 9 7 5 z- STATEMENT BY AUTHOR This thesis has been submitted in partial ful­ fillment of requirements for an advanced degree at The University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library. Brief quotations from this thesis are allowable without special permission, provided that accurate ac­ knowledgment of source is made. Requests for permission for extended quotation from or reproduction of this manu­ script in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in his judgment the proposed use of the material is in the interests of scholarship. In all other instances, however, permission must be obtained from the author.
    [Show full text]
  • Petrography and Engineering Properties of Igneous Rocks
    ENGINEERil~G MONOGRAPHS No. I United States Department of the Interior BUREAU OF RECLAMATION PETROGRAPIIY AND ENGINEERING· PROPER11ES OF IGNEOUS ROCKS hy Rit~bard C. 1\lielenz Denver, Colorado October 1948 95 cents (R.evised September 1961) United States Department of the Interior STEWART L. UDALL, Secretacy Bureau of Reclamation FLOYD E. DOMINY, Commissioner G~T BLOODGOOD, Assistant Commissioner and Chief Engineer Engineering Monograph No. 1 PETROGRAPHY AND ENGINEERING PROPERTIRES ·OF IGNEOUS RO<;:KS by Richard C. Mielenz Revised 1959. by William Y. Holland Head. Petrographic Laboratory Section Chemical Engineering Laboratory Branch Commissioner's Office. Denver Technical Infortnation Branch Denver Federal Center Denver, Colorado ENGINEERING MONOGRAPHS are published in limited editions for the technical staff of the Bureau of Reclamation and interested technical circles in Government and private agencies. Their purpose is to record devel­ opments, innovations, .and progress in the engineering and scientific techniques and practices that are employed in the planning, design, construction, and operation of Rec­ lamation structures and equipment. Copies 'may be obtained from the Bureau of Recla- · mation, Denver Federal Center, Denver, Colon.do, and Washington, D. C. Excavation and concreting of altered zones in rhyolite dike in the spillway foundation. Davis Damsite. Arizona-Nevada. Fl'ontispiece CONTENTS Page Introduction . 1 General Basis of Classification of Rocks . 1 Relation of the Petrographic Character to the Engineering Properties of Rocks . 3 Engineering J?roperties of Igneous Rocks ................................ :. 4 Plutonic Rocks . 4 Hypabyssal Rocks . 6 Volcanic Rocks..... 7 Application of Petrography to Engineering Problems of the Bureau of Reclamation . 8 A Mineralogic and Textural Classification of Igneous Rocks .
    [Show full text]
  • NI 43-101 Songwe REE Deposit
    NI 43-101 Technical Report and Mineral Resource Estimate for the Songwe Hill Rare Earth Element (REE) Project, Phalombe District, Republic of Malawi Prepared by The MSA Group (Pty) Ltd for: Mkango Resources Ltd Authors: Scott Swinden Consulting Geologist Ph.D., P.Geo. Michael Hall Consulting Geologist Resources Pr.Sci.Nat., MAusIMM Effective Date: September 30, 2012 Date of Signature: November 22, 2012 Table of Contents 1 Summary......................................................................................................................................... viii 1.1 Introduction.............................................................................................................................viii 1.2 Property, Location and Ownership.........................................................................................viii 1.3 Geology and Mineralization....................................................................................................viii 1.4 Status of Exploration ................................................................................................................ix 1.5 Mineral Resources.................................................................................................................... x 1.6 Conclusions and Recommendations........................................................................................xi 2 Introduction..................................................................................................................................... 12 2.1 Scope of Work
    [Show full text]