Chapter 6General Introduction

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 6General Introduction LIFECYCLE, BIOLOGY AND DIVERSITY OF PUCCINIA BORONIAE IN WESTERN AUSTRALIA Boronia 'Lipstick' in cultivation at Mount Barker, Western Australia by Susanna Driessen BSc (Hons) Murdoch University This thesis is submitted in fulfilment of the requirements for the degree of Doctor of Philosophy School of Biological Sciences and Biotechnology Murdoch University, Perth, Western Australia June 2005 DECLARATION The work described in this thesis was undertaken while I was an enrolled student for the degree of Doctor of Philosophy at Murdoch University, Western Australia. I declare that this thesis is my own account of my research and contains as its main content work which has not previously been submitted for a degree at any tertiary education institution. To the best of my knowledge, all work performed by others, published or unpublished, has been duly acknowledged. Susanna Driessen June 2005 i ACKNOWLEDGEMENTS I would like to thank all the Boronia growers who participated in this study, but particularly Jeanette and Phillip Trent. Without their active participation, this research would not have been possible. Their good natured acceptance of my enthusiasm when their Boronia megastigma plants became infected and I tried to convince them how “beautiful and special” their rust was, was wonderful. I would also like to acknowledge the Western Australian Department of Agriculture as the industry partner supporting this project. My deep thanks go to Associate Professor Giles Hardy, whose enthusiasm and passion for all things fungal started me along the road of plant pathology. His supervision and input to this project was inspiring and motivating. I would also like to recognize Dr Phillip O’Brien for his valuable supervision into the molecular aspects of this research. Much support was received by a long list of colleagues and fellow PhD students at Murdoch University, for which I am indebted. I would particularly like to thank Sarah Jackson for her help in setting up the field trial, accompanying me on many of the field excursions (despite her allergy to Boronia), and her constructive criticisms during the review and editing of my thesis. Thanks go to Trudy Paap, Nari Anderson and Susana Pons, who greatly helped in thinking out alternative approaches, raising ideas during the research and generally providing support during the rollercoaster ride that is the PhD. Murdoch technical staff, particularly Ian McKernon, are thanked for their help with organising my greenhouse and growth cabinet needs. I would like to thank Gordon Thomson for his invaluable input into the preparation of the histological and fluorescent specimens, and Dr Paul Barber for showing me how to successfully prepare ‘good’ ii hand sections. Dr Morag Glen is thanked for her technical input and discussions about the molecular aspects of the project. Last, but by no means least, I would like to thank my parents Heidi and Peter, and my sister Elisabeth. Words cannot express my gratitude for their unwavering support and love during this long road, and to them I dedicate this thesis. iii ABSTRACT The rust fungi (Uredinales, Basidiomycota) are an expansive and diverse group of fungal species, consisting of approximately 7000 different species in over 160 different genera. Fungi of the genus Puccinia represent a large proportion of these rust fungi, many species of which are well known for their role in causing massive yield and subsequent economic losses in agricultural crops worldwide. Puccinia boroniae is one such rust fungus and is a significant pathogen of several species of Boronia (Rutaceae), a native Australian wildflower grown commercially in Western Australia as a cutflower. Complete control of the rust pathogen is rarely achieved using chemical fungicides. Improving the level of disease control is vital for the long-term sustainability and future growth of the Boronia industry, and requires an understanding of the pathogen. The objectives of this thesis were to investigate aspects of the epidemiology, the biology and the diversity of P. boroniae in Western Australia, providing a broad understanding of the pathogen, which in turn could be employed to improve disease control. The lifecycle of P. boroniae was conclusively shown to be microcyclic by artificial inoculation of Boronia heterophylla with basidiospores released from germinating teliospores suspended over the host plant. Telia developed on the leaves within 21 days, with no intermediate rust spore stages (pycnial, uredial or aecial) observed. Rarely, low numbers of pycnia of P. boroniae were observed on field specimens collected from leaves of B. megastigma cultivated at one commercial floriculture plantation. This was the first record of pycnia of P. boroniae; however, as pycnia were not observed on other host species or plantations, or formed during controlled inoculation trials, their functional role in the lifecycle is currently unresolved. Telia were subepidermal, erumpent and pulvinate, amphigenous on leaves, stems and parts of developing flower buds, and generally persistent year round. Intracellular iv hyphae resembling monokaryotic haustoria (M-haustoria) were observed in leaf mesophyll cells beneath and adjacent of telia. Occasionally Sphaerellopsis filum (teleomorph Eudarluca caricis), a known mycoparasite of rust fungi, was observed on the telia. Under favourable conditions, teliospores germinated immediately without a period of dormancy, with fully mature basidiospores formed within 3–4 h after telia were exposed to moisture. Basidial development in P. boroniae was unusual, in that only one basidiospore was formed from each germinating teliospore cell. Immature teliospores were initially binucleate undergoing karyogamy to form a single large (presumably diploid) nucleus that migrated into the developing metabasidium. Both binucleate and tetranucleate metabasidia were observed, with mature uninucleate, binucleate and tetranucleate basidiospores present. At this stage, more research is required to understand the complete nuclear behaviour during teliospore germination. The morphology of the pycnial stage was similar to other Puccinia species, being ampulliform, subepidermal, amphigenous and arranged in small clusters on leaves of B. megastigma. However, the spine-like periphyses protruded through stomata as apposed to penetrating the leaf epidermis. Environmental conditions favouring the formation and dispersal of basidiospores were assessed in vitro and under field conditions with a spore catcher. Under field conditions, basidiospores were captured from February–August 2004, with peak numbers and daily incidence occurring during autumn (April/May) when the average temperature range was 9.1–22.6 °C. Daily basidiospore numbers were positively correlated with minimum daily temperature and total daily rainfall. A distinct diurnal periodicity of release was observed, with numbers peaking on average between 02:00 and 05:00 hrs. The hourly release of basidiospores was positively correlated with relative humidity and negatively correlated with temperature and evaporation. This data was in agreement with the in vitro experimentation, which showed that basidiospore v formation occurred between 10–25 ± 1 °C (apparent optimal temperature of 15–20 ± 1 °C) with telia incubated in continuous darkness promoting a greater number of basidiospores. The level of genetic variation of P. boroniae in Western Australia was assessed by PCR-RFLP of the nuclear ribosomal intergenic spacer 2 (IGS2) region. Two RFLP profiles were observed, separating three specimens (Group 1) from the remaining population (Group 2). Sequence analysis indicated that point mutations at endonuclease recognition sites were responsible for the changes in RFLP profile. Group 2 specimens had been collected from the same host species (B. megastigma) and plantation, and it is suggested that the variant specimens may constitute a subspecies of P. boroniae, isolated by geographic location and possibly host (cultivar) specificity. Further analysis, primarily pathogenicity trials, is needed to confirm this. This study has improved our knowledge regarding the rust fungus P. boroniae and has laid strong foundations for future research into several aspects of the biology, epidemiology and population variation. The implications of the key findings of this research, with an emphasis on the management of P. boroniae in commercial situations, are discussed. vi TABLE OF CONTENTS Declaration..................................................................................................................................... i Acknowledgments......................................................................................................................... ii Abstract........................................................................................................................................ iv CHAPTER 1 1 General Introduction 1.1 Introduction .................................................................................................................... 2 1.2 Boronia industry in Western Australia......................................................................... 2 1.3 Pests and diseases of Boronia......................................................................................... 5 1.4 Puccinia boroniae............................................................................................................ 6 1.4.1 Lifecycle of Puccinia boroniae................................................................................ 8 1.4.2
Recommended publications
  • Identification of Genes Associated with Resistance to Brown Rust In
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2016 Identification of Genes Associated with Resistance to Brown Rust in Sugarcane and Prevalence of One Major Gene Mavir Carolina Avellaneda Barbosa Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Plant Sciences Commons Recommended Citation Avellaneda Barbosa, Mavir Carolina, "Identification of Genes Associated with Resistance to Brown Rust in Sugarcane and Prevalence of One Major Gene" (2016). LSU Doctoral Dissertations. 3645. https://digitalcommons.lsu.edu/gradschool_dissertations/3645 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. IDENTIFICATION OF GENES ASSOCIATED WITH RESISTANCE TO BROWN RUST IN SUGARCANE AND PREVALENCE OF ONE MAJOR GENE A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Plant Pathology and Crop Physiology by Mavir Carolina Avellaneda Barbosa B.S. Pontificia Universidad Javeriana, 2002 M.S. Louisiana State University, 2014 May 2016 This dissertation is dedicated to my beloved son Nicolás. ii ACKNOWLEDGMENTS Thanks to God for granting me so many blessings and giving me the health, strength and discernment to pursue a research career. I would like to sincerely and deeply thank Dr. Jeff Hoy for giving me the opportunity of pursuing graduate studies and accepting me as his student.
    [Show full text]
  • By Thesis for the Degree of Doctor of Philosophy
    COMPARATIVE ANATOMY AND HISTOCHEMISTRY OF TIIE ASSOCIATION OF PUCCIiVIA POARUM WITH ITS ALTERNATE HOSTS By TALIB aWAID AL-KHESRAJI Department of Botany~ Universiiy of SheffieZd Thesis for the degree of Doctor of Philosophy JUNE 1981 Vol 1 IMAGING SERVICES NORTH Boston Spa, Wetherby West Yorkshire, lS23 7BQ www.bl.uk BEST COpy AVAILABLE. VARIABLE PRINT QUALITY TO MY PARENTS i Ca.1PARATIVE ANATCl1Y AND HISTOCHEMISTRY OF THE ASSOCIATION OF PUCCINIA POARUM WITH ITS ALTERNATE HOSTS Talib Owaid Al-Khesraji Depaptment of Botany, Univepsity of Sheffield The relationship of the macrocyclic rust fungus PUccinia poarum with its pycnial-aecial host, Tussilago fapfaPa, and its uredial-telial host, Poa ppatensis, has been investigated, using light microscopy, electron microscopy and micro-autoradiography. Aspects of the morp­ hology and ontogeny of spores and sari, which were previously disputed, have been clarified. Monokaryotic hyphae grow more densely in the intercellular spaces of Tussilago leaves than the dikaryotic intercellular hyphae on Poa. Although ultrastructurally sbnilar, monokaryotic hyphae differ from dikaryotic hyphae in their interaction with host cell walls, often growing embedded in wall material which may project into the host cells. The frequency of penetration of Poa mesophyll cells by haustoria of the dikaryon is greater than that of Tussilago cells by the relatively undifferentiated intracellular hyphae of the monokaryon. Intracellular hyphae differ from haustoria in their irregular growth, septation, lack of a neck-band or markedly constricted neck, the deposition of host wall-like material in the external matrix bounded by the invaginated host plasmalemma and in the association of callose reactions \vith intracellular hyphae and adjacent parts of host walls.
    [Show full text]
  • LUNDY FUNGI: FURTHER SURVEYS 2004-2008 by JOHN N
    Journal of the Lundy Field Society, 2, 2010 LUNDY FUNGI: FURTHER SURVEYS 2004-2008 by JOHN N. HEDGER1, J. DAVID GEORGE2, GARETH W. GRIFFITH3, DILUKA PEIRIS1 1School of Life Sciences, University of Westminster, 115 New Cavendish Street, London, W1M 8JS 2Natural History Museum, Cromwell Road, London, SW7 5BD 3Institute of Biological Environmental and Rural Sciences, University of Aberystwyth, SY23 3DD Corresponding author, e-mail: [email protected] ABSTRACT The results of four five-day field surveys of fungi carried out yearly on Lundy from 2004-08 are reported and the results compared with the previous survey by ourselves in 2003 and to records made prior to 2003 by members of the LFS. 240 taxa were identified of which 159 appear to be new records for the island. Seasonal distribution, habitat and resource preferences are discussed. Keywords: Fungi, ecology, biodiversity, conservation, grassland INTRODUCTION Hedger & George (2004) published a list of 108 taxa of fungi found on Lundy during a five-day survey carried out in October 2003. They also included in this paper the records of 95 species of fungi made from 1970 onwards, mostly abstracted from the Annual Reports of the Lundy Field Society, and found that their own survey had added 70 additional records, giving a total of 156 taxa. They concluded that further surveys would undoubtedly add to the database, especially since the autumn of 2003 had been exceptionally dry, and as a consequence the fruiting of the larger fleshy fungi on Lundy, especially the grassland species, had been very poor, resulting in under-recording. Further five-day surveys were therefore carried out each year from 2004-08, three in the autumn, 8-12 November 2004, 4-9 November 2007, 3-11 November 2008, one in winter, 23-27 January 2006 and one in spring, 9-16 April 2005.
    [Show full text]
  • Downloading Or Purchasing Online At
    On-farm Evaluation of Grafted Wildflowers for Commercial Cut Flower Production OCTOBER 2012 RIRDC Publication No. 11/149 On-farm Evaluation of Grafted Wildflowers for Commercial Cut Flower Production by Jonathan Lidbetter October 2012 RIRDC Publication No. 11/149 RIRDC Project No. PRJ-000509 © 2012 Rural Industries Research and Development Corporation. All rights reserved. ISBN 978-1-74254-328-4 ISSN 1440-6845 On-farm Evaluation of Grafted Wildflowers for Commercial Cut Flower Production Publication No. 11/149 Project No. PRJ-000509 The information contained in this publication is intended for general use to assist public knowledge and discussion and to help improve the development of sustainable regions. You must not rely on any information contained in this publication without taking specialist advice relevant to your particular circumstances. While reasonable care has been taken in preparing this publication to ensure that information is true and correct, the Commonwealth of Australia gives no assurance as to the accuracy of any information in this publication. The Commonwealth of Australia, the Rural Industries Research and Development Corporation (RIRDC), the authors or contributors expressly disclaim, to the maximum extent permitted by law, all responsibility and liability to any person, arising directly or indirectly from any act or omission, or for any consequences of any such act or omission, made in reliance on the contents of this publication, whether or not caused by any negligence on the part of the Commonwealth of Australia, RIRDC, the authors or contributors. The Commonwealth of Australia does not necessarily endorse the views in this publication. This publication is copyright.
    [Show full text]
  • Molecular Identification of Fungi
    Molecular Identification of Fungi Youssuf Gherbawy l Kerstin Voigt Editors Molecular Identification of Fungi Editors Prof. Dr. Youssuf Gherbawy Dr. Kerstin Voigt South Valley University University of Jena Faculty of Science School of Biology and Pharmacy Department of Botany Institute of Microbiology 83523 Qena, Egypt Neugasse 25 [email protected] 07743 Jena, Germany [email protected] ISBN 978-3-642-05041-1 e-ISBN 978-3-642-05042-8 DOI 10.1007/978-3-642-05042-8 Springer Heidelberg Dordrecht London New York Library of Congress Control Number: 2009938949 # Springer-Verlag Berlin Heidelberg 2010 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law. The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Cover design: WMXDesign GmbH, Heidelberg, Germany, kindly supported by ‘leopardy.com’ Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) Dedicated to Prof. Lajos Ferenczy (1930–2004) microbiologist, mycologist and member of the Hungarian Academy of Sciences, one of the most outstanding Hungarian biologists of the twentieth century Preface Fungi comprise a vast variety of microorganisms and are numerically among the most abundant eukaryotes on Earth’s biosphere.
    [Show full text]
  • First Checklist of Rust Fungi in the Genus Puccinia from Himachal Pradesh, India
    Plant Pathology & Quarantine 6(2): 106–120 (2016) ISSN 2229-2217 www.ppqjournal.org Article PPQ Copyright © 2016 Online Edition Doi 10.5943/ppq/6/2/1 First checklist of rust fungi in the genus Puccinia from Himachal Pradesh, India Gautam AK1* and Avasthi S2 1 Faculty of Agriculture, Abhilashi University, Mandi-175028, India 2 Department of Botany, Abhilashi Institute of Life Sciences, Mandi- 175008, India Gautam AK, Avasthi S 2016 – First checklist of rust fungi in the genus Puccinia from Himachal Pradesh, India. Plant Pathology & Quarantine 6(2), 106–120, Doi 10.5943/ppq/6/2/1 Abstract A checklist of rust fungi belonging to the genus Puccinia was prepared for Himachal Pradesh, India. All Puccinia species published until 2014 are included in this list. A total of 80 species have been reported on 91 plant species belonging to 33 families. The family Poaceae supports the highest number of species (26 species) followed by Ranunculaceae (8), Asteraceae (7), Apiaceae and Polygonaceae (6 each), Rubiaceae and Cyperaceae (3 each), Acanthaceae, Berberidaceae, Lamiaceae and Saxifragaceae (2 each). The other host plant families are associated with a single species of Puccinia. This study provides the first checklist of Puccinia from Himachal Pradesh. Key words – checklist – Himachal Pradesh – Puccinia spp. – rust fungi Introduction Himachal Pradesh is a hilly state situated in the heart of Himalaya in the northern part of India. The state extends between 30° 22’ 40” – 33° 12’ 20” north latitudes and 75° 44’ 55” – 79° 04’ 20” east longitudes. The total area of the state is 55,670 km2, covered with very high mountains to plain grasslands.
    [Show full text]
  • Identified Difficulties and Conditions for Field Success of Biocontrol
    Identified difficulties and conditions for field success of biocontrol. 4. Socio-economic aspects: market analysis and outlook Bernard Blum, Philippe C. Nicot, Jürgen Köhl, Michelina Ruocco To cite this version: Bernard Blum, Philippe C. Nicot, Jürgen Köhl, Michelina Ruocco. Identified difficulties and conditions for field success of biocontrol. 4. Socio-economic aspects: market analysis and outlook. Classical and augmentative biological control against diseases and pests: critical status analysis and review of factors influencing their success, IOBC - International Organisation for Biological and Integrated Controlof Noxious Animals and Plants, 2011, 978-92-9067-243-2. hal-02809583 HAL Id: hal-02809583 https://hal.inrae.fr/hal-02809583 Submitted on 6 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. WPRS International Organisation for Biological and Integrated Control of Noxious IOBC Animals and Plants: West Palaearctic Regional Section SROP Organisation Internationale de Lutte Biologique et Integrée contre les Animaux et les OILB Plantes Nuisibles:
    [Show full text]
  • The New York Botanical Garden
    Vol. XV DECEMBER, 1914 No. 180 JOURNAL The New York Botanical Garden EDITOR ARLOW BURDETTE STOUT Director of the Laboratories CONTENTS PAGE Index to Volumes I-XV »33 PUBLISHED FOR THE GARDEN AT 41 NORTH QUBKN STRHBT, LANCASTER, PA. THI NEW ERA PRINTING COMPANY OFFICERS 1914 PRESIDENT—W. GILMAN THOMPSON „ „ _ i ANDREW CARNEGIE VICE PRESIDENTS J FRANCIS LYNDE STETSON TREASURER—JAMES A. SCRYMSER SECRETARY—N. L. BRITTON BOARD OF- MANAGERS 1. ELECTED MANAGERS Term expires January, 1915 N. L. BRITTON W. J. MATHESON ANDREW CARNEGIE W GILMAN THOMPSON LEWIS RUTHERFORD MORRIS Term expire January. 1916 THOMAS H. HUBBARD FRANCIS LYNDE STETSON GEORGE W. PERKINS MVLES TIERNEY LOUIS C. TIFFANY Term expire* January, 1917 EDWARD D. ADAMS JAMES A. SCRYMSER ROBERT W. DE FOREST HENRY W. DE FOREST J. P. MORGAN DANIEL GUGGENHEIM 2. EX-OFFICIO MANAGERS THE MAYOR OP THE CITY OF NEW YORK HON. JOHN PURROY MITCHEL THE PRESIDENT OP THE DEPARTMENT OP PUBLIC PARES HON. GEORGE CABOT WARD 3. SCIENTIFIC DIRECTORS PROF. H. H. RUSBY. Chairman EUGENE P. BICKNELL PROF. WILLIAM J. GIES DR. NICHOLAS MURRAY BUTLER PROF. R. A. HARPER THOMAS W. CHURCHILL PROF. JAMES F. KEMP PROF. FREDERIC S. LEE GARDEN STAFF DR. N. L. BRITTON, Director-in-Chief (Development, Administration) DR. W. A. MURRILL, Assistant Director (Administration) DR. JOHN K. SMALL, Head Curator of the Museums (Flowering Plants) DR. P. A. RYDBERG, Curator (Flowering Plants) DR. MARSHALL A. HOWE, Curator (Flowerless Plants) DR. FRED J. SEAVER, Curator (Flowerless Plants) ROBERT S. WILLIAMS, Administrative Assistant PERCY WILSON, Associate Curator DR. FRANCIS W. PENNELL, Associate Curator GEORGE V.
    [Show full text]
  • Intraspecific Hybridisation of Boronia Heterophylla F. Muell
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector HAYATI Journal of Biosciences September 2011 Available online at: Vol. 18 No. 3, p 141-146 http://journal.ipb.ac.id/index.php/hayati EISSN: 2086-4094 DOI: 10.4308/hjb.18.3.141 Intraspecific Hybridisation of Boronia heterophylla F. Muell IDA AYU ASTARINI1∗∗∗, GUIJUN YAN2, JULIE ANNE PLUMMER2 1Biology Department, Faculty of Mathematics and Natural Sciences, Udayana University, Bali 80364, Indonesia 2Plant Biology, Faculty of Natural and Agricultural Sciences, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia Received April 4, 2011/Accepted September 30, 2011 Boronia heterophylla is cultivated for cut flower production. Three cultivars dominate production, ‘Red’, ‘Cameo’, and ‘Moonglow’. A variety of colors and an extended flowering period are demanded by local and overseas markets. The aim of this study was to develop procedures for a Boronia heterophylla breeding program through intraspesific hybridization. This may yield progeny with desirable characteristics, ideally increased vigor, and a range of flower colors and flowering times. Nine pollination combinations were attempted, each self pollination and all reciprocal crosses. Seed set varied from 17 to 95%. Embryo rescue (was employed to produce hybrid plants using half strength Murashige and Skoog (MS) basal media and it was most successful (75%) 5-6 weeks after pollination. All shoots multiplied on media containing MS salts + NAA (0.1 mg/l) + BA (0.4 mg/l). All shoots transferred to medium containing half strength MS salts + NAA (4 mg/l) produced roots.
    [Show full text]
  • Report on RPD No
    report on RPD No. 627 PLANT February 1982 DEPARTMENT OF CROP SCIENCES DISEASE UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN HOLLYHOCK RUST Rust caused by the fungus Puccinia malvacearum is the most common and widespread disease of hollyhock (Althaea rosea). Hollyhock rust was first reported in 1852 in Chile, where it is indigenous. In 1857 it was observed in Australia, and in 1869 in Spain, from where it spread rapidly over the rest of Europe. By 1875, rust was reported in South Africa, and it reached the United States in 1886. Today, the disease occurs worldwide. Severely rusted leaves turn yellow, wither, and drop prematurely. Ragged and unsightly plants result, but Figure 1. Hollyhock rust pustules (sori) on the upper hollyhocks infected with rust are rarely killed. It is not and lower sides of hollyhock leaf. uncommon to find the disease severe in the spring and autumn but declining in midsummer, especially during drought periods. The same rust fungus attacks about fifty species in ten genera of the mallow family (Malvaceae) including species of Althaea, Brotex, Kitaibelia, Lavatera, Malope, Malva, Malvastrum, and Sidalcea. Rust is prevalent on common or roundleaf mallow (Malva rotundifolia), a common weed closely related to hollyhock. SYMPTOMS Rust first appears primarily on the undersides of the lower leaves as lemon yellow to orange, almost waxy pustules (or sori) that turn reddish brown to chocolate brown with age. Larger, bright yellow to orange spots with reddish centers develop on the leaf surface opposite the pustules. The rust quickly spreads to other leaves, which become covered with small, reddish brown to chocolate brown pustules.
    [Show full text]
  • Native Cut Flowers Extending Postharvest Life Using 1-MCP Treatment
    Native Cut Flowers Extending Postharvest Life Using 1-MCP Treatment A report for the Rural Industries Research and Development Corporation by AJ Macnish, DC Joyce, DH Simons and PJ Hofman October 1999 RIRDC Publication No. 99/155 RIRDC Project No. UQ-63A i © 1999 Rural Industries Research and Development Corporation. All rights reserved. ISBN 0 642 57979 2 ISSN 1440-6845 Native Cut Flowers – Extending Postharvest Life Using 1-MCP Treatment Publication no. 99/155 Project no. UQ-63A. The views expressed and the conclusions reached in this publication are those of the author and not necessarily those of persons consulted. RIRDC shall not be responsible in any way whatsoever to any person who relies in whole or in part on the contents of this report. This publication is copyright. However, RIRDC encourages wide dissemination of its research, providing the Corporation is clearly acknowledged. For any other enquiries concerning reproduction, contact the Publications Manager on phone 02 6272 3186. Researcher Contact Details Assoc. Prof. David H. Simons School of Land and Food The University of Queensland Gatton College QLD 4345 Phone: 07 5460 1231 Fax: 07 5460 1455 Email: [email protected] RIRDC Contact Details Rural Industries Research and Development Corporation Level 1, AMA House 42 Macquarie Street BARTON ACT 2600 PO Box 4776 KINGSTON ACT 2604 Phone: 02 6272 4539 Fax: 02 6272 5877 Email: [email protected] Website: http://www.rirdc.gov.au Published in October 1999 Printed on environmentally friendly paper by Canprint ii FOREWORD Postharvest flower fall from various native Australian cut flowers is induced by ethylene.
    [Show full text]
  • Current Status of Research on Rust Fungi (Pucciniales) in India
    Asian Journal of Mycology 4(1): 40–80 (2021) ISSN 2651-1339 www.asianjournalofmycology.org Article Doi 10.5943/ajom/4/1/5 Current status of research on Rust fungi (Pucciniales) in India Gautam AK1, Avasthi S2, Verma RK3, Devadatha B 4, Sushma5, Ranadive KR 6, Bhadauria R2, Prasher IB7 and Kashyap PL8 1School of Agriculture, Abhilashi University, Mandi, Himachal Pradesh, India 2School of Studies in Botany, Jiwaji University, Gwalior, Madhya Pradesh, India 3Department of Plant Pathology, Punjab Agricultural University, Ludhiana, Punjab, India 4 Fungal Biotechnology Lab, Department of Biotechnology, School of Life Sciences, Pondicherry University, Kalapet, Pondicherry, India 5Department of Biosciences, Chandigarh University Gharuan, Punjab, India 6Department of Botany, P.D.E.A.’s Annasaheb Magar Mahavidyalaya, Mahadevnagar, Hadapsar, Pune, Maharashtra, India 7Department of Botany, Mycology and Plant Pathology Laboratory, Panjab University Chandigarh, India 8ICAR-Indian Institute of Wheat and Barley Research (IIWBR), Karnal, Haryana, India Gautam AK, Avasthi S, Verma RK, Devadatha B, Sushma, Ranadive KR, Bhadauria R, Prasher IB, Kashyap PL 2021 – Current status of research on Rust fungi (Pucciniales) in India. Asian Journal of Mycology 4(1), 40–80, Doi 10.5943/ajom/4/1/5 Abstract Rust fungi show unique systematic characteristics among all fungal groups. A single species of rust fungi may produce up to five morphologically and cytologically distinct spore-producing structures thereby attracting the interest of mycologist for centuries. In India, the research on rust fungi started with the arrival of foreign visiting scientists or emigrant experts, mainly from Britain who collected fungi and sent specimens to European laboratories for identification. Later on, a number of mycologists from India and abroad studied Indian rust fungi and contributed a lot to knowledge of the rusts to the Indian Mycobiota.
    [Show full text]