Neural Control of Breathing

Total Page:16

File Type:pdf, Size:1020Kb

Neural Control of Breathing Available online http://respiratory-research.com/content/2/S1 Meeting abstracts Neural control of breathing An Official Satellite of the International Congress of Physiological Sciences (IUPS) 2001, commentary Rotorua, New Zealand, 1–4 September 2001 Received: 2 August 2001 Respir Res 2001, 2 (suppl 1):S1–S37 © 2001 BioMed Central Ltd Published: 17 August 2001 (Print ISSN 1465-9921; Online ISSN 1465-993X) review ORAL PRESENTATIONS — SESSION 1 pontine and/or afferent respiratory control in Krox-20, Hoxa1 and Ontogeny and phylogeny of respiratory control kreisler mutants. Neonatal respiratory phenotypes are also induced in mice by treatment with low doses of retinoic acid that slightly 1.1 change the early embryonic development of the Pons. Altogether, these experiments indicate that segmentation-related specifica- Early development of respiratory rhythm tions of the hindbrain rhythmic neuronal network influences the res- generation in mice and chicks piratory patterns after birth. Therefore, early developmental J Champagnat, G Fortin, S Jungbluth, V Abadie, F Chatonnet, processes have to be taken into account to understand normal and E Dominquez-del-Toro, L Guimarães pathological diversity of the breathing behaviour in vertebrates. UPR 2216 (Neurobiologie Génétique et Intégrative), IFR 2118 (Institut Acknowledgement: Supported by HFSP RG101/97, ACI (BDPI) reports de Neurobiologie Alfred Fessard), CNRS, 91198, Gif-sur-Yvette, France 2000, CEE BIO4CT, ICCTI PRAXIS XXI (BD/11299/97). Breathing in mammals starts in the foetus and acquires a vital importance at birth. The ability to produce rhythmic motor behav- 1.2 iours linked to respiratory function is a property of the brainstem reticular formation, which has been remarkably conserved during Development of gill and lung breathing in amphibia the evolution of vertebrates. Therefore, to understand the biological MJ Gdovin, VV Jackson, JC Leiter basis of the breathing behavior, we are investigating conservative Division of Life Sciences, University of Texas at San Antonio, TX, USA developmental mechanisms orchestrating the organogenesis of the brainstem. In vertebrates, the hindbrain is one of the vesicles that In the 25 morphological stages of larval bullfrog development there appears at the anterior end of the neural tube of the embryo. exists a gradual transition from gill to lung ventilation associated Further morphogenetic subdivision ensues whereby the hindbrain with a developmental decrease in the contribution of the skin in primary research neuroepithelium becomes partitioned into an iterated series of gas exchange. Bath application of GABA and/or glycine inhibited compartments called rhombomeres. The segmentation process is gill but not lung burst activities of cranial nerve (CN) VII in the believed to determine neuronal fates by encoding positional infor- premetamorphic (stages 16–19) in vitro tadpole brainstem prepa- mation along the rostro-caudal axis. Before and at the onset of seg- ration [1]. It was proposed that the neural basis of gill rhythmogen- mentation, genes encoding transcription factors such as Hox, esis involved network inhibition, whereas lung rhythmicity was Krox-20, kreisler, are expressed in domains corresponding to the pacemaker driven [1]. Bath application of a bicuculline/strychnine limits of future rhombomeres. Inactivation of these genes specifi- solution abolished gill and enhanced lung bursting in stages cally disturbs the rhombomeric pattern of the hindbrain. The pre- 16–19 in vitro [1]. Bath application of the GABAB receptor antago- sentation will address the problem of whether this primordial nist 2-hydroxy-saclofen disinhibited the lung central pattern genera- rhombomeric organisation influences later function of respiratory tor (CPG) resulting in precocious lung bursting patterns as early as control networks in chicks and mice. developmental stage 6 [2]. Experiments were performed in embryos and after birth in trans- We recorded efferent activity from CN VII and spinal nerve (SN) II in genic mice. They show that, although expression of developmental the in vitro tadpole brainstem preparation in three successive devel- meeting abstracts genes and hindbrain segmentation are transient events of early opmental groups (3–9; 10–15; 16–19) before and after bath appli- embryonic development, they are important for the process of res- cation of a 10 µM bicuculline and 5 µM strychnine solution. We also piratory rhythm generation by brainstem neuronal networks. We exposed the brainstem to bath pH 7.4, 7.8, and 8.2 before and after have found in chick that at the end of the period of segmentation, bath application of bicuculline/strychnine. Bicuculline/strychnine the hindbrain contains neuronal rhythm generators that conform to produced lung ventilatory bursts in all developmental stages tested, the rhombomeric anatomical pattern. We have also identified a indicating the presence of the lung CPG as well as excitatory minimal rhombomeric motif allowing the post-segmental maturation synapses to respiratory motor neurons as early as stage 3. of a specific (GABAergic) rhythm-promoting circuit. Furthermore, We also designed an experiment to examine the importance of in vivo and in vitro analysis of neurons in transgenic mice revealed lung ventilation on the developmental shift from gill to lung burst- postnatal respiratory phenotypes associated with defects of central ing. Two groups of tadpoles were hatched from eggs. Control tad- S1 Respiratory Research Vol 2 Suppl 1 Neural control of breathing poles had free access to the air-water interface throughout devel- detected amongst subpopulations of PMNs between ages E16 opment, whereas “barrier” tadpoles were denied access to the air- and P0. 5) There are marked changes in diaphragm muscle con- water interface via the placement of Plexiglas 2.5 cm below the tractile properties that develop in concert with PMN repetitive firing surface of the water. CN VII and SN II efferent activities were properties so that the full-range of diaphragm force recruitment can recorded in vitro at bath pH 7.4, 7.8, and 8.2 before and after bath be utilized at each age and potential problems of diaphragm application of 10 µM bicuculline and 5 µM strychnine. Postmeta- fatigue are minimized. morphic barrier tadpoles exhibited different motor patterns than Data presented will be derived from the following references: stage-matched controls. Tadpoles reared in the barrier condition to 1. Martin-Caraballo M, Greer JJ: Electrophysiological properties of stages 20–25 possessed fictive gill and lung ventilatory activities rat phrenic motoneurons during the perinatal development. J of premetamorphic tadpoles. All barrier tadpole preparations exhib- Neurophysiol 1999, 81:1365–1378 ited robust, spontaneous lung burst activity following bath applica- 2. Greer JJ, Allan DW, Martin-Caraballo M, Lemke RP: Invited tion of bicuculline/strychnine. Review: An overview of phrenic nerve and diaphragm muscle We propose that developmentally dependent GABA- and glyciner- development in the perinatal rat. J Appl Physiol 1999, gic mechanisms lead to disinhibition of the lung CPG such that 86:779–786 early in development gill motor patterns are the dominant respiratory 3. Martin-Caraballo M, Campagnaro PA, Gao Y, Greer JJ: Contrac- rhythm, whereas in late development the lung CPG is the dominant tile properties of the rat diaphragm during the perinatal respiratory rhythm. Denying the tadpole the ability to “practice” lung period. J Appl Physiol 2000, 88:573–580 breathing during metamorphosis produces a morphologically 4. Martin-Caraballo M, Greer JJ: Development of potassium con- correct postmetamorphic tadpole with an immature, or premetamor- ductances in perinatal rat phrenic motoneurons. J Neurophys- phic respiratory rhythm. We propose that prevention of lung inflation iol 2000, 83:3497–3508 in barrier tadpoles leads to premetamorphic levels of GABA- and 5. Martin-Caraballo M, Greer JJ: Voltage-sensitive calcium cur- glycinergic inhibition, and that this inhibition may be altered by pul- rents and their role in regulating phrenic motoneuron electri- monary stretch receptor feedback in control tadpoles. cal excitability during the perinatal period. J Neurobiol 2001, 46:231–248 References 1. Galante RJ, Kubin L, Fishman AP, Pack AI: Role of chloride- Acknowledgements: Funded by CIHR, AHFMR and Alberta Lung mediated inhibition in respiratory rhythmogenesis in an in Association. vitro brainstem of tadpole, Rana catesbeiana. J Physiol 1996, 492:545–558 1.4 2. Straus C, Wilson RJA, Remmers JE: Developmental disinhibi- tion: turning off inhibition turns on breathing in vertebrates. J Central neuromodulation and adaptations during Neurobiol 2000, 45:75–83 respiratory development IR Moss, A Laferrière, J-K Liu Acknowledgement: Approved by the University of Texas at San Developmental Respiratory Laboratory, McGill University Health Antonio Animal Care Committee. Supported by the NIH NINDS Centre Research Institute, Montreal Children’s Hospital, Montreal, Specialized Neuroscience Research Program. Quebec, Canada 1.3 Consecutive daily hypoxia in developing swine results in a relatively lower hyperventilatory response than does a single exposure to the Phrenic motoneuron and diaphragm development same hypoxic protocol [1]. We have hypothesized that this relative during the perinatal period hypoventilation is associated with a decreased excitatory versus JJ Greer, M Martin-Caraballo inhibitory neuromodulatory influence on central integrative path- ways of breathing
Recommended publications
  • Hypoxia and Hypercapnia: Sensory and Effector Mechanisms
    ISSN: 2574-1241 Volume 5- Issue 4: 2018 DOI: 10.26717/BJSTR.2018.08.001692 Kulchitsky Vladimir. Biomed J Sci & Tech Res Opinion Open Access Hypoxia and Hypercapnia: Sensory and Effector Mechanisms Kulchitsky Vladimir1*, Zamaro Alexandra1 and Koulchitsky Stanislav2 1Institute of Physiology, National Academy of Sciences, Minsk, Belarus, Europe 2Liege University, Liege, Belgium, Europe Received: Published: *Corresponding September author: 03, 2018; September 05, 2018 Kulchitsky Vladimir, Institute of Physiology, National Academy of Sciences, Minsk, Belarus, Europe Keywords: + Abbreviations:Central Chemoreceptors; Peripheral Chemoreceptors;2 Regulation of Respiration2 ATP: Adenosine Triphosphate; CО : Carbon Dioxide; H : Hydrogen Ions; О : Oxygen Introduction Human life is determined by plenty of factors, and normal Central and Peripheral Mechanisms of Breathing oxygen environment is one of the most important. Mammals and Regulation These receptors are located in blood vessels and tissues and in situations when discrepancy between amount of arriving O and human have obtained specific receptors during the evolution. Which mechanism helps living organism make timely decisions2 react on hypoxic stimulus [1-3]. Arterial system has the highest energy needs in brain’s nerve tissue develops? The mechanism of density of peripheral chemoreceptors which react on oxygen + precise control of carbon dioxide (CO2) and hydrogen ions (H ) - but (O ) content change in the internal milieu [1]. Chemoreceptors 2 not O2- in brain tissue has been evolutionally chosen. Such receptor located in carotid body in the area of carotid arteries bifurcation mechanisms (central chemoreceptors) were formed close to neural heads via carotid and vertebral arteries to brain, and strategically are the most important [2-5]. Significant part of cardiac output vital localization of those receptors in carotid body allows them networks of respiratory center - at caudal brain stem [7-9].
    [Show full text]
  • For Pneumograph
    For Pneumograph: Central chemoreceptors are primarily sensitive to changes in the pH in the blood, (resulting from changes in the levels of carbon dioxide) and they are located on the medulla oblongata near to the medullar respiratory groups of the respiratory center (1. Pneumotaxic center - various nuclei of the pons and 2. Apneustic center -nucleus of the pons). The peripheral chemoreceptors that detect changes in the levels of oxygen and carbon dioxide are located in the arterial aortic bodies and the carotid bodies. Information from the peripheral chemoreceptors is conveyed along nerves to the respiratory groups of the respiratory center. There are four respiratory groups, two in the medulla and two in the pons. From the respiratory center, the muscles of respiration, in particular the diaphragm, are activated to cause air to move in and out of the lungs. Hyperventilation: When a healthy person takes several deep and fast breaths (hyperventilation), PCO2 in the lungs and blood falls. As a result there is an increase in diffusion of CO2 to the alveolar air from dissolved state in blood. As the conc. of H2CO3 is in equilibrium with that of dissolved CO2 in blood, hyperventilation increases the [HCO3]/ [H2CO3] ratio by falling of CO2 conc. Thus there is a rise of blood pH (greater than pH 7.4). The breathing centre detects this change and stops or reduces stimulation and work of the respiratory muscles (called apnea). (Blood leaving the lungs is normally fully saturated with oxygen, so hyperventilation of normal air cannot increase the amount of oxygen available.) Breath-holding: The person naturally holds their breath until the CO2 level reaches the initially pre- set value.
    [Show full text]
  • Regulation of Respiration
    Regulation of respiration Breathing is controlled by the central neuronal network to meet the metabolic ddfthbddemands of the body – Neural regulation – Chemical regulation Respiratory center Definition: – A collection of functionally similar neurons that help to regulate the respiratory movement Respiratory center Medulla Basic respiratory center: produce and control the respiratory Pons rhythm Higher respiratory center: cerebral cortex, hypotha la mus & limb ic syste m Spinal cord: motor neurons Neural regulation of respiration Voluntary breathing center – Cerebral cortex Automatic (involuntary) breathing center – Medulla – Pons Neural generation of rhythmical breathing The discharge of medullary inspiratory neurons provides rhythmic input to the motor neurons innervating the inspiratory muscles. Then the action pottiltential cease, the inspiratory muscles relax, and expiration occurs as the elastic lungs recoil. Inspiratory neurons Exppyiratory neurons Respiratory center Dorsal respiratory group (medulla) – mainly causes inspiration Ventral respiratory group (medulla) – causes either exp itiiration or insp itiiration Pneumotaxic center ((pppupper pons ) – inhibits apneustic center & inhibits inspiration,helps control the rate and pattern of breathing Apneustic center (lower pons) – to promote inspiration Hering-Breuer inflation reflex (Pulmonary stretch reflex) The reflex is originated in the lungs and media te d by the fibers o f the vagus nerve: – Pulmonary inflation reflex: inflation of the lungs, eliciting expiration.
    [Show full text]
  • Math1 Is Essential for the Development of Hindbrain Neurons Critical for Perinatal Breathing
    Neuron Article Math1 Is Essential for the Development of Hindbrain Neurons Critical for Perinatal Breathing Matthew F. Rose,1,7 Jun Ren,6,7 Kaashif A. Ahmad,2,7 Hsiao-Tuan Chao,3 Tiemo J. Klisch,4,5 Adriano Flora,4 John J. Greer,6 and Huda Y. Zoghbi1,2,3,4,5,* 1Program in Developmental Biology 2Department of Pediatrics 3Department of Neuroscience 4Department of Molecular and Human Genetics 5Howard Hughes Medical Institute Baylor College of Medicine, Houston, TX 77030, USA 6Department of Physiology, University of Alberta, Edmonton, Canada 7These authors contributed equally to this work *Correspondence: [email protected] DOI 10.1016/j.neuron.2009.10.023 SUMMARY died of SIDS appear to have been unable to arouse from sleep in response to hypoxia (Kato et al., 2003). A more complete Mice lacking the proneural transcription factor Math1 understanding of the respiratory network in the hindbrain could (Atoh1) lack multiple neurons of the proprioceptive provide insight into the pathogenesis of these disorders. and arousal systems and die shortly after birth from Respiratory rhythm-generating neurons reside within the an apparent inability to initiate respiration. We ventral respiratory column (VRC) of the medulla. The pre-Bo¨ t- sought to determine whether Math1 was necessary zinger complex (preBo¨ tC) generates the inspiratory rhythm for the development of hindbrain nuclei involved in (Smith et al., 1991) and receives modulatory input from adjacent nuclei, including a region located around the facial motor nucleus respiratory rhythm generation, such as the parafacial just rostral to the preBo¨ tC. Different investigators refer to respiratory group/retrotrapezoid nucleus (pFRG/ neurons in this region either as the parafacial respiratory group RTN), defects in which are associated with congen- (pFRG) or as the retrotrapezoid nucleus (RTN).
    [Show full text]
  • Integrative Actions of the Reticular Formation the Reticular Activating System, Autonomic Mechanisms and Visceral Control
    University of Nebraska Medical Center DigitalCommons@UNMC MD Theses Special Collections 5-1-1964 Integrative actions of the reticular formation The reticular activating system, autonomic mechanisms and visceral control George A. Young University of Nebraska Medical Center This manuscript is historical in nature and may not reflect current medical research and practice. Search PubMed for current research. Follow this and additional works at: https://digitalcommons.unmc.edu/mdtheses Part of the Medical Education Commons Recommended Citation Young, George A., "Integrative actions of the reticular formation The reticular activating system, autonomic mechanisms and visceral control" (1964). MD Theses. 69. https://digitalcommons.unmc.edu/mdtheses/69 This Thesis is brought to you for free and open access by the Special Collections at DigitalCommons@UNMC. It has been accepted for inclusion in MD Theses by an authorized administrator of DigitalCommons@UNMC. For more information, please contact [email protected]. THE INTEGRATIVE ACTIONS OF THE RETICULAR FORlVIATION The Reticular Activating System, Autonomic Mechanisms and Visceral Control George A. Young 111 Submitted in Partial Fulfillment for the Degree of Doctor of Medicine College of Medicine, University of Nebraska February 3, 1964 Omaha, Nebraska TABLE OF CONTENTS Page I. Introduction. ~4'~ •••••••••••• *"' ••• " ••• "' ••• 1I •• 1 II. The Reticula.r Activa.ting System (a) Historical Review •••.....•..•.•. · ••••• 5 (1) The Original Paper~ ..•.••...••.••••. 8 (2) Proof For a R.A.S •.•...•.....•••.• ll (b) ,The Developing Concept of the R.A.S ••• 14 (1) R.A.S. Afferents •..•.•......••..• 14 (2) The Thalamic R.F •••.••.......••.••. 16 (3) Local Cortical Arousal •••••••.•.••• 18 (4) The Hypothalamus end the R.A.S ••••• 21 (5) A Reticular Desynchronizing System.
    [Show full text]
  • Brainstem Dysfunction in Critically Ill Patients
    Benghanem et al. Critical Care (2020) 24:5 https://doi.org/10.1186/s13054-019-2718-9 REVIEW Open Access Brainstem dysfunction in critically ill patients Sarah Benghanem1,2 , Aurélien Mazeraud3,4, Eric Azabou5, Vibol Chhor6, Cassia Righy Shinotsuka7,8, Jan Claassen9, Benjamin Rohaut1,9,10† and Tarek Sharshar3,4*† Abstract The brainstem conveys sensory and motor inputs between the spinal cord and the brain, and contains nuclei of the cranial nerves. It controls the sleep-wake cycle and vital functions via the ascending reticular activating system and the autonomic nuclei, respectively. Brainstem dysfunction may lead to sensory and motor deficits, cranial nerve palsies, impairment of consciousness, dysautonomia, and respiratory failure. The brainstem is prone to various primary and secondary insults, resulting in acute or chronic dysfunction. Of particular importance for characterizing brainstem dysfunction and identifying the underlying etiology are a detailed clinical examination, MRI, neurophysiologic tests such as brainstem auditory evoked potentials, and an analysis of the cerebrospinal fluid. Detection of brainstem dysfunction is challenging but of utmost importance in comatose and deeply sedated patients both to guide therapy and to support outcome prediction. In the present review, we summarize the neuroanatomy, clinical syndromes, and diagnostic techniques of critical illness-associated brainstem dysfunction for the critical care setting. Keywords: Brainstem dysfunction, Brain injured patients, Intensive care unit, Sedation, Brainstem
    [Show full text]
  • Relative Indicators and Predicative Ability of Some Biological Variables on Cardiac Neural Activity for Volleyball Players
    Sys Rev Pharm 2020;11(9):834-840 A multifaceted review journal in the field of pharmacy Relative Indicators and Predicative Ability of Some Biological Variables on Cardiac Neural Activity for Volleyball Players Mohammed Nader Shalaby 1*, Marwa Ahmed Fadl2 1 Biological Sciences and Sports Health Department, Faculty of Physical Education, Suez Canal University, Egypt, [email protected] 2 Training and Kinematics Department, Faculty of Physical Education for Girls- Alexandria University. Egypt. Corresponding Author: Mohammed Nader Shalaby Email: [email protected] ABSTRACT The current research aims to study the relative indicators and predictive Keywords: Cardiac Neural Activity – HRV - Cardio-respiratory Fitness - ability of some biological variables for the cardiac neural activity of volleyball Volleyball players. The researchers used the descriptive approach as it is suitable for these research objectives. The researchers used the descriptive approach as it is suitable for these research objectives. Results indicated that: Correspondence: • There are positive correlations between biological variables and Heart Rate Mohammed Nader Shalaby Variability for the following variables: VC max – PEF – VC – EV – IV – HR max Associate Professor of Biological Sciences and Sports Health Department, – CO2 max. These variables are considered as indicators for evaluating the Faculty of Physical Education, Suez Canal University, Egypt, functional training status of volleyball players. Email: [email protected] • Relative contribution of biological variables was between (31.40%) as the least value fir VC max and (97.25%) as the highest value for the following nine variables: VC max + PEF + VC + EV + IV + HR max + VO2 max + CO2 max. these variables contribute collectively in HRV for volleyball players.
    [Show full text]
  • Brainstem Dysfunction in Critically Ill Patients
    Benghanem et al. Critical Care (2020) 24:5 https://doi.org/10.1186/s13054-019-2718-9 REVIEW Open Access Brainstem dysfunction in critically ill patients Sarah Benghanem1,2 , Aurélien Mazeraud3,4, Eric Azabou5, Vibol Chhor6, Cassia Righy Shinotsuka7,8, Jan Claassen9, Benjamin Rohaut1,9,10† and Tarek Sharshar3,4*† Abstract The brainstem conveys sensory and motor inputs between the spinal cord and the brain, and contains nuclei of the cranial nerves. It controls the sleep-wake cycle and vital functions via the ascending reticular activating system and the autonomic nuclei, respectively. Brainstem dysfunction may lead to sensory and motor deficits, cranial nerve palsies, impairment of consciousness, dysautonomia, and respiratory failure. The brainstem is prone to various primary and secondary insults, resulting in acute or chronic dysfunction. Of particular importance for characterizing brainstem dysfunction and identifying the underlying etiology are a detailed clinical examination, MRI, neurophysiologic tests such as brainstem auditory evoked potentials, and an analysis of the cerebrospinal fluid. Detection of brainstem dysfunction is challenging but of utmost importance in comatose and deeply sedated patients both to guide therapy and to support outcome prediction. In the present review, we summarize the neuroanatomy, clinical syndromes, and diagnostic techniques of critical illness-associated brainstem dysfunction for the critical care setting. Keywords: Brainstem dysfunction, Brain injured patients, Intensive care unit, Sedation, Brainstem
    [Show full text]
  • The Respiratory Control Mechanisms in the Brainstem and Spinal Cord: Integrative Views of the Neuroanatomy and Neurophysiology
    J Physiol Sci (2017) 67:45–62 DOI 10.1007/s12576-016-0475-y REVIEW The respiratory control mechanisms in the brainstem and spinal cord: integrative views of the neuroanatomy and neurophysiology 1 2 3 4 Keiko Ikeda • Kiyoshi Kawakami • Hiroshi Onimaru • Yasumasa Okada • 5 6 7 3 Shigefumi Yokota • Naohiro Koshiya • Yoshitaka Oku • Makito Iizuka • Hidehiko Koizumi6 Received: 15 March 2016 / Accepted: 22 July 2016 / Published online: 17 August 2016 Ó The Physiological Society of Japan and Springer Japan 2016 Abstract Respiratory activities are produced by medullary Introduction respiratory rhythm generators and are modulated from various sites in the lower brainstem, and which are then Respiration is crucial for animal survival. In the last 10 output as motor activities through premotor efferent net- years, the cytoarchitecture of the respiratory control center works in the brainstem and spinal cord. Over the past few has been analyzed at the single-cell and genetic levels. The decades, new knowledge has been accumulated on the respiratory center is located in the medulla oblongata and is anatomical and physiological mechanisms underlying the involved in the minute-to-minute control of breathing. generation and regulation of respiratory rhythm. In this Unlike the cardiac system, respiratory rhythm is not pro- review, we focus on the recent findings and attempt to duced by a homogeneous population of pacemaker cells. elucidate the anatomical and functional mechanisms Rather, it can be explained with two oscillators: the underlying respiratory control in the lower brainstem and parafacial respiratory group (pFRG; Sect. 1) and the pre- spinal cord. Bo¨tzinger complex (preBo¨tC, inspiratory pacemaker pop- ulation; Sects.
    [Show full text]
  • SAY: Welcome to Module 1: Anatomy & Physiology of the Brain. This
    12/19/2018 11:00 AM FOUNDATIONAL LEARNING SYSTEM 092892-181219 © Johnson & Johnson Servicesv Inc. 2018 All rights reserved. 1 SAY: Welcome to Module 1: Anatomy & Physiology of the Brain. This module will strengthen your understanding of basic neuroanatomy, neurovasculature, and functional roles of specific brain regions. 1 12/19/2018 11:00 AM Lesson 1: Introduction to the Brain The brain is a dense organ with various functional units. Understanding the anatomy of the brain can be aided by looking at it from different organizational layers. In this lesson, we’ll discuss the principle brain regions, layers of the brain, and lobes of the brain, as well as common terms used to orient neuroanatomical discussions. 2 SAY: The brain is a dense organ with various functional units. Understanding the anatomy of the brain can be aided by looking at it from different organizational layers. (Purves 2012/p717/para1) In this lesson, we’ll explore these organizational layers by discussing the principle brain regions, layers of the brain, and lobes of the brain. We’ll also discuss the terms used by scientists and healthcare providers to orient neuroanatomical discussions. 2 12/19/2018 11:00 AM Lesson 1: Learning Objectives • Define terms used to specify neuroanatomical locations • Recall the 4 principle regions of the brain • Identify the 3 layers of the brain and their relative location • Match each of the 4 lobes of the brain with their respective functions 3 SAY: Please take a moment to review the learning objectives for this lesson. 3 12/19/2018 11:00 AM Directional Terms Used in Anatomy 4 SAY: Specific directional terms are used when specifying the location of a structure or area of the brain.
    [Show full text]
  • Noeud Vital and the Respiratory Centers Eelco F
    Neurocrit Care (2019) 31:211–215 https://doi.org/10.1007/s12028-019-00686-8 NEUROCRITICAL CARE THROUGH HISTORY Noeud Vital and the Respiratory Centers Eelco F. M. Wijdicks* © 2019 Springer Science+Business Media, LLC, part of Springer Nature and Neurocritical Care Society Abstract We now recognize that the main breathing generator resides principally in the medulla oblongata. Vivisectionists— specifcally, Julien Legallois—discovered “the respiratory center.” Cutting through the brainstem stops respiration but not if the medulla remains intact and the brain is sliced in successive portions. Pierre Flourens localized surgical ablation experiments further identifed a 1-mm area in the medulla, which he called vital knot or node (noeud vital). Detailed characterization had to wait until the 1920s, when Lumsden carried out more specifc transection experi- ments to improve morphological diferentiation of the respiratory center into inspiratory and expiratory divisions. Keywords: Noeud vital, Respiratory centers, Brainstem, Animal research Te respiratory center in the brainstem and its three result of vivisection experiments undertaken to discover classes of neural mechanisms (the chemorefexes, the the structures (and organs) needed to sustain life [1]. His central drive, and neuronal feedback from the muscles of decapitation experiments involved a heart–lung prepara- respiration) were identifed and characterized in fts and tion ligating the inferior vena cava, aorta, carotid arter- starts in the late 1800s and early 1900s. Te regulation ies, and jugular vein while ventilating the lungs through of PaCO2 at a physiologic set point maintains vigilance, a syringe inserted in a decapitated rabbit (Fig. 1) [1]. which changes with large increases in PaCO2.
    [Show full text]
  • Pulmonary Haemodynamics During Exercise
    ERS OFFICIAL DOCUMENT ERS STATEMENT An official European Respiratory Society statement: pulmonary haemodynamics during exercise Gabor Kovacs1,2, Philippe Herve3, Joan Albert Barbera4,5, Ari Chaouat6,7, Denis Chemla8, Robin Condliffe9, Gilles Garcia8, Ekkehard Grünig10, Luke Howard11, Marc Humbert 8, Edmund Lau12, Pierantonio Laveneziana13,14, Gregory D. Lewis15, Robert Naeije16, Andrew Peacock17, Stephan Rosenkranz18, Rajeev Saggar19, Silvia Ulrich20, Dario Vizza 21, Anton Vonk Noordegraaf22 and Horst Olschewski1,2 @ERSpublications Pulmonary haemodynamics during exercise provides relevant information on the lung, pulmonary vessels and heart http://ow.ly/EBOF30fuHWY Cite this article as: Kovacs G, Herve P, Barbera JA, et al. An official European Respiratory Society statement: pulmonary haemodynamics during exercise. Eur Respir J 2017; 50: 1700578 [https://doi.org/ 10.1183/13993003.00578-2017]. ABSTRACT There is growing recognition of the clinical importance of pulmonary haemodynamics during exercise, but several questions remain to be elucidated. The goal of this statement is to assess the scientific evidence in this field in order to provide a basis for future recommendations. Right heart catheterisation is the gold standard method to assess pulmonary haemodynamics at rest and during exercise. Exercise echocardiography and cardiopulmonary exercise testing represent non-invasive tools with evolving clinical applications. The term “exercise pulmonary hypertension” may be the most adequate to describe an abnormal pulmonary haemodynamic response characterised by an excessive pulmonary arterial pressure (PAP) increase in relation to flow during exercise. Exercise pulmonary hypertension may be defined as the presence of resting mean PAP <25 mmHg and mean PAP >30 mmHg during exercise with total pulmonary resistance >3 Wood units. Exercise pulmonary hypertension represents the haemodynamic appearance of early pulmonary vascular disease, left heart disease, lung disease or a combination of these conditions.
    [Show full text]