Palaemonidae, Macrobrachium, New Species, Anchia- Line Cave, Miyako Island, Ryukyu Islands
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Reproductive Potential of Four Freshwater Prawn Species in the Amazon Region
Invertebrate Reproduction & Development ISSN: 0792-4259 (Print) 2157-0272 (Online) Journal homepage: https://www.tandfonline.com/loi/tinv20 Reproductive potential of four freshwater prawn species in the Amazon region Leo Jaime Filgueira de Oliveira, Bruno Sampaio Sant’Anna & Gustavo Yomar Hattori To cite this article: Leo Jaime Filgueira de Oliveira, Bruno Sampaio Sant’Anna & Gustavo Yomar Hattori (2017) Reproductive potential of four freshwater prawn species in the Amazon region, Invertebrate Reproduction & Development, 61:4, 290-296, DOI: 10.1080/07924259.2017.1365099 To link to this article: https://doi.org/10.1080/07924259.2017.1365099 Published online: 21 Aug 2017. Submit your article to this journal Article views: 43 View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=tinv20 INVERTEBRATE REPRODUCTION & DEVELOPMENT, 2017 VOL. 61, NO. 4, 290–296 https://doi.org/10.1080/07924259.2017.1365099 Reproductive potential of four freshwater prawn species in the Amazon region Leo Jaime Filgueira de Oliveira†, Bruno Sampaio Sant’Anna and Gustavo Yomar Hattori Instituto de Ciências Exatas e Tecnologia (ICET), Universidade Federal do Amazonas (UFAM), Itacoatiara, Brazil ABSTRACT ARTICLE HISTORY The bioecology of freshwater prawns can be understood by studying their reproductive biology. Received 1 June 2017 Thus, the aim of this paper was to determine and compare the reproductive potential of four Accepted 4 August 2017 freshwater caridean prawns collected in the Amazon region. For two years, we captured females KEYWORDS of Macrobrachium brasiliense, Palaemon carteri, Pseudopalaemon chryseus and Euryrhynchus Caridea; Euryrhynchidae; amazoniensis from inland streams in the municipality of Itacoatiara (AM). -
BIOLÓGICA VENEZUELICA Es Editada Por Dirección Postal De Los Mismos
7 M BIOLÓGICA II VENEZUELICA ^^.«•r-íí-yííT"1 VP >H wv* "V-i-, •^nru-wiA ">^:^;iW SWv^X/^ií. UN I VE RSIDA P CENTRAL DÉ VENEZUELA ^;."rK\'':^>:^:;':••'': ; .-¥•-^>v^:v- ^ACUITAD DE CIENCIAS INSilTÜTO DÉ Z00LOGIA TROPICAL: •RITiTRnTOrr ACTA BIOLÓGICA VENEZUELICA es editada por Dirección postal de los mismos. Deberá suministrar el Instituto de Zoología Tropical, Facultad, de Ciencias se en página aparte el título del trabajo en inglés en de la Universidad Central de Venezuela y tiene por fi caso de no estar el manuscritp elaborado en ese nalidad la publicación de trabajos originales sobre zoo idioma. logía, botánica y ecología. Las descripciones de espe cies nuevas de la flora y fauna venezolanas tendrán Resúmenes: Cada resumen no debe exceder 2 pági prioridad de publicación. Los artículos enviados no de nas tamaño carta escritas a doble espacio. Deberán berán haber sido publicados previamente ni estar sien elaborarse en castellano e ingles, aparecer en este do considerados para tal fin en otras revistas. Los ma mismo orden y en ellos deberá indicarse el objetivo nuscritos deberán elaborarse en castellano o inglés y y los principales resultados y conclusiones de la co no deberán exceder 40 páginas tamaño carta, escritas municación. a doble espacio, incluyendo bibliografía citada, tablas y figuras. Ilustraciones: Todas las ilustraciones deberán ser llamadas "figuras" y numeradas en orden consecuti ACTA BIOLÓGICA VENEZUELICA se edita en vo (Ejemplo Fig. 1. Fig 2a. Fig 3c.) el número, así co cuatro números que constituyen un volumen, sin nin mo también el nombre del autor deberán ser escritos gún compromiso de fecha fija de publicación. -
Reef Fishes Use Sea Anemones As Visual Cues for Cleaning Interactions with Shrimp
Journal of Experimental Marine Biology and Ecology 416–417 (2012) 237–242 Contents lists available at SciVerse ScienceDirect Journal of Experimental Marine Biology and Ecology journal homepage: www.elsevier.com/locate/jembe Reef fishes use sea anemones as visual cues for cleaning interactions with shrimp Lindsay K. Huebner ⁎, Nanette E. Chadwick Department of Biological Sciences, 101 Rouse Life Sciences Building, Auburn University, Auburn, AL 36849, USA article info abstract Article history: Marine cleaners benefit diverse fish clients via removal of ectoparasites, yet little is known about how fishes Received 17 August 2011 locate small, inconspicuous cleaner shrimps on coral reefs. Pederson shrimp Ancylomenes pedersoni are effec- Received in revised form 19 December 2011 tive cleaners in the Caribbean Sea, and additionally form obligate associations with corkscrew sea anemones Accepted 5 January 2012 Bartholomea annulata, which also serve as hosts to a variety of other crustacean symbionts. We examined the Available online 24 January 2012 visual role of B. annulata to reef fishes during cleaning interactions with A. pedersoni by comparing anemone characteristics with fish visitation rates, and by manipulating the visibility of anemones and cleaner shrimp in Keywords: fi fi Ancylomenes pedersoni eld experiments using mesh covers. Rates of visitation by shes to cleaning stations increased primarily Cleaner shrimp with anemone body size and the total number of crustacean symbionts, but did not change consistently in Cleaning symbiosis response to covers. Fishes posed for cleaning at stations only where anemones remained visible, regardless Client fishes of whether shrimp were visible. Shrimp at stations where anemones were covered performed fewer cleaning Sea anemone interactions with fishes, as fishes did not continue to pose when anemones were not visible. -
Protection of Host Anemones by Snapping Shrimps: a Case for Symbiotic Mutualism?
Symbiosis DOI 10.1007/s13199-014-0289-8 Protection of host anemones by snapping shrimps: a case for symbiotic mutualism? AmberM.McCammon& W. Randy Brooks Received: 4 June 2014 /Accepted: 29 July 2014 # Springer Science+Business Media Dordrecht 2014 Abstract The sea anemone Bartholomea annulata is an eco- especially common in marine environments (Roughgarden logically important member of Caribbean coral reefs which host 1975; Poulin and Grutter 1996;Côté2000). Mutualism; a a variety of symbiotic crustacean associates. Crustacean type of symbiotic relationship in which both partners derive exosymbionts typically gain protection from predation by dwell- some benefit from the association, are also widespread across ing with anemones. Concurrently, some symbionts may provide taxa (Boucher et al. 1982). The benefit(s) of symbiont- protection to their host by defending against anemone predators mediated protection of host species from microbial disease, such as the predatory fireworm, Hermodice carunculata,which parasites, and predators is increasingly evident (Haine 2008). can severely damage or completely devour prey anemones. Protection mechanisms are diverse and include various sym- Herein we show through both field and laboratory studies that biont derived chemical defenses (Haine 2008) as well as anemones hosting the symbiotic alpheid shrimp Alpheus armatus maintenance behaviors (Heil and McKey 2003; Stier et al. are significantly less likely to sustain damage by H. carunculata 2012) and defensive social interactions (Glynn 1980; Brooks than anemones without this shrimp. Our results suggest that the and Gwaltney 1993; Heil and McKey 2003;McKeonetal. association between A. armatus and B. annulata, although com- 2012). Previous studies have demonstrated that some crusta- plex because of the numerous symbionts involved, may be closer ceans will actively defend host cnidarians in their natural to mutualism on the symbiotic continuum. -
The First Amber Caridean Shrimp from Mexico Reveals the Ancient
www.nature.com/scientificreports Corrected: Author Correction OPEN The frst amber caridean shrimp from Mexico reveals the ancient adaptation of the Palaemon to the Received: 25 February 2019 Accepted: 23 September 2019 mangrove estuary environment Published online: 29 October 2019 Bao-Jie Du1, Rui Chen2, Xin-Zheng Li3, Wen-Tao Tao1, Wen-Jun Bu1, Jin-Hua Xiao1 & Da-Wei Huang 1,2 The aquatic and semiaquatic invertebrates in fossiliferous amber have been reported, including taxa in a wide range of the subphylum Crustacea of Arthropoda. However, no caridean shrimp has been discovered so far in the world. The shrimp Palaemon aestuarius sp. nov. (Palaemonidae) preserved in amber from Chiapas, Mexico during Early Miocene (ca. 22.8 Ma) represents the frst and the oldest amber caridean species. This fnding suggests that the genus Palaemon has occupied Mexico at least since Early Miocene. In addition, the coexistence of the shrimp, a beetle larva, and a piece of residual leaf in the same amber supports the previous explanations for the Mexican amber depositional environment, in the tide-infuenced mangrove estuary region. Palaemonidae Rafnesque, 1815 is the largest shrimp family within the Caridea, with world-wide distribution1. It is now widely believed that it originated from the marine environment in the indo-western Pacifc warm waters, and has successfully adapted to non-marine environments, such as estuaries and limnic environments2–4. Palaemon Weber, 1795 is the second most species-rich genus besides the Macrobrachium Spence Bate, 1868 in the Palaemonidae4–6. Te 87 extant species of Palaemon are found in various habitats, such as marine, brackish and freshwater7,8. -
The Reproductive Performance of the Red-Algae Shrimp Leander Paulensis
Zimmermann et al.: The reproductive performance of Leander paulensis ORIGINAL ARTICLE / ARTIGO ORIGINAL BJOCE The reproductive performance of the Red-Algae shrimp Leander paulensis (Ortmann, 1897) (Decapoda, Palaemonidae) and the effect of post-spawning female weight gain on weight-dependent parameters Uwe Zimmermann1,2, Fabrício Lopes Carvalho2,3, Fernando L. Mantelatto2,* 1 Eberhard Karls-University Tübingen, Faculty of Science, Department of Biology (Auf der Morgenstelle 28, 72076 Tübingen, Germany) 2 Universidade de São Paulo (USP), Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (FFCLRP), Departamento de Biologia, Laboratório de Bioecologia e Sistemática de Crustáceos (LBSC) (Av. Bandeirantes, 3900, Ribeirão Preto, 14040-901, São Paulo, Brazil) 3 Universidade Federal do Sul da Bahia (UFSB), Instituto de Humanidades, Artes e Ciências Jorge Amado (IHAC-JA) (Rod. Ilhéus-Vitória da Conquista, km 39, BR 415, 45613-204, Ferradas, Itabuna, Bahia, Brazil) *Corresponding author: [email protected] Financial Support: FAPESP (Temático Biota 2010/50188-8) CAPES (Ciências do Mar II Proc. 2005/2014 - 23038.004308/201414) CNPq (DR 140199/2011-0 and PQ 302748/2010-5; 304968/2014-5) ABSTRACT RESUMO Decapod species have evolved with a variety of Decápodes desenvolveram uma ampla variedade reproductive strategies. In this study reproductive de estratégias reprodutivas. Neste estudo foram features of the palaemonid shrimp Leander paulensis investigadas características reprodutivas da espécie de were investigated. Individuals were collected in the Palaemonidae Leander paulensis. Os indivíduos foram coastal region of Ubatuba, São Paulo, Brazil. In coletados na região costeira de Ubatuba, São Paulo, all, 46 ovigerous females were examined in terms Brasil. Foram examinadas 46 fêmeas ovígeras quanto of the following reproductive traits: fecundity, aos seguintes aspectos reprodutivos: fecundidade, reproductive output, brood loss and egg volume. -
Download 1.53 MB
Records of the Western Australian Museum 21: 71-81 (2002). Leander manningi, a new palaemonine shrimp from Western Australia (Crustacea, Decapoda, Palaemonidae), with a review of the Indo-West Pacific species of the genus Leander E. Desmarest, 1849 A.J. Bruce Queensland Museum, P.O. Box 3300, South Brisbane, Queensland, 4101 Australia e-mail: [email protected] Abstract -A new species of marine palaemonine shrimp from Western Australia is described and illustrated. Leander manningi, a shrimp closely related to L. paulensis (Ortmann, 1897) and L. tenuicornis (Say, 1818), was collected during the course of a survey of Cockburn Sound, Western Australia. The Indo-West Pacific species of the genus Leander Desmarest, 1849 now known are reviewed and a key for their identification is provided. INTRODUCTION SYSTEMATICS The first species of the small palaemonine genus Leander manningi sp. novo Leander to enter the scientific record was Palaemon Figures 1-4 tenuicornis described by Say in 1819 from the North Atlantic Newfoundland Banks. It was re-described Material Examined as Leander erraticus by Desmarest (1849) and first Australia: Western Australia: 1 female, holotype, reported from the Indo-West Pacific region, from BP Oil Refinery Jetty, Kwinana, Cockburn Sound, Japan, by De Haan (1849), as Palaemon latirostris. O.5m MLW, 11 May 1999, WAM C28204. 2 males The species was formally placed in the genus paratypes, 1 juvenile male paratype, 1 , WAM Leander, as L. tenuicornis by Kingsley (1878). Kemp C28205, 1 female, idem, 7.0m, 1 May 1999, WAM (1925) mentions that, in the Atlantic Ocean, the C28206. species occurs as far south as the Falkland Islands. -
(Caridea: Alpheidae, Palaemonidae) on the Brazilian Coast
An Acad Bras Cienc (2021) 93(2): e20190634 DOI 10.1590/0001-3765202120190634 Anais da Academia Brasileira de Ciências | Annals of the Brazilian Academy of Sciences Printed ISSN 0001-3765 I Online ISSN 1678-2690 www.scielo.br/aabc | www.fb.com/aabcjournal ANIMAL SCIENCE Range extensions of three marine Running title: RANGE shrimps (Caridea: Alpheidae, EXTENSIONS OF THREE CARIDEANS FROM BRAZIL Palaemonidae) on the Brazilian coast LUCIANE A.A. FERREIRA, CECILI B. MENDES & PAULO P.G. PACHELLE Academy Section: ANIMAL Abstract: Three caridean shrimps have their distribution range extended on the SCIENCE Brazilian coast. Alpheus carlae Anker, 2012 (Alpheidae), previously reported from Ceará to São Paulo, and Typton fapespae Almeida, Anker & Mantelatto, 2014 (Palaemonidae), previously known only from Rio de Janeiro and São Paulo, are both now reported from e20190634 Santa Catarina, the new southernmost record of these species in the Atlantic Ocean. Athanas nitescens (Leach, 1813) (Alpheidae), an invasive species from the eastern Atlantic fi rst reported from São Paulo in 2012 based on a single male, is now confi rmed to have 93 established populations in Brazil with the fi nding of ovigerous females on the coast of (2) Rio de Janeiro. Illustrations for all three species are provided based on the new material. 93(2) Key words: Biodiversity, Crustacea, Decapoda, southwestern Atlantic, intertidal. DOI 10.1590/0001-3765202120190634 INTRODUCTION studies have been published dealing with new records, fi lling distributional gaps for various The infraorder Caridea Dana, 1852 comprises the species and thus providing valuable information second most speciose infraorder of decapod for future marine biodiversity assessments (e.g., crustaceans with over 3400 described species Cardoso 2009, Pachelle et al. -
Diversity of Freshwater Shrimps (Atyidae and Palaemonidae) Along the Continnum of Urabaru Stream, Kikaijima Island, Japan
Pakistan J. Zool., vol. 48(2), pp. 569-573, 2016. Diversity of Freshwater Shrimps (Atyidae and Palaemonidae) along the Continnum of Urabaru Stream, Kikaijima Island, Japan Anila Naz Soomro,1 Baradi Waryani,1 Suzuki Hiroshi,2 Wazir Ali Baloch,1 Shoaka Masashi,2 Sadaf Tabasum Qureshi3 and Shagufta Saddozai4 1Department of Freshwater Biology and Fisheries, University of Sindh, Jamshoro 76080, Sindh 2Laboratory of Aquatic Resource Science, Faculty of Fisheries, Kagoshima University, Japan 3Institute of Plant Sciences, University of Sindh, Jamshoro 4 Department of Zoology, SBK Women University, Quetta Article Information Received 13 Junet 2015 A B S T R A C T Revised 30 September 2015 Accepted 25 October 2015 Available online 1 March 2016 Diversity of freshwater shrimps was investigated along the continuum of Urabaru stream Kikaijima Island, Japan. Total five stations were sampled from May 2007 to December 2008 in Urabaru Authors’ Contributions stream. Total twelve species including seven Atyid and five Palaemonid shrimps were observed ANS, SH and SM designed the study during the study. Macrobrachium grandimanus and Atypsis spinipes are reported for first time in a and collected the samples. Article stream of Kikaijima Island. Macrobrachium japonicus, Macrobrachium lar and Caridina typus was written by ANS. BW, WAB, bserved at all five stations. Higher Margalef diversity was recorded at stations 4 and 5 and lower at STQ and SS helped in writing the article. Stations 1, 2 and 3. Cluster analysis recorded higher similarity between Stations 4 and 5 at one cluster and Sations 1, 2 and 3 at other. Our results suggesting higher diversities at stations located Key words near river mouth (4 and 5) and gradulay lower diversities at the stations located away from the river Macrobrachium, Cluster analysis, mouth (1, 2 and 3). -
Decapoda, Caridea, Palaemonidae) from the Highlands of South Vietnam
A NEW FRESHWATER PRAWN OF THE GENUS MACROBRACHIUM (DECAPODA, CARIDEA, PALAEMONIDAE) FROM THE HIGHLANDS OF SOUTH VIETNAM BY NGUYEN VAN XUÂN1) Faculty of Fisheries, University of Agriculture and Forestry, Thu Duc, Ho Chi Minh City, Vietnam ABSTRACT A new species of the genus Macrobrachium, M. thuylami, was discovered in the highlands of South Vietnam. A description, illustrations, and notes on habitat and economic importance of this species are provided. RÉSUMÉ Une nouvelle espèce du genre Macrobrachium, M. thuylami a été découverte dans une région montagneuse du Sud Vietnam. Une description et des illustrations, ainsi que des notes sur l’habitat et l’importance économique de cette espèce sont fournies. INTRODUCTION During a trip in Duc Lap, a district of Daklak Province about 300 km northeast of Ho Chi Minh City, we had an opportunity to buy some prawns of the genus Macrobrachium. These seem to belong to an as yet undescribed species, and this is described below. The new species, Macrobrachium thuylami, is characteristic in having the antepenultimate segment of the third maxilliped serrate at the distal half of the outer margin. Notes on habitat and economic importance are provided. The abbreviation tl. is used for total length, measured from the tip of the rostrum to the tip of the telson in the fully stretched specimen; cl. is used for carapace length excluding the rostrum. The material discussed here is deposited in the collection of the National Museum of Natural History (RMNH), Leiden, Netherlands. For identification of the prawn, papers of Holthuis (1950), Naiyanetr (1993), and Xuân (2003) were used. -
Macrobrachium Rosenbergii (De Man, 1879)
Food and Agriculture Organization of the United Nations Fisheries and for a world without hunger Aquaculture Department Cultured Aquatic Species Information Programme Macrobrachium rosenbergii (De Man, 1879) I. Identity V. Status And Trends a. Biological Features VI. Main Issues b. Images Gallery a. Responsible Aquaculture Practices II. Profile VII. References a. Historical Background a. Related Links b. Main Producer Countries c. Habitat And Biology III. Production a. Production Cycle b. Production Systems c. Diseases And Control Measures IV. Statistics a. Production Statistics b. Market And Trade Identity Macrobrachium rosenbergii De Man, 1879 [Palaemonidae] FAO Names: En - Giant river prawn, Fr - Bouquet géant, Es - Langostino de río View FAO FishFinder Species fact sheet Biological features Males can reach total length of 320 mm; females 250 mm. Body usually greenish to brownish grey, sometimes more bluish, darker in larger specimens. Antennae often blue; chelipeds blue or orange. 14 somites within cephalothorax covered by large dorsal shield (carapace); carapace smooth and hard. Rostrum long, normally reaching beyond antennal scale, slender and somewhat sigmoid; distal part curved somewhat upward; 11-14 dorsal and 8-10 ventral teeth. Cephalon contains eyes, antennulae, antennae, mandibles, maxillulae, and maxillae. Eyes stalked, except in first larval stage. Thorax contains three pairs of maxillipeds, used as mouthparts, and five pairs of pereiopods (true legs). First two pairs of pereiopods chelate; each pair of chelipeds equal in size. Second chelipeds bear numerous spinules; robust; slender; may be excessively long; FAO Fisheries and Aquaculture Department chelipeds equal in size. Second chelipeds bear numerous spinules; robust; slender; may be excessively long; mobile finger covered with dense, though rather short pubescence. -
The Ohio Shrimp, Macrobrachium Ohione (Palaemonidae), in the Lower Ohio River of Illinois
Transactions of the Illinois State Academy of Science received 11/19/01 (2002), Volume 95, #1, pp. 65-66 accepted 1/2/02 The Ohio Shrimp, Macrobrachium ohione (Palaemonidae), in the Lower Ohio River of Illinois William J. Poly1 and James E. Wetzel2 1Department of Zoology and 2Fisheries and Illinois Aquaculture Center Southern Illinois University Carbondale, Illinois 62901 ABSTRACT Until about the 1930s, the Ohio shrimp, Macrobrachium ohione, was common in the Mississippi River between Chester and Cairo, and also occurred in the Ohio and lower Wabash rivers bordering southern Illinois, but since then, the species declined sharply in abundance. Two specimens were captured in May 2001 from the Ohio River at Joppa, Massac Co., Illinois, and represent the first M. ohione collected in the Ohio River in over 50 years. The Ohio shrimp, Macrobrachium ohione, was described from specimens collected in the Ohio River at Cannelton, Indiana (Smith, 1874) and occurs in the Mississippi River basin, Gulf Coast drainages, and also in some Atlantic coast drainages from Virginia to Georgia (Hedgpeth, 1949; Holthuis, 1952; Hobbs and Massmann, 1952). The Ohio shrimp formerly was abundant in the Mississippi River as far north as Chester, Illinois (and possibly St. Louis, Missouri) and in the Ohio River as far upstream as southeastern Ohio (Forbes, 1876; Hay, 1892; McCormick, 1934; Hedgpeth, 1949) but has declined in abundance drastically after the 1930s (Page, 1985). There has been only one record of the Ohio shrimp in the Wabash River bordering Illinois dated 1892, and the only record from the Ohio River of Illinois was from Shawneetown in southeastern Illinois (Hedg- peth, 1949; Page, 1985).