South Shetland Islands, Antarctica) – Clues from Magmatic Dykes S

Total Page:16

File Type:pdf, Size:1020Kb

South Shetland Islands, Antarctica) – Clues from Magmatic Dykes S TOMO 2 - Volcanismo y Magmatismo THE ROLE OF CONTINENTAL CRUST DURING MAGMA GENESIS BENEATH HURD PENINSULA (SOUTH SHETLAND ISLANDS, ANTARCTICA) – CLUES FROM MAGMATIC DYKES S. Kraus (Instituto Antártico Chileno, Punta Arenas, [email protected]) H. Miller (Dept. of Earth & Environm. Sci., Univ. of Munich, Germany, [email protected]) INTRODUCTION Hurd Peninsula (62° 40’ S / 60° 22’ W) is located in southern Livingston Island, the second largest of the South Shetland Islands (Fig. 1). It is bordered by South Bay in the NW and False Bay in the SE and comprises about 27 km2. Three main lithological sequences crop out there: the sedimentary, turbiditic Miers Bluff Formation (MBF) in the stratigraphically lowermost position, unconformably overlain by the Moores Peak Breccia and, uppermost, the volcanic rocks of the magmatic arc (Mount Bowles Formation). The investigation area is located in the northwestern part of Hurd Peninsula and the dykes are hosted without exception by the Miers Bluff Formation. Major goals were the identification of tectonic events as reflected by the orientation of the dykes and by joint systems, the determination of the magma sources as well as possible changes, and relationships between tectonic and magmatic events. Ar-Ar age determinations carried out on plagioclase separates indicate that the dykes intruded the different directions (first and second order dextral and sinistral shear systems) correlated with the folding axis (24°, evident in the sedimentary host rocks) from Danian on, most of them during the Lutetian. Six different intrusive events can be distinguished on Hurd Peninsula. Fig. 1: Geography of the northern Antarctic Peninsula Dykes of the same relative age also share the and the South Shetland Islands and their location in Antarctica (inset). same strike direction, indicating that slight changes 483 XI CONGRESO GEOLOGICO CHILENO of the overall tectonic parameters led to different preferred directions, but within the same general stress field [KRAUS & MILLER 2003a]. THE GEOCHEMISTRY OF THE DYKES Most of the dykes investigated in other parts of the South Shetland Islands correspond to a typical subduction-related transitional to calc-alkaline suite (Fig. 2), ranging from basalts to rhyolites [KRAUS & MILLER 2003b]. In contrast, the oldest dykes on Hurd Peninsula show a shoshonitic composition possibly related to an early stage extensional crustal regime. The magmatic affinity very soon became tholeiitic and only the two last intrusive events at Hurd Peninsula show calc-alkaline characteristics. Tholeiites have been reported as being typical for young immature arcs, moreover for more mature arcs in settings closest to the trench [e.g. TATSUMI & EGGINS 1995]. We assume that these dykes intruded during early stages of arc activity in that area, the magma travelling through a still unstretched crust and consequently showing both tholeiitic characteristics and the influence of conti-nental crust assimilation. The six different intrusive events indicated on Hurd Peninsula by tectonic data are also confirmed by geochemistry using trace and rare earth element ratios (e.g. Nb/Y, Zr/Hf, Y/Ho, Ce/Pb) and Mg#. The geochemical and isotopic data show that four different magma sources contributed to arc magma genesis: subducted sediments, fluids derived from the subducted plate, the mantle wedge and the continental crust underneath the South Shetland Islands [KRAUS 2005]. THE FINGERPRINT OF THE CONTINENTAL CRUST From Sr, Nd and Pb isotope data alone, it is difficult or impossible to distinguish be-tween Fig. 2: Zr plotted vs. Y to reveal the magmatic affinity [MCLEAN & BARRETT 1993]. Element concentrations are sediment influx and crustal contamination in active given in µg/g. Primitive mantle values from MCDONOUGH & SUN [1995], N-MORB values from SUN continental margin settings. However, crustal & MCDONOUGH [1989], upper continental crust (UCC) values from RUDNICK & GAO [2003]. contamination usually occurs during shallow level 484 TOMO 2 - Volcanismo y Magmatismo differentiation. Conse-quently, if such a process takes place, the most differentiated rocks should also be the most contaminated. Thus, plotting isotope data (e.g. eNd) versus some differentiation factor (e.g. Mg#) may yield a correlation in case that contamination occurred. A correlation between eNd and Mg# is obvious for the Hurd Peninsula dykes, but not for dykes from the other areas further to the NE (Fig. 3A). Moreover, they plot roughly according to their relative ages as deduced from field relationships and Ar-Ar data, i.e. the oldest dykes display the lowest eNd and Mg-numbers (Fig. 3B). Therefore, we suppose that particularly the early dykes reflect intrusive events that took place during initial stages of magmatic arc activity in that area. This assumption is consis-tent with a still relatively unstretched continental crust and therefore higher degrees of crustal contamination, leading to lower eNd values and higher incompatible element abun-dances abundances. The aforementioned tholeiitic affinity of most Hurd Peninsula dykes is another argument. The crustal influence then ceased with time (due to an increasingly stretched crust?), and the two youngest events on Hurd Peninsula, that even postdate the dykes from the other areas, plot within the Fig. 3: (A) Crustal contamination as reflected by the correlation of Mg# and εNd in case of Hurd Peninsula. Average 2òm for Nd isotope data is 0.0026 %. (B) Development of εNd through time. The question mark (lower right) indicates the uncertainty of this age, the dark grey area denotes the time of intrusive activity on King George Island. Note that some older dykes from Hurd Peninsula do not plot in this diagram due to missing Nd isotopic data. Digits in brackets refer to the number of analyzed dykes. 485 XI CONGRESO GEOLOGICO CHILENO "uncontaminated" field occupied by dykes from areas further to the NE. Consequently, they are of calc-alkaline, not tholeiitic character. Also low U/Th ratios may reflect crustal contamination. Whereas the Hurd Peninsula dykes in general tend towards low U/Th ratios as compared to the other areas, the two youngest events indeed have the highest U/Th ratios from all Hurd Peninsula dykes, provid-ing further evidence for a gradual decrease of the crustal contamination [KRAUS 2005]. CONCLUSIONS The outlined observations yield strong evidence that crustal contamination beneath Hurd Peninsula was high during initial phases of intrusive activity (Danian), possibly due to a still unstretched continental crust. The crustal influence then decreased gradually and had virtually expired at the time the last two intrusive events intruded (Priabonian). In contrast, dyke formation in areas further northeast (Nelson and King George Island) started not only later but was moreover at no time affected by significant crustal contamination. REFERENCES: KRAUS, S. (2005): Magmatic dyke systems of the South Shetland Islands volcanic arc (West Antarctica): reflections of the geodynamic history. PhD thesis published online (http://edoc.ub.uni-muenchen.de/ archive/00003827/), Munich University Library, pp. 160. KRAUS S. & MILLER H. (2003a): Subduction related dyke systems of the South Shetland Islands, West- Antarctica - tracing geodynamic history combining structural, geochemical and isotopic data. In: FÜTTERER D.K. (ed.): Antarctic contributions to global earth sciences. 9th Int. Symp. Ant. Earth Sci. (ISAES), Terra Nostra, 2003/4, 188-189. KRAUS S. & MILLER H. (2003b): Structural, geochemical, and isotopic studies on magmatic dyke swarms of the South Shetland Islands volcanic arc, West Antarctica - Revealing the geodynamic history. Eos. Trans. AGU, 84(46), Fall Meet. Suppl., Abstract V31C-0952. MACLEAN W.H. & BARRETT T.J. (1993): Lithogeochemical techniques using immobile elements. J. Geo-chem. Expl. ,48, 109-133. MCDONOUGH W.F. & SUN S.-S. (1995): The composition of the Earth. Chem. Geol., 120, 223-253. RUDNICK R.L. & GAO S. (2003): Composition of the continental crust. In: RUDNICK R.L. (ed.): Treatise on geochemistry, Vol. 3. The Crust, Elsevier Ltd., 1-64. SUN S.-S. & MCDONOUGH W.F. (1989): Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: SAUNDERS A.D. & NORRY M.J. (eds.): Magmatism in the Ocean Basins, Geol. Soc. Spec. Pub., 42, 313-345. TATSUMI Y. & EGGINS S. (1995): Subduction zone magmatism. Blackwell Science, 211 pp., Massachusets. 486 .
Recommended publications
  • USGS Open-File Report 2007-1047, Short Research Paper 035, 3 P.; Doi:10.3133/Of2007-1047.Srp035
    U.S. Geological Survey and The National Academies; USGS OF-2007-1047, Short Research Paper 035; doi:10.3133/of2007-1047.srp035 New 40Ar/39Ar and K/Ar ages of dikes in the South Shetland Islands (Antarctic Peninsula) S. Kraus,1 M. McWilliams,2 and Z. Pecskay3 1Instituto Antártico Chileno, Punta Arenas, Chile ([email protected]) 2John de Laeter Centre of Mass Spectrometry, Perth, Australia ([email protected]) 3Institute of Nuclear Research of the Hungarian Academy of Sciences, Debrecen, Hungary ([email protected]) Abstract Eighteen plagioclase 40Ar/39Ar and 7 whole rock K/Ar ages suggest that dikes in the South Shetland Islands (Antarctic Peninsula) are of Paleocene to Eocene age. The oldest dikes are exposed on Hurd Peninsula (Livingston Island) and do not yield 40Ar/39Ar plateaux. Our best estimates suggest dike intrusion at about the Cretaceous/Paleogene boundary. An older age limit for the dikes is established by Campanian nannofossil ages from their metasedimentary host. Dike intrusion began earlier and lasted longer on Hurd Peninsula (Danian to Priabonian) than on King George Island (Thanetian to Lutetian). Arc magmatism on King George Island, possibly accompanied also by hypabyssal intrusions, began in the Cretaceous as indicated by ages from the stratiform volcanic sequence. The dikes on King George Island were emplaced beginning in the late Paleocene and ending 47–45 Ma. The youngest arc-related dikes on Hurd Peninsula were emplaced ~37 Ma. Citation: Kraus, S., M. McWilliams, and Z. Pecskay (2007), New 40Ar/39Ar and K/Ar ages of dikes in the South Shetland Islands (Antarctic Peninsula), in Antarctica: A Keystone in a Changing World – Online Proceedings of the 10th ISAES, edited by A.
    [Show full text]
  • Decelerated Mass Loss of Hurd and Johnsons Glaciers, Livingston Island, Antarctic Peninsula
    Journal of Glaciology, Vol. 59, No. 213, 2013 doi: 10.3189/2013JoG12J144 1 Decelerated mass loss of Hurd and Johnsons Glaciers, Livingston Island, Antarctic Peninsula Francisco J. NAVARRO, Ulf Y. JONSELL, MarõÂa I. CORCUERA, Alba MARTIÂN-ESPANÄ OL Departmento de MatemaÂtica Aplicada, ETSI de TelecomunicacioÂn, Universidad PoliteÂcnica de Madrid, Madrid, Spain E-mail: [email protected] ABSTRACT. A new 10 year surface mass balance (SMB) record of Hurd and Johnsons Glaciers, Livingston Island, Antarctica, is presented and compared with earlier estimates on the basis of local and regional meteorological conditions and trends. Since Johnsons is a tidewater glacier, we also include a calving flux calculation to estimate its total mass balance. The average annual SMB over the 10 year observation period 2002±11 is ±0.15 0.10 m w.e. for Hurd Glacier and 0.05 0.10 m w.e. for Johnsons Glacier. Æ Æ Adding the calving losses to the latter results in a total mass balance of ±0.09 0.10 m w.e. There has Æ been a deceleration of the mass losses of these glaciers from 1957±2000 to 2002±11, which have nearly halved for both glaciers. We attribute this decrease in the mass losses to a combination of increased accumulation in the region and decreased melt. The increased accumulation is attributed to larger precipitation associated with the recent deepening of the circumpolar pressure trough, while the melt decrease is associated with lower summer surface temperatures during the past decade. 1. INTRODUCTION lation rate. In fact, much evidence points to such an Hurd and Johnsons Glaciers are located on Livingston Island increase: an increasing trend in winter accumulation in the (LI), the second largest island in the South Shetland Islands northwestern AP observed in ERA-40 reanalysis data (Miles (SSI) archipelago, which lies nearly parallel to the northern and others, 2008), an increase in the annual total of tip of the Antarctic Peninsula (AP), known as Trinity precipitation days at Faraday/Vernadsky station (Turner and Peninsula (Fig.
    [Show full text]
  • Observations on the Glacial History of Livingston Island1
    Observations on the Glacial History of Livingston Island1 K. R. EVERETT2 ABSTRACT. Livingston Island, one of the South Shetland Islands, Antarctica, has recorded at least three glacial events. During the oldest event all areas of the island below 200 m. were covered by an expanded island ice cap. At that time Livingston Island ice probably joined that of adjacent islands. A second, less extensive event, is recorded by deposits of both the inland ice cap and cirque glaciers. Between these two glacial events a higherstand of sea level produced beaches and terracesat 10.6 m. to 12 m. above the present sea level. Following the second glacial event a higher sea level produced beaches 6.1 m. above the present sea level. A third, minor and probably relatively recent glacial event is recorded by push moraines in some cirques from which the ice has now receded. RÉSUMÉ. Observations sur l'histoireglaciaire de l'île deLivingston. L'une des Shetland du Sud, en Antarctique, I'ile de Livingston a vu au moins trois événements glaciaires. Au cours du plus ancien, toute l'île en bas de la cote 200 m a été recou- verte par une calotte insulaire. A ce moment-là, la glace de Livingston rejoignait probablementcelle des îles adjacentes. Un second événement moins étendu est enregistré à la fois dans les dépôts de la calotte,et dans ceux de glaciers de cirque. Entre ces deux événements, un niveau marin plus élevé a produit des plages et des terrasses entre 10,6 et 12 m au-dessus du niveau marin actuel.
    [Show full text]
  • Structural Studies in the Scotia Arc: Livingston Island
    Structural Studies in the Scotia Arc: relatively mature sandstone. Only plant fossils were Livingston Island found and it is not yet known whether any of these are diagnostic. Although tentatively correlated with the Trinity Peninsula Series by Hobbs (1968) on IAN W. D. DALZIEL lithic grounds, the rocks are remarkably similar to the Lamont-Doherty Geological Observatory Cretaceous sediments at Cape Legoupil, directly Columbia University across the Bransfield Strait on the Antarctic Penin- sula, as described by Halpern (1965; see also Adie, The South Shetland Islands lie on the southern limb 1964). of the Scotia Arc, separated from the Antarctic Pen- The rocks of the Miers Bluff Formation, dip north- insula by the Bransfield Strait (Fig. 1). During the west at a low or moderate angle. They were regarded 1968-1969 antarctic summer, the author and his as- by Hobbs (1968) as a normal upward-facing succes- sistant, S. J. Brocoum, spent approximately seven sion. However, the present study has shown that they weeks in the southeastern part of Livingston Island, lie on the inverted limb of a recumbent fold of nappe the largest of the group, carrying out geological and proportions which is refo!ded by at least two later sets geophysical studies pertinent to the tectonic history of of structures. The hinge line of the recumbent fold the Arc. This particular location was selected in order can he deduced from cleavage/bedding relations to to study the so-called False Bay schists, which were strike northeast-southwest parallel to the trend of the tentatively assigned a Precambrian age by Hobbs Scotia Arc at this point, and the fold faces southeast.
    [Show full text]
  • Ice Thinning on Nunataks During the Glacial to Interglacial Transition In
    Quaternary Science Reviews 264 (2021) 107029 Contents lists available at ScienceDirect Quaternary Science Reviews journal homepage: www.elsevier.com/locate/quascirev Ice thinning on nunataks during the glacial to interglacial transition in the Antarctic Peninsula region according to Cosmic-Ray Exposure dating: Evidence and uncertainties * Jose M. Fernandez-Fern andez a, , Marc Oliva a, b, David Palacios c, Julia Garcia-Oteyza b, Francisco J. Navarro d, Irene Schimmelpfennig e,Laetitia€ Leanni e, ASTER Team e, f a Instituto de Geografia e Ordenamento do Territorio (IGOT), Universidade de Lisboa, Lisbon, Portugal b Departament de Geografia, Universitat de Barcelona, Barcelona, Spain c Departament de Geografia, Universidad Complutense de Madrid, Madrid, Spain d Departamento de Matematica Aplicada a las TIC, Universidad Politecnica de Madrid, Madrid, Spain e Aix-Marseille Universite, CNRS, IRD, INRAE, Coll. France, UM 34 CEREGE, Aix-en-Provence, France f Consortium: Georges Aumaître, Didier Bourles, Karim Keddadouche, France article info abstract Article history: The small ice caps distributed across the Antarctic Peninsula region have undergone large ice volume Received 3 January 2021 changes since the Last Glacial Cycle, in line with most of the Antarctic continent. While the surface extent Received in revised form of glacial shrinking is relatively well known, the timing of glacial oscillations and the magnitude of ice 27 May 2021 thinning remain little investigated. Cosmic-Ray Exposure (CRE) dating applied on ice-free vertical se- Accepted 8 June 2021 quences can provide insights about the temporal framework of glacial oscillations. However, the po- Available online 17 June 2021 tential occurrence of nuclide inheritance may overestimate the real timing of the last glacial retreat.
    [Show full text]
  • Geologic Studies in the South Shetland Islands and at Hope Bay
    trolled by regional NE-SW and NW-SE structures. The structural elements on Barton Peninsula are similar in type and general attitudes to those noted on Keller Peninsula. The remainder of the field season was spent in recon- naissance studies of (1) Greenwich Island (Duff Point)-25 and 26 February; (2) Livingston Island (Hurd Peninsula and area east of False Bay)-21 February; (3) Low Island (Cape Wallace, 63°13S 62°15W)-22 February; and (4) southern Anvers Island (vicinity of Palmer Station and Arthur Har- bor, 64°46S 64°04W)-18 and 19 February. The work in- cluded reconnaissance mapping and collection of samples for laboratory study. We defined two areas of considerable interest during the Figure 2. Location map, Keller and Barton Peninsulas, King reconnaissance studies. These are (1) Hurd Peninsula, on George Island. (Adapted from Barton 1965). Livingston Island; and (2) the vicinity of Palmer Station, on southern Anvers Island. NE-SW and NW-SE respectively; they and the Andean in- Veins bearing sphalerite, plus subordinate galena, pyrite, trusions appear to be related genetically. It is suggested that chalcopyrite, and quartz were found near Johnsons Dock the NE-SW set of joints and faults may be related to major (62°40S 60°22W), on Hurd Peninsula, Livingston Island. strike-slip plate movement within the northern region of One sphalerite vein measured 50 centimeters in thickness. the peninsula. The NW-SE set of fractures is tensional and The veins apparently are associated with a small body of ton- may be related to opening of the Bransfield Strait. alite, presumably an apophysis of a larger intrusion nearby.
    [Show full text]
  • Determination of Ice Thickness and Volume of Hurd Glacier, Hurd Peninsula, Livingstone Island, Antarctica
    Universidad de Granada MASTER’S DEGREE IN GEOPHYSICS AND METEOROLOGY MASTER’S THESIS DETERMINATION OF ICE THICKNESS AND VOLUME OF HURD GLACIER, HURD PENINSULA, LIVINGSTONE ISLAND, ANTARCTICA ÁNGEL RENTERO VARGAS Abstract.The present work is the result of several radio-echo sounding (RES) surveys carried out on Hurd Glacier, Hurd Peninsula, Livingston Island, Antarctica, during the austral summer season 2001/2002 campaign, which included radar profiling and common-midpoint measurements with low (20-25 MHz) and high (100- 200MHz)frequency using a ground penetrating radar (GPR), allowing to estimate the radio-wave velocities (RWV) and determine the subglacial relief, thickness and volume of the glacier, topographical surface, and to study the global flux of the ice mass. Theprofiles reached a total length of 77.5 km, with 3922 radio-echo sounding measurements and estimating an average ice volume of 0.35 km3 and a maximum ice thickness of 200 m. Keywords: Hurd Glacier, radio- echo sounding (RES), ground penetrating radar (GPR), radio- wave velocities (RWV). INTRODUCCIÓN Hurd Peninsula ice cap (62°39-42'S, 60°19-25'W; Fig. 1) is based in Livingston Island, South Shetland Islands, Antarctica, covering an area of nearly 10 km². The main ice cap is drained by several outlet glaciers: Argentina, flowing northwestwards; Las Palmas, flowing westwards; Sally Rocks tongue, flowing southwestwards; an unnamed tongue flowing southwards (where the authors refer to as McGregor glacier); and Johnsons Glacier, flowing northwestwards, which is additionally fed by ice draining not from the main ice cap but from the east and northeast. For the latter reason, Hurd Peninsula ice cap is often subdivided into two main glacier units: Johnsons Glacier, a tidewater glacier; and Hurd Glacier, the remainingice mass, mostly ending on land.
    [Show full text]
  • Fission Track Thermo-Chronological Study of the Barnard Point Pluton (Livingston Island, Western Antarctica
    Sell, I., Poupeau, G., González-Casado, J. M. and López-Martínez, J. (2000). Fission track thermo-chronological study of the Barnard Point pluton (Livingston Island, Western Antarctica. Boletín Geológico y Minero. Vol. 111-6, 39-44. ISSN 0366-0176 Fission track thermo-chronological study of the Barnard Point pluton (Livingston Island, Western Antarctica) I. Sell(1), G. Poupeau(2), J. M. González-Casado(1) and J. López-Martínez(1) (1) Dpto. Química Agrícola, Geología y Geoquímica. Facultad de Ciencias. Universidad Autónoma de Madrid. 28049 Madrid, España. (2) Institut Dolomieu. CNRS-Université Joseph Fourier. 38041 Grenoble, France. ABSTRACT The apatites of four tonalite samples, taken between near sea level and an altitude of 390 m, of the Barnard Point pluton (Livingston Island, South Shetland Islands) have been dated by fission track. The four central ages are concordant at 18.7±1.2 (mean and stan- dard error) Ma. Confined track distribution and optimisation of the data indicate that track recording started about 40-35 Ma ago. The cooling of the massif below 120º C seems to have increased from the lower Oligocene (approx. 30 Ma.), contemporaneously with an extensional tectonic episode and a subsequent denudation process. The recent (< 1 Ma) Bransfield rift volcanic activity is not recorded in the Barnard Point pluton apatites. Palabras clave: Antarctica, Apatite fission track, Barnard Point pluton, South Shetland Islands, Thermo-chronological history. Estudio termo-cronológico por trazas de fisión del plutón de Punta Barnard (Isla Livingston, Antártida Occidental) RESUMEN Se han datado mediante trazas de fisión cuatro muestras de tonalitas del plutón de Punta Barnard (Isla Livingston, Islas Shetland del Sur), recogidas entre cerca del nivel del mar y 390 m de altitud.
    [Show full text]
  • Hurd Peninsula Glaciers, Livingston Island, Antarctica, As Indicators of Regional Warming: Ice-Volume Changes During the Period 1956–2000
    Annals of Glaciology 46 2007 43 Hurd Peninsula glaciers, Livingston Island, Antarctica, as indicators of regional warming: ice-volume changes during the period 1956–2000 C. MOLINA,1 F.J. NAVARRO,1 J. CALVET,2 D. GARCI´A-SELLE´S,2 J.J. LAPAZARAN1 1Departamento de Matema´tica Aplicada, ETSI de Telecomunicacio´n, Universidad Polite´cnica de Madrid, Ciudad Universitaria, ES-28040 Madrid, Spain E-mail: [email protected] 2Dept. Geodina`mica i Geofı´sica, Facultat de Geologia, Universitat de Barcelona, Martı´ i Franque`s, s/n, ES-08028 Barcelona, Spain ABSTRACT. Johnsons and Hurd Glaciers are the two main glacier units of Hurd Peninsula ice cap, Livingston Island, South Shetland Islands, Antarctica. They presently cover an area of about 10 km2. Johnsons is a tidewater glacier, while Hurd Glacier ends on emerged land. In this paper, we estimate the changes in ice volume during the period 1956–2000, and compare them with the regional meteorological records. The volume-change estimates are based on the comparison of digital terrain models for the glacier surface, constructed from aerial photographs taken by the British Antarctic Survey in 1956 and from our geodetic measurements in 1999/2000. The total volume estimates are based on an ice-thickness map constructed from radio-echo sounding profiles (18–25 MHz) done in 1999–2001, showing maximum ice thickness of about 200 m. We estimate the changes in ice volume during the period 1956–2000 to be –0.108 Æ 0.048 km3, which represents a 10.0 Æ 4.5%% decrease from the 1956 total volume of 1.076 Æ 0.055 km3 and is equivalent to an average annual mass balance of –0.23 Æ 0.10 m w.e.
    [Show full text]
  • Volcanic Stratigraphy of Hannah Point, Livingston Island, South Shetland Islands, Antarctica
    ACTA GEOLOGICA HISPANICA,v. 34 (1999), nº 4,p. 323-328 Volcanic Stratigraphy of Hannah Point, Livingston Island, South Shetland Islands, Antarctica Estratigrafia volcànica de la Punta Hannah, Illa de Livingston, Shetland del Sud,Antàrtida R. PALLÀS(1), C. SORIANO(2), X. ZHENG(3), F. SÀBAT(1) and J.M. CASAS(1) (1) Departament de Geodinàmica i Geofísica, Universitat de Barcelona, 08028 Barcelona (2) Dipartimento di Scienze della Terra, Universita degli Studi di Pisa. Via S. Maria 15, Pisa, 56126 Italy (3) Institute of Geology, Chinese Academy of Sciences, Beijing 100029, P.R. China ABSTRACT The Upper Cretaceous volcanic succession of Hannah Point is the best exposure of the Antarctic Peninsula Volcanic Group on L ivingston Island. The aim of the present paper is to contribute to the characterisation of the stratigr a p hy and petrogr a p hy of this lit- tle studied succession, and briefly discuss some aspects of the eru p t ive style of its volcanism. The succession is about 470 m thick and is here subdivided into five lithostratigraphic units (A to E from base to top). Unit A, approx i m a t e ly 120 m thick, is mainly com- posed of polymict clast-supported volcaniclastic breccias and also includes a dacitic lava laye r. Interstratified in the breccias of this unit, there is a thin laminated dev i t r i fied layer which shows some degree of welding. Unit B, approx i m a t e ly 70 m thick, is almost en- t i r e ly composed of volcaniclastic breccias, and includes a volcaniclastic conglomerate laye r.
    [Show full text]
  • Sensitivity of a Distributed Temperature-Radiation Index Melt Model Based
    The Cryosphere, 6, 539–552, 2012 www.the-cryosphere.net/6/539/2012/ The Cryosphere doi:10.5194/tc-6-539-2012 © Author(s) 2012. CC Attribution 3.0 License. Sensitivity of a distributed temperature-radiation index melt model based on AWS observations and surface energy balance fluxes, Hurd Peninsula glaciers, Livingston Island, Antarctica U. Y. Jonsell1,*, F. J. Navarro1, M. Ban˜on´ 2, J. J. Lapazaran1, and J. Otero1 1Departamento de Matematica´ Aplicada, E.T.S.I. Telecomunicacion,´ Universidad Politecnica´ de Madrid, Av. Complutense, 30, 28040 Madrid, Spain 2Observatorio Meteorologico´ de Alicante, Agencia Estatal de Meteorolog´ıa (AEMET), C/ Regidor Ocana,˜ 26, 03011 Alicante, Spain *now at: Swedish Polar Research Secretariat. Box 50003, 104 05 Stockholm, Sweden Correspondence to: U. Y. Jonsell ([email protected]) Received: 27 October 2011 – Published in The Cryosphere Discuss.: 28 November 2011 Revised: 1 April 2012 – Accepted: 4 April 2012 – Published: 21 May 2012 Abstract. We use an automatic weather station and sur- 1 Introduction face mass balance dataset spanning four melt seasons col- lected on Hurd Peninsula Glaciers, South Shetland Islands, 1.1 Background to investigate the point surface energy balance, to determine the absolute and relative contribution of the various energy Retreating and thinning glaciers have come into sharp focus fluxes acting on the glacier surface and to estimate the sen- in relation to increased atmospheric temperatures attributed sitivity of melt to ambient temperature changes. Long-wave to anthropogenic greenhouse emissions. Changes in meteo- incoming radiation is the main energy source for melt, while rological conditions and the associated changes in air tem- short-wave radiation is the most important flux controlling perature will, in different ways and to different extent, af- the variation of both seasonal and daily mean surface en- fect the various fluxes providing energy for heating and melt- ergy balance.
    [Show full text]
  • Caracterización Dinámica Del Glaciar Hurd Combinando Observaciones De Campo Y Simulaciones Numéricas
    Universidad Politécnica de Madrid Escuela Técnica Superior de Ingenieros de Telecomunicación Caracterización dinámica del glaciar Hurd combinando observaciones de campo y simulaciones numéricas Tesis Doctoral por María Carmen Molina Castiella Licenciada en Ciencias Geológicas Año 2014 Departamento de Matemática Aplicada a las Tecnologías de la Información Escuela Técnica Superior de Ingenieros de Telecomunicación Caracterización dinámica del glaciar Hurd combinando observaciones de campo y simulaciones numéricas Autora: María Carmen Molina Castiella Licenciada en Ciencias Geológicas Directores: Francisco José Navarro Valero Jaume Calvet Porta Doctor en Ciencias Físicas Doctor en Ciencias Geológicas Año 2014 I II Tribunal nombrado por el Mgfco. y Excemo. Sr. Rector de la Uni- versidad Politécnica de Madrid, el día ____ de __________ de 2014. Presidente D. Vocal D. Vocal D. Vocal D. Vocal Secretario D. Realizado el acto de defensa y lectura de la Tesis el día ____ de __________ de 2014, en ____________. Calificación: ________________________ EL PRESIDENTE LOS VOCALES EL VOCAL SECRETARIO III IV A mis hijos Jorge, Víctor y Miguel. A Víctor, mi marido. V VI Resumen El objetivo fundamental de esta tesis es la caracterización de la morfología y del estado de deformaciones y tensiones del Glaciar Hurd (Isla Livingston, Archipiélago de las Shetland del Sur, Antártida), mediante una combinación de observaciones de campo, registros de georradar y simulaciones numéricas. La morfología y el estado de deformaciones y tensiones actuales son la expresión de la evolución dinámica del glaciar desde tiempos pretéritos hasta recientes, y su análisis nos dará las pautas con las cuales ser capaces de predecir, con el apoyo de las simulaciones numéricas, su evolución futura.
    [Show full text]