Full Text in Pdf Format
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Article Evolutionary Dynamics of the OR Gene Repertoire in Teleost Fishes
bioRxiv preprint doi: https://doi.org/10.1101/2021.03.09.434524; this version posted March 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Article Evolutionary dynamics of the OR gene repertoire in teleost fishes: evidence of an association with changes in olfactory epithelium shape Maxime Policarpo1, Katherine E Bemis2, James C Tyler3, Cushla J Metcalfe4, Patrick Laurenti5, Jean-Christophe Sandoz1, Sylvie Rétaux6 and Didier Casane*,1,7 1 Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198, Gif-sur-Yvette, France. 2 NOAA National Systematics Laboratory, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20560, U.S.A. 3Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, D.C., 20560, U.S.A. 4 Independent Researcher, PO Box 21, Nambour QLD 4560, Australia. 5 Université de Paris, Laboratoire Interdisciplinaire des Energies de Demain, Paris, France 6 Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91190, Gif-sur- Yvette, France. 7 Université de Paris, UFR Sciences du Vivant, F-75013 Paris, France. * Corresponding author: e-mail: [email protected]. !1 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.09.434524; this version posted March 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Teleost fishes perceive their environment through a range of sensory modalities, among which olfaction often plays an important role. -
Water Beetles
Ireland Red List No. 1 Water beetles Ireland Red List No. 1: Water beetles G.N. Foster1, B.H. Nelson2 & Á. O Connor3 1 3 Eglinton Terrace, Ayr KA7 1JJ 2 Department of Natural Sciences, National Museums Northern Ireland 3 National Parks & Wildlife Service, Department of Environment, Heritage & Local Government Citation: Foster, G. N., Nelson, B. H. & O Connor, Á. (2009) Ireland Red List No. 1 – Water beetles. National Parks and Wildlife Service, Department of Environment, Heritage and Local Government, Dublin, Ireland. Cover images from top: Dryops similaris (© Roy Anderson); Gyrinus urinator, Hygrotus decoratus, Berosus signaticollis & Platambus maculatus (all © Jonty Denton) Ireland Red List Series Editors: N. Kingston & F. Marnell © National Parks and Wildlife Service 2009 ISSN 2009‐2016 Red list of Irish Water beetles 2009 ____________________________ CONTENTS ACKNOWLEDGEMENTS .................................................................................................................................... 1 EXECUTIVE SUMMARY...................................................................................................................................... 2 INTRODUCTION................................................................................................................................................ 3 NOMENCLATURE AND THE IRISH CHECKLIST................................................................................................ 3 COVERAGE ....................................................................................................................................................... -
Brooklyn, Cloudland, Melsonby (Gaarraay)
BUSH BLITZ SPECIES DISCOVERY PROGRAM Brooklyn, Cloudland, Melsonby (Gaarraay) Nature Refuges Eubenangee Swamp, Hann Tableland, Melsonby (Gaarraay) National Parks Upper Bridge Creek Queensland 29 April–27 May · 26–27 July 2010 Australian Biological Resources Study What is Contents Bush Blitz? Bush Blitz is a four-year, What is Bush Blitz? 2 multi-million dollar Abbreviations 2 partnership between the Summary 3 Australian Government, Introduction 4 BHP Billiton and Earthwatch Reserves Overview 6 Australia to document plants Methods 11 and animals in selected properties across Australia’s Results 14 National Reserve System. Discussion 17 Appendix A: Species Lists 31 Fauna 32 This innovative partnership Vertebrates 32 harnesses the expertise of many Invertebrates 50 of Australia’s top scientists from Flora 62 museums, herbaria, universities, Appendix B: Threatened Species 107 and other institutions and Fauna 108 organisations across the country. Flora 111 Appendix C: Exotic and Pest Species 113 Fauna 114 Flora 115 Glossary 119 Abbreviations ANHAT Australian Natural Heritage Assessment Tool EPBC Act Environment Protection and Biodiversity Conservation Act 1999 (Commonwealth) NCA Nature Conservation Act 1992 (Queensland) NRS National Reserve System 2 Bush Blitz survey report Summary A Bush Blitz survey was conducted in the Cape Exotic vertebrate pests were not a focus York Peninsula, Einasleigh Uplands and Wet of this Bush Blitz, however the Cane Toad Tropics bioregions of Queensland during April, (Rhinella marina) was recorded in both Cloudland May and July 2010. Results include 1,186 species Nature Refuge and Hann Tableland National added to those known across the reserves. Of Park. Only one exotic invertebrate species was these, 36 are putative species new to science, recorded, the Spiked Awlsnail (Allopeas clavulinus) including 24 species of true bug, 9 species of in Cloudland Nature Refuge. -
Estuary Surveillance for QX Disease
Estuary surveillance Student task sheet for QX disease The following tables show data collected Estuary Surveillance 2002: during estuary surveillance from 2001– During the 2002 sampling period a total of 2004 for New South Wales and 5250 oysters were received and processed Queensland. N is the number of oysters from 18 NSW estuaries and three tested in a random sample of the oyster Queensland zones using tissue imprints. population. Dr Adlard used two methods of disease detection in surveillance — tissue imprint and PCR. Table 2A: Tissue imprints used to detect the QX disease parasite Estuary Surveillance 2001: 2002 Survey results Table 1: Tissue imprint results for 2001 N 2001 Survey Results Estuary N infected % N Northern Moreton Bay 250 0 0 Estuary N infected % Central Moreton Bay 250 0 0 Tweed River 316 0 0 Southern Moreton Bay 250 2 0.8 Brunswick River 320 0 0 Tweed River 250 0 0 Richmond River 248 0 0 Brunswick River 250 0 0 Clarence River 330 5 1.52 Richmond River 250 102 40.8 Wooli River 294 0 0 Clarence River 250 55 22 Kalang /Bellinger 295 0 0 Wooli River 250 0 0 Rivers Kalang /Bellingen Rivers 250 0 0 Macleay River 261 0 0 Macleay River 250 0 0 Hastings River 330 0 0 Hastings River 250 0 0 Manning River 286 0 0 Manning River 250 0 0 Wallis Lakes 271 0 0 Wallis Lakes 250 0 0 Port Stephens 263 0 0 Port Stephens 250 0 0 Hawkesbury River 323 0 0 Hawkesbury River 250 0 0 Georges River 260 123 47.31 Georges River 250 40 16 Shoalhaven/ 255 0 0 Crookhaven Shoalhaven/Crookhaven 250 0 0 Bateman's Bay 300 0 0 Bateman's Bay 250 0 0 Tuross Lake 304 0 0 Tuross Lake 250 0 0 Narooma 300 0 0 Narooma 250 0 0 Merimbula 250 0 0 Merimbula 250 0 0 © Queensland Museum 2006 Table 2B: PCR results from 2002 on Estuary Surveillance 2003: oysters which had tested negative to QX During 2003 a total of 4450 oysters were disease parasite using tissue imprints received and processed from 22 NSW estuaries and three Queensland zones. -
Reproductive Potential of Four Freshwater Prawn Species in the Amazon Region
Invertebrate Reproduction & Development ISSN: 0792-4259 (Print) 2157-0272 (Online) Journal homepage: https://www.tandfonline.com/loi/tinv20 Reproductive potential of four freshwater prawn species in the Amazon region Leo Jaime Filgueira de Oliveira, Bruno Sampaio Sant’Anna & Gustavo Yomar Hattori To cite this article: Leo Jaime Filgueira de Oliveira, Bruno Sampaio Sant’Anna & Gustavo Yomar Hattori (2017) Reproductive potential of four freshwater prawn species in the Amazon region, Invertebrate Reproduction & Development, 61:4, 290-296, DOI: 10.1080/07924259.2017.1365099 To link to this article: https://doi.org/10.1080/07924259.2017.1365099 Published online: 21 Aug 2017. Submit your article to this journal Article views: 43 View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=tinv20 INVERTEBRATE REPRODUCTION & DEVELOPMENT, 2017 VOL. 61, NO. 4, 290–296 https://doi.org/10.1080/07924259.2017.1365099 Reproductive potential of four freshwater prawn species in the Amazon region Leo Jaime Filgueira de Oliveira†, Bruno Sampaio Sant’Anna and Gustavo Yomar Hattori Instituto de Ciências Exatas e Tecnologia (ICET), Universidade Federal do Amazonas (UFAM), Itacoatiara, Brazil ABSTRACT ARTICLE HISTORY The bioecology of freshwater prawns can be understood by studying their reproductive biology. Received 1 June 2017 Thus, the aim of this paper was to determine and compare the reproductive potential of four Accepted 4 August 2017 freshwater caridean prawns collected in the Amazon region. For two years, we captured females KEYWORDS of Macrobrachium brasiliense, Palaemon carteri, Pseudopalaemon chryseus and Euryrhynchus Caridea; Euryrhynchidae; amazoniensis from inland streams in the municipality of Itacoatiara (AM). -
NSW Legislation Website, and Is Certified As the Form of That Legislation That Is Correct Under Section 45C of the Interpretation Act 1987
Water Sharing Plan for the Richmond River Area Unregulated, Regulated and Alluvial Water Sources 2010 [2010-702] New South Wales Status information Currency of version Current version for 27 June 2018 to date (accessed 7 May 2020 at 12:57) Legislation on this site is usually updated within 3 working days after a change to the legislation. Provisions in force The provisions displayed in this version of the legislation have all commenced. See Historical Notes Note: This Plan ceases to have effect on 1.7.2021—see cl 3. Authorisation This version of the legislation is compiled and maintained in a database of legislation by the Parliamentary Counsel's Office and published on the NSW legislation website, and is certified as the form of that legislation that is correct under section 45C of the Interpretation Act 1987. File last modified 27 June 2018. Published by NSW Parliamentary Counsel’s Office on www.legislation.nsw.gov.au Page 1 of 116 Water Sharing Plan for the Richmond River Area Unregulated, Regulated and Alluvial Water Sources 2010 [NSW] Water Sharing Plan for the Richmond River Area Unregulated, Regulated and Alluvial Water Sources 2010 [2010-702] New South Wales Contents Part 1 Introduction.................................................................................................................................................. 7 Note .................................................................................................................................................................................. 7 1 Name of this -
Murray Cod (Maccullochella Peelii Peelii)
Murray Cod (Maccullochella peelii peelii) Qifeng Ye, G. Keith Jones, and Bryan E. Pierce November 2000 Fishery Assessment Report to PIRSA for the Inland Waters Fishery Management Committee South Australian Fisheries Assessment Series 2000/17 Murray cod (Maccullochella peelii peelii) Murray Cod (Maccullochella peelii peelii) Qifeng Ye, G. Keith Jones, and Bryan E. Pierce November 2000 Fishery Assessment Report to PIRSA for the Inland Waters Fishery Management Committee South Australian Fisheries Assessment Series 2000/17 Murray cod (Maccullochella peelii peelii) i TABLE OF CONTENTS LIST OF TABLES.................................................................................................................................II LIST OF FIGURES............................................................................................................................. III ACKNOWLEDGMENTS..................................................................................................................... V 1. EXECUTIVE SUMMARY ................................................................................................................ 1 2. BACKGROUND................................................................................................................................. 5 2.1. FISHERY ......................................................................................................................................... 5 2.1.1. History ................................................................................................................................... -
Prioritising Threatened Species and Threatening Processes Across Northern Australia: User Guide for Data
Prioritising threatened species and threatening processes across northern Australia User guide for data by Anna Pintor, Mark Kennard, Jorge G. Álvarez-Romero and Stephanie Hernandez © James Cook University, 2019 Prioritising threatened species and threatening processes across northern Australia: User guide for data is licensed by James Cook University for use under a Creative Commons Attribution 4.0 Australia licence. For licence conditions see creativecommons.org/licenses/by/4.0 This report should be cited as: Pintor A,1 Kennard M,2 Álvarez-Romero JG,1,3 and Hernandez S.1 2019. Prioritising threatened species and threatening processes across northern Australia: User guide for data. James Cook University, Townsville. 1. James Cook University 2. Griffith University 3. ARC Centre of Excellence for Coral Reef Studies Cover photographs Front cover: Butler’s Dunnart is a threatened species which is found only on the Tiwi Islands in the Northern Territory, photo Alaric Fisher. Back cover: One of the spatially explicit maps created during this project. This report is available for download from the Northern Australia Environmental Resources (NAER) Hub website at nespnorthern.edu.au The Hub is supported through funding from the Australian Government’s National Environmental Science Program (NESP). The NESP NAER Hub is hosted by Charles Darwin University. ISBN 978-1-925800-44-9 December, 2019 Printed by Uniprint Contents Acronyms....................................................................................................................................vi -
Additions, Deletions and Corrections to the Staphylinidae in the Irish Coleoptera Annotated List, with a Revised Check-List of Irish Species
Bulletin of the Irish Biogeographical Society Number 41 (2017) ADDITIONS, DELETIONS AND CORRECTIONS TO THE STAPHYLINIDAE IN THE IRISH COLEOPTERA ANNOTATED LIST, WITH A REVISED CHECK-LIST OF IRISH SPECIES Jervis A. Good1 and Roy Anderson2 1Glinny, Riverstick, Co. Cork, Republic of Ireland. e-mail: <[email protected]> 21 Belvoirview Park, Belfast BT8 7BL, Northern Ireland. e-mail: <[email protected]> Abstract Since the 1997 Irish Coleoptera – a revised and annotated list, 59 species of Staphylinidae have been added to the Irish list, 11 species confirmed, a number have been deleted or require to be deleted, and the status of some species and names require correction. Notes are provided on the deletion, correction or status of 63 species, and a revised check-list of 710 species is provided with a generic index. Species listed, or not listed, as Irish in the Catalogue of Palaearctic Coleoptera (2nd edition), in comparison with this list, are discussed. The Irish status of Gabrius sexualis Smetana, 1954 is questioned, although it is retained on the list awaiting further investgation. Key words: Staphylinidae, check-list, Irish Coleoptera, Gabrius sexualis. Introduction The Staphylinidae (rove-beetles) comprise the largest family of beetles in Ireland (with 621 species originally recorded by Anderson, Nash and O’Connor (1997)) and in the world (with 55,440 species cited by Grebennikov and Newton (2009)). Since the publication in 1997 of Irish Coleoptera - a revised and annotated list by Anderson, Nash and O’Connor, there have been a large number of additions (59 species), confirmation of the presence of several species based on doubtful old records, a number of deletions and corrections, and significant nomenclatural and taxonomic changes to the list of Irish Staphylinidae. -
Palaemonidae, Macrobrachium, New Species, Anchia- Line Cave, Miyako Island, Ryukyu Islands
Zootaxa 1021: 13–27 (2005) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA 1021 Copyright © 2005 Magnolia Press ISSN 1175-5334 (online edition) A new stygiobiont species of Macrobrachium (Crustacea: Deca- poda: Caridea: Palaemonidae) from an anchialine cave on Miyako Island, Ryukyu Islands TOMOYUKI KOMAI1 & YOSHIHISA FUJITA2 1 Natural History Museum and Institute, Chiba, 955-2 Aoba-cho, Chuo-ku, Chiba, 260-8682 Japan ([email protected]) 2 University Education Center, University of the Ryukyus, 1 Senbaru, Nishihara-cho, Okinawa, 903-0213 Japan ([email protected]) Abstract A new stygiobiont species of the caridean genus Macrobrachium Bate, 1864 is described on the basis of two male specimens from an anchialine cave on Miyako Island, southern Ryukyu Islands. The new species, M. miyakoense, is compared with other five stygiobiont species of the genus char- acterized by a reduced eye, i.e. M. cavernicola (Kemp, 1924), M. villalobosi Hobbs, 1973, M. acherontium Holthuis, 1977, M. microps Holthuis, 1978, and M. poeti Holthuis, 1984. It is the first representative of stygiobiont species of Macrobrachium from East Asian waters. Key words: Crustacea, Decapoda, Caridea, Palaemonidae, Macrobrachium, new species, anchia- line cave, Miyako Island, Ryukyu Islands Introduction There are few stygiobiont species of the palaemonid genus Macrobrachium Bate, 1864 in the world, although the genus is one of the most speciose caridean genera, abundant in tropical fresh waters (Chace & Bruce, 1993). Holthuis (1986) listed six stygiobiont species of Macrobrachium, together with additional 12 stygiophile or stygoxene species. The six stygiobiont species are: M. cavernicola (Kemp, 1924) from Siju Cave in Assam, India (Kemp, 1924); M. -
2219573-REP-Marine Assessment Report AR
Appendix L – Marine Assessment GHD | Report for Hunter Water Corporation - Belmont Drought Response Desalination Plant, 2219573 Hunter Water Corporation Belmont Drought Response Desalination Plant Marine Environment Assessment Amendment Report July 2020 Table of contents 1. Introduction..................................................................................................................................... 1 1.1 Background .......................................................................................................................... 1 1.2 Purpose and structure of this report .................................................................................... 2 2. Project changes ............................................................................................................................. 4 2.1 Overview .............................................................................................................................. 4 2.2 Key features of the amended Project .................................................................................. 4 3. Methodology ................................................................................................................................... 7 3.1 Review of relevant legislation .............................................................................................. 7 3.2 Review of databases and searches ..................................................................................... 7 3.3 Review of previous marine ecology reports ........................................................................ -
SALINITY SENSITIVITY in EARLY LIFE STAGES of an AUSTRALIAN FRESHWATER FISH, MURRAY COD (Maccullochella Peelii Peelii Mitchell 1838)
i SALINITY SENSITIVITY IN EARLY LIFE STAGES OF AN AUSTRALIAN FRESHWATER FISH, MURRAY COD (Maccullochella peelii peelii Mitchell 1838) Piyapong Chotipuntu THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY OF THE UNIVERSITY OF CANBERRA Submitted August 2003 ii © Piyapong Chotipuntu 2003 Abstract The Murray cod (Maccullochella peelii peelii Mitchell 1838) is Australia’s largest freshwater fish. Once highly abundant in the Murray-Darling river system, populations have drastically declined in recent decades. Many causes for this decline have been proposed, including over-fishing, habitat loss and altered river flow regimes. This study hypothesised that elevated salinities have led to selective mortality in some developmental stages, which have in turn depleted stock recruitment and adult populations. The objectives of this study were to determine the optimal, threshold, upper sublethal and lethal salinities for development of eggs, yolk-sac larvae, fry and fingerlings of M. peelii peelii. Investigation the impact of salinity on fertilisation utilised gametes of trout cod (M. macquariensis, Cuvier 1829) instead of M. peelii peelii. Studies were carried out in a controlled laboratory environment using test media prepared from commercial sea salt. The results showed that the eggs of the trout cod hatched only when fertilised and incubated in freshwater, and only larvae hatched in freshwater survived through the yolk absorption period of 12 days. Yolk utilisation efficiencies were not significantly different among the salinities of 0-0.30 g/L. There was no effect of pre- or post- fertilising processes on the salinity tolerances of yolk-sac larvae. No larvae survived at salinities higher than 0.30 g/L during the yolk utilisation period.