Thesis Template
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
An Empirical Study of Web Resource Manipulation in Real-World Mobile
An Empirical Study of Web Resource Manipulation in Real-world Mobile Applications Xiaohan Zhang, Yuan Zhang, Qianqian Mo, Hao Xia, Zhemin Yang, and Min Yang, Fudan University; Xiaofeng Wang, Indiana University, Bloomington; Long Lu, Northeastern University; Haixin Duan, Tsinghua University https://www.usenix.org/conference/usenixsecurity18/presentation/zhang-xiaohan This paper is included in the Proceedings of the 27th USENIX Security Symposium. August 15–17, 2018 • Baltimore, MD, USA ISBN 978-1-939133-04-5 Open access to the Proceedings of the 27th USENIX Security Symposium is sponsored by USENIX. An Empirical Study of Web Resource Manipulation in Real-world Mobile Applications Xiaohan Zhang1,4, Yuan Zhang1,4, Qianqian Mo1,4, Hao Xia1,4, Zhemin Yang1,4, Min Yang1,2,3,4, Xiaofeng Wang5, Long Lu6, and Haixin Duan7 1School of Computer Science, Fudan University 2Shanghai Institute of Intelligent Electronics & Systems 3Shanghai Institute for Advanced Communication and Data Science 4Shanghai Key Laboratory of Data Science, Fudan University 5Indiana University Bloomington , 6Northeastern University , 7Tsinghua University Abstract built into a single app. For the convenience of such an integration, mainstream mobile platforms (including Mobile apps have become the main channel for access- Android and iOS) feature in-app Web browsers to run ing Web services. Both Android and iOS feature in- Web content. Examples of the browsers include Web- app Web browsers that support convenient Web service View [9] for Android and UIWebView/WKWebView for integration through a set of Web resource manipulation iOS [8, 10]. For simplicity of presentation, we call them APIs. Previous work have revealed the attack surfaces of WebViews throughout the paper. -
Access Control
Security Engineering: A Guide to Building Dependable Distributed Systems CHAPTER 4 Access Control Going all the way back to early time-sharing systems, we systems people regarded the users, and any code they wrote, as the mortal enemies of us and each other. We were like the police force in a violent slum. —ROGER NEEDHAM Microsoft could have incorporated effective security measures as standard, but good sense prevailed. Security systems have a nasty habit of backfiring, and there is no doubt they would cause enormous problems. —RICK MAYBURY 4.1 Introduction Access control is the traditional center of gravity of computer security. It is where se- curity engineering meets computer science. Its function is to control which principals (persons, processes, machines, . .) have access to which resources in the sys- tem—which files they can read, which programs they can execute, how they share data with other principals, and so on. NOTE This chapter necessarily assumes more computer science background than previous chapters, but I try to keep it to a minimum. 51 Chapter 4: Access Controls Figure 4.1 Access controls at different levels in a system. Access control works at a number of levels, as shown in Figure 4.1, and described in the following: 1. The access control mechanisms, which the user sees at the application level, may express a very rich and complex security policy. A modern online busi- ness could assign staff to one of dozens of different roles, each of which could initiate some subset of several hundred possible transactions in the system. Some of these (such as credit card transactions with customers) might require online authorization from a third party while others (such as refunds) might require dual control. -
Universidade Tecnológica Federal Do Paraná Campus Curitiba – Sede Central Departamento Acadêmico De Desenho Industrial Tecnologia Em Design Gráfico
UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ CAMPUS CURITIBA – SEDE CENTRAL DEPARTAMENTO ACADÊMICO DE DESENHO INDUSTRIAL TECNOLOGIA EM DESIGN GRÁFICO ALEXANDRE DA SILVA SANTANA A ESTAÇÃO DE TREM DE CURITIBA EM MODELAGEM 3D: UMA FORMA DE RETRATAR A HISTÓRIA DO TREM TRABALHO DE CONCLUSÃO DE CURSO CURITIBA-PR 2017 ALEXANDRE DA SILVA SANTANA A ESTAÇÃO DE TREM DE CURITIBA EM MODELAGEM 3D: UMA FORMA DE RETRATAR A HISTÓRIA DO TREM Monografia apresentada ao Curso Superior de Tecnologia em Design Gráfico do Departamento Acadêmico de Desenho Industrial – DADIN – da Universidade Tecnológica Federal do Paraná – UTFPR, como requisito parcial para obtenção do título de Graduação em Tecnologia em Design Gráfico. Orientadora: Prof.ª MSc. Ana Cristina Munaro. CURITIBA-PR 2017 Ministério da Educação Universidade Tecnológica Federal do Paraná PR Câmpus Curitiba UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Diretoria de Graduação e Educação Profissional Departamento Acadêmico de Desenho Industrial TERMO DE APROVAÇÃO TRABALHO DE CONCLUSÃO DE CURSO 039 A ESTAÇÃO DE TREM DE CURITIBA EM MODELAGEM 3D: UMA FORMA DE REVIVER A HISTÓRIA DO TREM por Alexandre da Silva Santana – 1612557 Trabalho de Conclusão de Curso apresentado no dia 28 de novembro de 2017 como requisito parcial para a obtenção do título de TECNÓLOGO EM DESIGN GRÁFICO, do Curso Superior de Tecnologia em Design Gráfico, do Departamento Acadêmico de Desenho Industrial, da Universidade Tecnológica Federal do Paraná. O aluno foi arguido pela Banca Examinadora composta pelos professores abaixo, que após deliberação, consideraram o trabalho aprovado. Banca Examinadora: Prof. Alan Ricardo Witikoski (Dr.) Avaliador DADIN – UTFPR Prof. Francis Rodrigues da Silva (Esp.) Convidado DADIN – UTFPR Profa. Ana Cristina Munaro (MSc.) Orientadora DADIN – UTFPR Prof. -
Microsoft Office Live Meeting Service Security Guide.Pdf
Microsoft Office Live 2007 R2 Meeting Service Security Guide Published: August 2008 Information in this document, including URL and other Internet Web site references, is subject to change without notice. Unless otherwise noted, the companies, organizations, products, domain names, e-mail addresses, logos, people, places, and events depicted in examples herein are fictitious. No association with any real company, organization, product, domain name, e-mail address, logo, person, place, or event is intended or should be inferred. Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation. Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property. © 2007 Microsoft Corporation. All rights reserved. Microsoft , MSN, Outlook, PowerPoint, Visio, and Windows are trademarks of the Microsoft group of companies. Microsoft, MSN, Outlook, PowerPoint, Visio, and Windows are either registered trademarks -
Pushing Data in Both Directions with Websockets, Part 2
Menu Topics Archives Downloads Subscribe Pushing Data in Both CODING Directions with WebSockets, Part 2 Pushing Data in Both Directions Message Processing Modes with WebSockets, Part 2 Path Mapping Deployment of Server Using WebSockets’ long-lasting Endpoints connections to build a simple chat app The Chat Application by Danny Coward Conclusion January 1, 2016 Learn More In Part 1 of this article, I introduced WebSockets. I observed that the base WebSocket protocol gives us two native formats to work with: text and binary. This works well for very basic applications that exchange only simple information between client and server. For example, in the Clock application in that article, the only data that is exchanged during the WebSocket messaging interaction is the formatted time string broadcast from the server endpoint and the stop string sent by the client to end the updates. But as soon as an application has anything more complicated to send or receive over a WebSocket connection, it will find itself seeking a structure into which to put the information. As Java developers, we are used to dealing with application data in the form of objects: either from classes from the standard Java APIs or from Java classes that we create ourselves. This means that if you stick with the lowest-level messaging facilities of the Java WebSocket API and want to program using objects that are not strings or byte arrays for your messages, you need to write code that converts your objects into either strings or byte arrays and vice versa. Let’s see how that’s done. -
1. Plugin Framework Documentation
1. Plugin Framework Documentation . 3 1.1 Writing Atlassian Plugins . 6 1.1.1 Creating your Plugin Descriptor . 8 1.1.2 Plugin Module Types . 16 1.1.2.1 Component Import Plugin Module . 16 1.1.2.2 Component Plugin Module . 20 1.1.2.3 Module Type Plugin Module . 23 1.1.2.4 Servlet Context Listener Plugin Module . 29 1.1.2.5 Servlet Context Parameter Plugin Module . 32 1.1.2.6 Servlet Filter Plugin Module . 34 1.1.2.7 Servlet Plugin Module . 38 1.1.2.8 Web Item Plugin Module . 41 1.1.2.9 Web Resource Plugin Module . 50 1.1.2.10 Web Section Plugin Module . 56 1.1.3 Adding Plugin and Module Resources . 64 1.1.4 Supporting Minification of JavaScript and CSS Resources . 70 1.1.5 Adding a Configuration UI for your Plugin . 73 1.1.6 Ensuring Standard Page Decoration in your Plugin UI . 75 1.1.7 Using Packages and Components Exposed by an Application . 77 1.1.8 Running your Plugin in the Reference Implementation . 79 1.1.9 OSGi, Spring and the Plugin Framework . 89 1.1.9.1 Behind the Scenes in the Plugin Framework . 94 1.1.9.1.1 Going from Plugin to OSGi Bundle . 94 1.1.9.1.2 Lifecycle of a Bundle . 95 1.1.9.1.3 Automatic Generation of Spring Configuration . 96 1.1.9.2 Converting a Plugin to Plugin Framework 2 . 98 1.1.9.3 OSGi and Spring Reference Documents . 99 1.2 Embedding the Plugin Framework . -
Ajax (In)Security
Ajax (in)security Billy Hoffman ([email protected]) SPI Labs Security Researcher Overview • Architecture of web applications • What is Ajax? • How does Ajax help? • Four security issues with Ajax and Ajax applications • Guidelines for secure Ajax development Architecture of Web Applications Traditional Web Application Browser receives input from user Uses JavaScript for simple logic and optimizations Sends HTTP request across the Internet Server processes response Backend logic evaluates input (PHP, ASP, JSP, etc) Possibly access other tiers (database, etc) Resource is returned to user Problems with Traditional Web Apps Case Study: MapQuest Reducing the Long Wait • These long pauses are very noticeable • Regular applications don't with the user this way • Reducing the delay between input and response is key – Request is a fixed size – Response is a fixed size – Network speed,latency is fixed – Server processes relatively fixed • Trick the user with better application feedback • This is what Ajax does What is Ajax? Asynchronous JavaScript And XML JavaScript takes on a larger role Send HTTP request Provides immediate feedback to user Application continues to respond to user events, interaction Eventually processes response from server and manipulates the DOM to present results Providing a Rich User Experience Case Study: Google Maps More information on Ajax • Use XmlHttpRequest Object • Sends any HTTP method – Simple: GET, POST, HEAD – WebDav: COPY, DELETE • Limited to where JavaScript came from (hostname, port) • Fetch any kind of -
Microsoft Office Live Workspace Beta
Microsoft Office Live Workspace Beta Présentation Microsoft Office Live Workspace est un service web gratuit de Microsoft qui permet de partager vos documents et de collaborer en ligne depuis n’importe quel ordinateur. Fonctionnalités clés Accéder à vos documents où que vous soyez Stockez plus de 1000 documents Microsoft Office et autres fichiers (5 Go disponibles) dans un environnement sécurisé accessible en ligne, depuis n’importe quel ordinateur. Stocker et partager vos documents en ligne dans Visualisez Microsoft Office Word, Microsoft Office Excel, Microsoft un environnement sécurisé Office PowerPoint ou des documents PDF, sans avoir Microsoft Office. Créez vos listes (ex., tâches, invités, courses…) et vos notes pour les avoir à disposition quand vous le souhaitez. Partager et collaborer en ligne Partagez vos documents en contrôlant ceux qui peuvent les consulter, les commenter et les modifier. Conservez l’historique des échanges et des actions grâce au panneau d’activités de votre Workspace et soyez informé des changements. Utilisez Microsoft SharedView (beta) pour travailler et partager des applications en temps réel. Enrichir votre expérience Microsoft Office Accédez aux fichiers de votre Workspace et sauvegardez les Télécharger plusieurs documents directement depuis Microsoft Office XP, 2003 ou 2007. Synchronisez automatiquement vos contacts, vos listes des tâches et événements avec Outlook 2003 et 2007. Exportez les listes de vos Workspaces dans Excel pour les archiver ou les consulter en mode déconnecté. A qui s’adresse Office Live Workspace? A toutes les personnes qui souhaitent s’affranchir des contraintes liées au pare-feu et au stockage sur des clés USB, des PC. A tous ceux qui veulent partager des documents avec des amis, des collègues, des partenaires, des fournisseurs ou des clients, dans un environnement sécurisé. -
Caveat Venditor: Technologically Protected Subsidized Goods and the Customers Who Hack Them Christopher Soghoian
Northwestern Journal of Technology and Intellectual Property Volume 6 Article 3 Issue 1 Fall Fall 2007 Caveat Venditor: Technologically Protected Subsidized Goods and the Customers Who Hack Them Christopher Soghoian Recommended Citation Christopher Soghoian, Caveat Venditor: Technologically Protected Subsidized Goods and the Customers Who Hack Them, 6 Nw. J. Tech. & Intell. Prop. 46 (2007). https://scholarlycommons.law.northwestern.edu/njtip/vol6/iss1/3 This Article is brought to you for free and open access by Northwestern Pritzker School of Law Scholarly Commons. It has been accepted for inclusion in Northwestern Journal of Technology and Intellectual Property by an authorized editor of Northwestern Pritzker School of Law Scholarly Commons. NORTHWESTERN JOURNAL OF TECHNOLOGY AND INTELLECTUAL PROPERTY Caveat Venditor: Technologically Protected Subsidized Goods and the Customers Who Hack Them Christopher Soghoian Fall 2007 VOL. 6, NO. 1 © 2007 by Northwestern University School of Law Northwestern Journal of Technology and Intellectual Property Copyright 2007 by Northwestern University School of Law Volume 6, Number 1 (Fall 2007) Northwestern Journal of Technology and Intellectual Property Caveat Venditor: Technologically Protected Subsidized Goods and the Customers Who Hack Them By Christopher Soghoian* I. INTRODUCTION ¶1 This paper focuses on the subsidization of a technology-based durable good.1 It goes on to discuss the delicate dance between the producer trying to protect its profit, competitors trying to create and sell aftermarket goods,2 and those innovative customers who use the items in completely unplanned and unprofitable ways. ¶2 An age old, but increasingly popular business model involves the subsidization of a proprietary durable good by a manufacturer, such that the good is sold below cost.3 Due to careful design, technological, and legal restrictions, the producer creates a primary product that is only compatible with its own aftermarket goods. -
The Basic Economics of Internet Infrastructure
Journal of Economic Perspectives—Volume 34, Number 2—Spring 2020—Pages 192–214 The Basic Economics of Internet Infrastructure Shane Greenstein his internet barely existed in a commercial sense 25 years ago. In the mid- 1990s, when the data packets travelled to users over dial-up, the main internet T traffic consisted of email, file transfer, and a few web applications. For such content, users typically could tolerate delays. Of course, the internet today is a vast and interconnected system of software applications and computing devices, which society uses to exchange information and services to support business, shopping, and leisure. Not only does data traffic for streaming, video, and gaming applications comprise the majority of traffic for internet service providers and reach users primarily through broadband lines, but typically those users would not tolerate delays in these applica- tions (for usage statistics, see Nevo, Turner, and Williams 2016; McManus et al. 2018; Huston 2017). In recent years, the rise of smartphones and Wi-Fi access has supported growth of an enormous range of new businesses in the “sharing economy” (like, Uber, Lyft, and Airbnb), in mobile information services (like, social media, ticketing, and messaging), and in many other applications. More than 80 percent of US households own at least one smartphone, rising from virtually zero in 2007 (available at the Pew Research Center 2019 Mobile Fact Sheet). More than 86 percent of homes with access to broadband internet employ some form of Wi-Fi for accessing applications (Internet and Television Association 2018). It seems likely that standard procedures for GDP accounting underestimate the output of the internet, including the output affiliated with “free” goods and the restructuring of economic activity wrought by changes in the composition of firms who use advertising (for discussion, see Nakamura, Samuels, and Soloveichik ■ Shane Greenstein is the Martin Marshall Professor of Business Administration, Harvard Business School, Boston, Massachusetts. -
Castle Game Engine Documentation
Castle Game Engine documentation Michalis Kamburelis Castle Game Engine documentation Michalis Kamburelis Copyright © 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014 Michalis Kamburelis You can redistribute and/or modify this document under the terms of the GNU General Public License [http://www.gnu.org/licenses/gpl.html] as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. Table of Contents Goals ....................................................................................................................... vii 1. Overview of VRML ............................................................................................... 1 1.1. First example ............................................................................................... 1 1.2. Fields .......................................................................................................... 3 1.2.1. Field types ........................................................................................ 3 1.2.2. Placing fields within nodes ................................................................ 5 1.2.3. Examples .......................................................................................... 5 1.3. Children nodes ............................................................................................. 7 1.3.1. Group node examples ........................................................................ 7 1.3.2. The Transform node ....................................................................... -
Microsoft Azure in Autonomous Driving Microsoft’S Approach to Automotive
Microsoft Azure in Autonomous Driving Microsoft’s approach to automotive We complement OEMs and suppliers – not compete We ensure your data is always under your control We guarantee that the brand and customer experience belongs to you OEM System Engineering Process Engineering Development Product Validation Manufacturing & Service Feasibility Operations Regional Changes Retirement/ Study/concept and Architecture (s) and Upgrades replacement Exploration Maintenance System Validation Plan Lifecycle Processes Concepts of System Operations Validation System Verification Plan (System Acceptance) System System Verification & Requirements Deployment Subsystem Verification Plan (Subsystem Acceptance) High-Level Subsystem Design Verification Unit/Device Test Plan Unit/Device Detailed Design Testing Document/Approval Software/Hardware Development Field Installation Implementation Development Processes Time Line Process, Sensor/ Algorithm Train Control Logic Software Sample, Reduce Testing (Open Loop) Validation in the loop Generate Test Vehicle Ingest/ Store Integrate Build Code F(x) Replay Tag Performance Simulate Hardware Simulation in the loop Render/Convert Test-Drive DATA INGEST & CURATE TEST | TRAIN | SIMULATE BUILD | VALIDATE • Cloud and Analytics partner for • Open source AD Platform • OpenADx ACM, an autonomous and smart • 200+ Member Consortium • Interoperable Eclipse Framework mobility test facility • Microsoft is the cloud provider for • Leveraged by all OEMs, tier ones and Project Apollo worldwide with the technology start ups exception of China • Engaged with ACM to influence standards Industry Academia Government LG’s autonomous vehicle program had unique requirements, including portability, security, and fast turnaround time; Data Box Disk was the perfect solution. “We needed a way to transfer massive amounts of data for our autonomous vehicle projects, based all around the world. The solution needed to be portable, simple to use, cost-effective and, of course, very secure.