Recovery Strategy for the Golden-Eye Lichen (Teloschistes Chrysophthalmus) – Great Lakes Population in Ontario

Total Page:16

File Type:pdf, Size:1020Kb

Recovery Strategy for the Golden-Eye Lichen (Teloschistes Chrysophthalmus) – Great Lakes Population in Ontario Photo: Troy McMullin Golden-eye Lichen (Great Lakes population) (Teloschistes chrysophthalmus) in Ontario Ontario Recovery Strategy Series 2019 Ministry of the Environment, Conservation and Parks About the Ontario Recovery Strategy Series This series presents the collection of recovery strategies that are prepared or adopted as advice to the Province of Ontario on the recommended approach to recover species at risk. The Province ensures the preparation of recovery strategies to meet its commitments to recover species at risk under the Endangered Species Act 2007 (ESA) and the Accord for the Protection of Species at Risk in Canada. What is recovery? What’s next? Recovery of species at risk is the process by Nine months after the completion of a recovery which the decline of an endangered, threatened, strategy a government response statement will or extirpated species is arrested or reversed, be published which summarizes the actions that and threats are removed or reduced to improve the Government of Ontario intends to take in the likelihood of a species’ persistence in the response to the strategy. The implementation of wild. recovery strategies depends on the continued cooperation and actions of government agencies, individuals, communities, land users, and What is a recovery strategy? conservationists. Under the ESA a recovery strategy provides the best available scientific knowledge on what is required to achieve recovery of a species. A For more information recovery strategy outlines the habitat needs To learn more about species at risk recovery in and the threats to the survival and recovery of Ontario, please visit the Ministry of Environment, the species. It also makes recommendations Conservation and Parks Species at Risk webpage on the objectives for protection and recovery, at: www.ontario.ca/speciesatrisk the approaches to achieve those objectives, and the area that should be considered in the development of a habitat regulation. Sections 11 to 15 of the ESA outline the required content and timelines for developing recovery strategies published in this series. Recovery strategies are required to be prepared for endangered and threatened species within one or two years respectively of the species being added to the Species at Risk in Ontario list. Recovery strategies are required to be prepared for extirpated species only if reintroduction is considered feasible. Recovery Strategy for Golden-eye Lichen (Great Lakes population) in Ontario Recommended citation Knight, T. 2019. Recovery Strategy for the Golden-eye Lichen (Teloschistes chrysophthalmus) – Great Lakes population in Ontario. Ontario Recovery Strategy Series. Prepared for the Ministry of the Environment, Conservation and Parks, Peterborough, Ontario. v + 40 pp. Cover illustration: Photo by Troy McMullin © Queen’s Printer for Ontario, 2019 ISBN 978-1-4868-3514-0 (HTML) ISBN 978-1-4868-3515-7 (PDF) Content (excluding illustrations) may be used without permission, with appropriate credit to the source. Cette publication hautement spécialisée « Recovery strategies prepared under the Endangered Species Act, 2007 », n’est disponible qu’en anglais en vertu du Règlement 411/97 qui en exempte l’application de la Loi sur les services en français. Pour obtenir de l’aide en français, veuillez communiquer avec [email protected]. Author Tristan Knight – Senior Ecologist/President, Terrastory Environmental Consulting Inc. Acknowledgments Several lichenologists and knowledgeable naturalists contributed valuable information and insights to support this recovery strategy. Sam Brinker (Natural Heritage Information Centre) offered expertise, described recent survey efforts, and assisted the author with a 2018 census of the Golden-eye Lichen colony at Sandbanks Provincial Park. Dr. Troy McMullin (Canadian Museum of Nature) and Chris Lewis (MNRF) also offered valuable expertise and insights. Roman Olszewski shed light on the circumstances surrounding the original discovery of Golden-eye Lichen at Sandbanks Provincial Park. Yvette Bree (Ontario Parks) clarified current park management priorities and recreational activities occurring near the colony at Sandbanks Provincial Park. Dr. Richard Harris (New York Botanical Garden) described historical and current records of Golden-eye Lichen from upstate New York. Finally, several iNaturalist users offered substrate and habitat details pertaining to recent records of Golden-eye Lichen from the eastern Great Lakes region. i Recovery Strategy for Golden-eye Lichen (Great Lakes population) in Ontario Declaration The recovery strategy for the Golden-eye Lichen was developed in accordance with the requirements of the Endangered Species Act, 2007 (ESA). This recovery strategy has been prepared as advice to the Government of Ontario, other responsible jurisdictions and the many different constituencies that may be involved in recovering the species. The recovery strategy does not necessarily represent the views of all of the individuals who provided advice or contributed to its preparation, or the official positions of the organizations with which the individuals are associated. The recommended goals, objectives and recovery approaches identified in the strategy are based on the best available knowledge and are subject to revision as new information becomes available. Implementation of this strategy is subject to appropriations, priorities and budgetary constraints of the participating jurisdictions and organizations. Success in the recovery of this species depends on the commitment and cooperation of many different constituencies that will be involved in implementing the directions set out in this strategy. Responsible jurisdictions Ministry of the Environment, Conservation and Parks Environment and Climate Change Canada – Canadian Wildlife Service, Ontario ii Recovery Strategy for Golden-eye Lichen (Great Lakes population) in Ontario Executive summary Golden-eye Lichen (Teloschistes chrysophthalmus) is a bright orange fruticose lichen appearing as shrubby tufts on tree bark and branches. The Great Lakes population is endangered in Ontario and represented by five historical records and one existing colony. Historical records are concentrated along the shorelines of Lake Erie (Point Pelee National Park, Port Rowan) and Lake Ontario (Presqu’ile Provincial Park, Wellington Beach), with one locality at Niagara Falls. The existing colony occurs on the bark of a mature Red Oak (Quercus rubra) near the shoreline of Lake Ontario at Sandbanks Provincial Park. Based on census counts this colony has declined from eight thalli in 2009 to two thalli in 2018. Golden-eye Lichen is also extremely rare and likely in decline within the United States (US) portion of the eastern Great Lakes region (northwestern Indiana, Michigan, northern Ohio, upstate New York). The habitat needs of the Great Lakes population are described herein based on relatively few records from southern Ontario and the eastern Great Lakes states. Suitable substrate includes the bark and branches of deciduous and coniferous trees and shrubs, and (to a lesser extent) fence rails. The Great Lakes population is strongly associated with areas of higher humidity (e.g., Great Lakes shoreline, Niagara Falls), although several recent records are from landscaped trees at inland sites. Other habitat variables which this species appears to be associated include calcareous soil, high light penetration, and good air quality. The recommended long-term recovery goal for the Great Lakes population of Golden- eye Lichen is to protect the known colony at Sandbanks Provincial Park and any new colonies that may be discovered in the future. The recommended objectives for this species are to: 1. Maintain the known colony and any colonies that may be discovered in the future through habitat protection, management, and monitoring. 2. Conduct surveys in habitats with potentially high suitability across southern Ontario. 3. Provide communication and outreach materials to landowners, conservation groups, and municipalities surrounding Sandbanks Provincial Park. 4. Conduct research to address knowledge gaps. Golden-eye Lichen is an epiphyte and requires suitable microsite conditions in order to persist at an existing site and for dispersal opportunities. It is recommended that areas prescribed as habitat for this species extend to a distance of at least 100 m around each documented occurrence. A minimum 50 m radius surrounding Golden-eye Lichen will protect individual thalli by restricting human activities which may adversely affect 1) the thallus, 2) the host tree/shrub, and 3) microsite conditions (e.g., humidity, light, etc.) surrounding the host tree/shrub. A further minimum 50-100 m radius surrounding Golden-eye Lichen will protect suitable habitat for colonization and local dispersal by restricting human activities which may compromise habitat quality. iii Recovery Strategy for Golden-eye Lichen (Great Lakes population) in Ontario Table of contents Recommended citation ..................................................................................................... i Author ............................................................................................................................... i Acknowledgments ............................................................................................................ i Declaration .......................................................................................................................ii Responsible jurisdictions ..................................................................................................ii
Recommended publications
  • Can Parietin Transfer Energy Radiatively to Photosynthetic Pigments?
    molecules Communication Can Parietin Transfer Energy Radiatively to Photosynthetic Pigments? Beatriz Fernández-Marín 1, Unai Artetxe 1, José María Becerril 1, Javier Martínez-Abaigar 2, Encarnación Núñez-Olivera 2 and José Ignacio García-Plazaola 1,* ID 1 Department Plant Biology and Ecology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; [email protected] (B.F.-M.); [email protected] (U.A.); [email protected] (J.M.B.) 2 Faculty of Science and Technology, University of La Rioja (UR), 26006 Logroño (La Rioja), Spain; [email protected] (J.M.-A.); [email protected] (E.N.-O.) * Correspondence: [email protected]; Tel.: +34-94-6015319 Received: 22 June 2018; Accepted: 16 July 2018; Published: 17 July 2018 Abstract: The main role of lichen anthraquinones is in protection against biotic and abiotic stresses, such as UV radiation. These compounds are frequently deposited as crystals outside the fungal hyphae and most of them emit visible fluorescence when excited by UV. We wondered whether the conversion of UV into visible fluorescence might be photosynthetically used by the photobiont, thereby converting UV into useful energy. To address this question, thalli of Xanthoria parietina were used as a model system. In this species the anthraquinone parietin accumulates in the outer upper cortex, conferring the species its characteristic yellow-orange colouration. In ethanol, parietin absorbed strongly in the blue and UV-B and emitted fluorescence in the range 480–540 nm, which partially matches with the absorption spectra of photosynthetic pigments. In intact thalli, it was determined by confocal microscopy that fluorescence emission spectra shifted 90 nm towards longer wavelengths.
    [Show full text]
  • Cuivre Bryophytes
    Trip Report for: Cuivre River State Park Species Count: 335 Date: Multiple Visits Lincoln County Agency: MODNR Location: Lincoln Hills - Bryophytes Participants: Bryophytes from Natural Resource Inventory Database Bryophyte List from NRIDS and Bruce Schuette Species Name (Synonym) Common Name Family COFC COFW Acarospora unknown Identified only to Genus Acarosporaceae Lichen Acrocordia megalospora a lichen Monoblastiaceae Lichen Amandinea dakotensis a button lichen (crustose) Physiaceae Lichen Amandinea polyspora a button lichen (crustose) Physiaceae Lichen Amandinea punctata a lichen Physiaceae Lichen Amanita citrina Citron Amanita Amanitaceae Fungi Amanita fulva Tawny Gresette Amanitaceae Fungi Amanita vaginata Grisette Amanitaceae Fungi Amblystegium varium common willow moss Amblystegiaceae Moss Anisomeridium biforme a lichen Monoblastiaceae Lichen Anisomeridium polypori a crustose lichen Monoblastiaceae Lichen Anomodon attenuatus common tree apron moss Anomodontaceae Moss Anomodon minor tree apron moss Anomodontaceae Moss Anomodon rostratus velvet tree apron moss Anomodontaceae Moss Armillaria tabescens Ringless Honey Mushroom Tricholomataceae Fungi Arthonia caesia a lichen Arthoniaceae Lichen Arthonia punctiformis a lichen Arthoniaceae Lichen Arthonia rubella a lichen Arthoniaceae Lichen Arthothelium spectabile a lichen Uncertain Lichen Arthothelium taediosum a lichen Uncertain Lichen Aspicilia caesiocinerea a lichen Hymeneliaceae Lichen Aspicilia cinerea a lichen Hymeneliaceae Lichen Aspicilia contorta a lichen Hymeneliaceae Lichen
    [Show full text]
  • Australasian Lichenology Number 56, January 2005
    Australasian Lichenology Number 56, January 2005 Australasian Lichenology Number 56, January 2005 ISSN 1328-4401 The Austral Pannaria immixta c.olonizes rock, bark, and occasionally bryophytes in both shaded and well-lit humid lowlands. Its two most distinctive traits are its squamulose thallus and its gyrose apothecial discs. 1 mm c:::::===-­ CONTENTS NEWS Kantvilas, ~ack Elix awarded the Acharius medal at IAL5 2 BOOK REVIEW Galloway, DJ-The Lichen Hunters, by Oliver Gilbert (2004) 4 RECENT LITERATURE ON AUSTRALASIAN LICHENS 7 ADDITIONAL LICHEN RECORDS FROM AUSTRALIA Elix, JA; Lumbsch, HT (55)-Diploschistes conception is 8 ARTICLES Archer, AW-Australian species in the genus Diorygma (Graphidaceae) ....... 10 Elix, JA; Blanco, 0; Crespo, A-A new species of Flauoparmelia (Parmeliaceae, lichenized Ascomycota) from Western Australia ...... .... ............................ ...... 12 Galloway, DJ; Sancho, LG-Umbilicaria murihikuana and U. robusta (Umbili­ cariaceae: Ascomycota), two new taxa from Aotearoa New Zealand .. ... .. ..... 16 Elix, JA; Bawingan, PA; Lardizaval, M; Schumm, F-Anew species ofMenegazzia (Parmeliaceae, lichenized Ascomycota) and new records of Parmeliaceae from Papua New Guinea and the Philippines .................................. .. .................... 20 Malcolm, WM-'ITansfer ofDimerella rubrifusca to Coenogonium ........ ......... 25 Johnson, PN- Lichen succession near Arthur's Pass, New Zealand ............... 26 NEWS JACK ELIXAWARDED THE ACHARIUS MEDALAT IAL5 The recent Fifth Conference of the International Association for Lichenology (1AL5) in Tartu, Estonia, was a highly successful event, and most Australasian lichenologists will have the opportunity to read of its various academic achieve­ ments in other media*. The social programme included the traditionallAL Din­ ner, where, after many days of symposia, poster sessions, excursions, meetings and other lichenological events, conference delegates mingle informally and dust away their weariness over food and drink.
    [Show full text]
  • Xanthoria Parietina (L). TH. FR. MYCOBIONT ISOLATION BY
    Muzeul Olteniei Craiova. Oltenia. Studii úi comunicări. ùtiinĠele Naturii. Tom. 29, No. 2/2013 ISSN 1454-6914 Xanthoria parietina (L). TH.FR. MYCOBIONT ISOLATION BY ASCOSPORE DISCHARGE, GERMINATION AND DEVELOPMENT IN “IN VITRO” CULTURE CRISTIAN Diana, BREZEANU Aurelia Abstract. The article is focused on fungal partner isolation from the Xanthoria parietina (Teloschistaceae) lichen body by ascospore discharge from golden disk-like fruits - ascoma, followed by germination and subsequent development on liquid nutrient medium Malt-Yeast extract (AHMADJIAN, 1967a) under different temperature and light/dark regime conditions. The morphology of the mycobiont and the inner structure were characterized by stereomicroscope Stemi 2000 C, light microscope Scope. A1, Zeiss and by the JEOL - JSM - 6610LV Scanning Electron Microscope. Keywords: mycobiont, ascospore isolation, lichen culture. Rezumat. Izolarea micobiontului de Xanthoria parietina (L.) TH.FR. prin descărcarea sporilor, germinarea úi dezvoltarea în cultură ,,in vitro”. Acest articol se axează pe izolarea partenerului fungal din talul de X. parietina (Teloschistaceae), prin eliberarea ascosporilor din apoteciile disciforme aurii, urmată de germinarea úi dezvoltarea pe mediu nutritiv lichid Malt-Yeast extract (AHMADJIAN, 1967a) la diferite temperaturi úi sub un regim diferit de lumină/întuneric. Morfologia micobiontului úi structura sa internă au fost caracterizate la stereomicroscop Stemi 2000 C, la microscopul optic Scope. A1, Zeiss úi la microscopul electronic scanning JEOL - JSM - 6610LV. Cuvinte cheie: micobiont, izolarea ascosporilor, cultura lichenică. INTRODUCTION Lichens are a product of symbiotic association of two unrelated organisms, a primary producer (photobiont) - cyanobacteria or algae - and a primary consumer, a type of fungi (mycobiont), forming a new biological entity, with no resemblance to its individual components, due to non-structural, biochemical changes and physiological essentials for morphological differentiation, interaction and stability of the association.
    [Show full text]
  • A Tribute to Oliver Lathe Gilbert
    The Lichenologist 37(6): 467–475 (2005) 2005 The British Lichen Society doi:10.1017/S0024282905900042 Printed in the United Kingdom A tribute to Oliver Lathe Gilbert 7 September 1936–15 May 2005 Downloaded from https://www.cambridge.org/core. IP address: 170.106.33.42, on 02 Oct 2021 at 19:57:54, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0024282905900042 468 THE LICHENOLOGIST Vol. 37 Oliver Gilbert was a pioneer, an outstanding books on mountaineering and hill walking field botanist and inspirational scientist. He including the now classic ‘Big Walks’, worked in the broad fields of urban and ‘Classic Walks’ and ‘Wild Walks’ and the lichen ecology and had almost 40 years of award winning ‘Exploring the Far North teaching and research experience within West of Scotland’. His uncle was the universities. Above all he was very approach- mycologist Geoffrey Ainsworth, a former able, an excellent teacher and fun to be with. Director of the (former) International Oliver was a leading figure in the British Mycological Institute and author of several Lichen Society serving as BLS Bulletin classic texts on mycology. Oliver’s literary Editor (1980–89 except 1987), President talents, following a fine family tradition, (1976–77) and was a frequent Council likewise later excelled. Member. He was elected an Honorary After the war his family moved to Member in 1997 and received the prestig- Harpenden where he attended St Georges ious Ursula Duncan Award in January 2004. School. As St Georges did not offer ‘A’ level Oliver had an exceptional ability to find rare Biology, his parents sent him to Watford and interesting lichens and plant communi- Grammar School.
    [Show full text]
  • H. Thorsten Lumbsch VP, Science & Education the Field Museum 1400
    H. Thorsten Lumbsch VP, Science & Education The Field Museum 1400 S. Lake Shore Drive Chicago, Illinois 60605 USA Tel: 1-312-665-7881 E-mail: [email protected] Research interests Evolution and Systematics of Fungi Biogeography and Diversification Rates of Fungi Species delimitation Diversity of lichen-forming fungi Professional Experience Since 2017 Vice President, Science & Education, The Field Museum, Chicago. USA 2014-2017 Director, Integrative Research Center, Science & Education, The Field Museum, Chicago, USA. Since 2014 Curator, Integrative Research Center, Science & Education, The Field Museum, Chicago, USA. 2013-2014 Associate Director, Integrative Research Center, Science & Education, The Field Museum, Chicago, USA. 2009-2013 Chair, Dept. of Botany, The Field Museum, Chicago, USA. Since 2011 MacArthur Associate Curator, Dept. of Botany, The Field Museum, Chicago, USA. 2006-2014 Associate Curator, Dept. of Botany, The Field Museum, Chicago, USA. 2005-2009 Head of Cryptogams, Dept. of Botany, The Field Museum, Chicago, USA. Since 2004 Member, Committee on Evolutionary Biology, University of Chicago. Courses: BIOS 430 Evolution (UIC), BIOS 23410 Complex Interactions: Coevolution, Parasites, Mutualists, and Cheaters (U of C) Reading group: Phylogenetic methods. 2003-2006 Assistant Curator, Dept. of Botany, The Field Museum, Chicago, USA. 1998-2003 Privatdozent (Assistant Professor), Botanical Institute, University – GHS - Essen. Lectures: General Botany, Evolution of lower plants, Photosynthesis, Courses: Cryptogams, Biology
    [Show full text]
  • BELARUS 245 OP342 the Lichenized Fungus Genus
    OP342 The Lichenized Fungus Genus Gyalolechia (Teloschistales, Ascomycota) in Turkey Mehmet Gökhan HALICI1& Mithat GÜLLÜ1 1Erciyes University, Faculty of Science, Department of Biology, Kayseri, TURKEY [email protected] Aim of the study: This study has been made to examine as phylogenetic relationships of some species belong to genus Gyalolechia Trevis., which widely spreaded in our country. Material and Methods: Samples of lichens belonging to genus Gyalolechia were collected from different parts of Turkey.Total DNA was extracted from apothecia by using the DNeasy Plant Mini Kit (Qiagen) according to the manufacturer’s instructions. PCR analysis was performed by using ITS (ITS1 and ITS4).ITS sequence results of lichen samples were analysed by using Clustal W option in the BioEdit program. The phylogenetic analysis of lichen samples belonging to genus Gyalolechia were performed by using the Maximum Likelihood method of the Mega 6 (Molecular Evolutionary Genetics Analysis) software program. Results: Gyalolechia was recently established to accommodate a monophyletic group of crustose lichens of Teloschistaceae that were formerly placed in the large genus Caloplaca. Members of this genus usually have well developed thalli which are crustose, squamulose or lobate. In this study, numbers of samples belonging to this genus collected from Turkey. After morphological examinations; molecular analyses of ITS nrDNA were carried in the samples. This genus is represented by 25 species in Turkey and 6 of them are present in Turkey:G. flavorubescens, G. flavovirescens, G. fulgida, G. juniperina, G. klementii and G. subbracteata. In this presentation we will discuss the morphological and ecological characters of these species along with distributional data of the species in Turkey.
    [Show full text]
  • BLS Bulletin 111 Winter 2012.Pdf
    1 BRITISH LICHEN SOCIETY OFFICERS AND CONTACTS 2012 PRESIDENT B.P. Hilton, Beauregard, 5 Alscott Gardens, Alverdiscott, Barnstaple, Devon EX31 3QJ; e-mail [email protected] VICE-PRESIDENT J. Simkin, 41 North Road, Ponteland, Newcastle upon Tyne NE20 9UN, email [email protected] SECRETARY C. Ellis, Royal Botanic Garden, 20A Inverleith Row, Edinburgh EH3 5LR; email [email protected] TREASURER J.F. Skinner, 28 Parkanaur Avenue, Southend-on-Sea, Essex SS1 3HY, email [email protected] ASSISTANT TREASURER AND MEMBERSHIP SECRETARY H. Döring, Mycology Section, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, email [email protected] REGIONAL TREASURER (Americas) J.W. Hinds, 254 Forest Avenue, Orono, Maine 04473-3202, USA; email [email protected]. CHAIR OF THE DATA COMMITTEE D.J. Hill, Yew Tree Cottage, Yew Tree Lane, Compton Martin, Bristol BS40 6JS, email [email protected] MAPPING RECORDER AND ARCHIVIST M.R.D. Seaward, Department of Archaeological, Geographical & Environmental Sciences, University of Bradford, West Yorkshire BD7 1DP, email [email protected] DATA MANAGER J. Simkin, 41 North Road, Ponteland, Newcastle upon Tyne NE20 9UN, email [email protected] SENIOR EDITOR (LICHENOLOGIST) P.D. Crittenden, School of Life Science, The University, Nottingham NG7 2RD, email [email protected] BULLETIN EDITOR P.F. Cannon, CABI and Royal Botanic Gardens Kew; postal address Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, email [email protected] CHAIR OF CONSERVATION COMMITTEE & CONSERVATION OFFICER B.W. Edwards, DERC, Library Headquarters, Colliton Park, Dorchester, Dorset DT1 1XJ, email [email protected] CHAIR OF THE EDUCATION AND PROMOTION COMMITTEE: S.
    [Show full text]
  • Lichens and Associated Fungi from Glacier Bay National Park, Alaska
    The Lichenologist (2020), 52,61–181 doi:10.1017/S0024282920000079 Standard Paper Lichens and associated fungi from Glacier Bay National Park, Alaska Toby Spribille1,2,3 , Alan M. Fryday4 , Sergio Pérez-Ortega5 , Måns Svensson6, Tor Tønsberg7, Stefan Ekman6 , Håkon Holien8,9, Philipp Resl10 , Kevin Schneider11, Edith Stabentheiner2, Holger Thüs12,13 , Jan Vondrák14,15 and Lewis Sharman16 1Department of Biological Sciences, CW405, University of Alberta, Edmonton, Alberta T6G 2R3, Canada; 2Department of Plant Sciences, Institute of Biology, University of Graz, NAWI Graz, Holteigasse 6, 8010 Graz, Austria; 3Division of Biological Sciences, University of Montana, 32 Campus Drive, Missoula, Montana 59812, USA; 4Herbarium, Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA; 5Real Jardín Botánico (CSIC), Departamento de Micología, Calle Claudio Moyano 1, E-28014 Madrid, Spain; 6Museum of Evolution, Uppsala University, Norbyvägen 16, SE-75236 Uppsala, Sweden; 7Department of Natural History, University Museum of Bergen Allégt. 41, P.O. Box 7800, N-5020 Bergen, Norway; 8Faculty of Bioscience and Aquaculture, Nord University, Box 2501, NO-7729 Steinkjer, Norway; 9NTNU University Museum, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; 10Faculty of Biology, Department I, Systematic Botany and Mycology, University of Munich (LMU), Menzinger Straße 67, 80638 München, Germany; 11Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK; 12Botany Department, State Museum of Natural History Stuttgart, Rosenstein 1, 70191 Stuttgart, Germany; 13Natural History Museum, Cromwell Road, London SW7 5BD, UK; 14Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43 Průhonice, Czech Republic; 15Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-370 05 České Budějovice, Czech Republic and 16Glacier Bay National Park & Preserve, P.O.
    [Show full text]
  • Green-Algal Photobiont Diversity (Trebouxia Spp.) in Representatives of Teloschistaceae (Lecanoromycetes, Lichen-Forming Ascomycetes)
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2014 Green-algal photobiont diversity (Trebouxia spp.) in representatives of Teloschistaceae (Lecanoromycetes, lichen-forming ascomycetes) Nyati, Shyam ; Scherrer, Sandra ; Werth, Silke ; Honegger, Rosmarie Abstract: The green algal photobionts of 12 Xanthoria, seven Xanthomendoza, two Teloschistes species and Josefpoeltia parva (all Teloschistaceae) were analyzed. Xanthoria parietina was sampled on four continents. More than 300 photobiont isolates were brought into sterile culture. The nuclear ribosomal internal transcribed spacer region (nrITS; 101 sequences) and the large subunit of the RuBiSco gene (rbcL; 54 sequences) of either whole lichen DNA or photobiont isolates were phylogenetically analyzed. ITS and rbcL phylogenies were congruent, although some subclades had low bootstrap support. Trebouxia arbori- cola, T. decolorans and closely related, unnamed Trebouxia species, all belonging to clade A, were found as photobionts of Xanthoria species. Xanthomendoza species associated with either T. decolorans (clade A), T. impressa, T. gelatinosa (clade I) or with an unnamed Trebouxia species. Trebouxia gelatinosa genotypes (clade I) were the photobionts of Teloschistes chrysophthalmus, T. hosseusianus and Josefpoel- tia parva. Only weak correlations between distribution patterns of algal genotypes and environmental conditions or geographical location were observed. DOI: https://doi.org/10.1017/S0024282913000819 Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-107425 Journal Article Published Version Originally published at: Nyati, Shyam; Scherrer, Sandra; Werth, Silke; Honegger, Rosmarie (2014). Green-algal photobiont diversity (Trebouxia spp.) in representatives of Teloschistaceae (Lecanoromycetes, lichen-forming as- comycetes).
    [Show full text]
  • Biologically-Active Compounds from Brazilian Lichens and Their Affinity with Ether
    Central Journal of Drug Design and Research Bringing Excellence in Open Access Review Article *Corresponding author Eugênia C Pereira, Department of Geographical Sciences, Philosophy and Human Science Centre, Biologically-Active Compounds Universidade Federal de Pernambuco, Av. da Arquitetura, s/n, Recife- Pernambuco, Brazil, CEP: 50740-550. Tel/ Fax: 55 81 21268275; Email: from Brazilian Lichens and their Submitted: 30 May 2017 Accepted: 11 July 2017 Affinity with Ether Published: 13 July 2017 ISSN: 2379-089X 1 2 Eugênia C Pereira *, Mônica CB Martins , Maria de Lourdes L Copyright 2 2 3 Buril , Rocio Santiago , Emerson Peter da S Falcão , Nicácio H da © 2017 Pereira et al. Silva4, Maria Estrella Legaz5, and Carlos Vicente5 OPEN ACCESS 1Department of Geographical Sciences, Philosophy and Human Science Centre, Universidade Federal de Pernambuco, Brazil Keywords 2 Post-Graduate Program in Plant Biology, Universidade Federal de Pernambuco, • Lichen substances Brazil • Depsides 3 Laboratory of Synthesis and Molecular Isolation, Vitória Academic Centre, • Cladoniaceae Universidade Federal de Pernambuco, Brazil • Ether extract 4Biochemistry Department, Universidade Federal de Pernambuco, Brazil 5Department of Plant Biology I (Plant Physiology), Universidad Complutense de Madrid, Spain Abstract It can be obtained from lichens biologically-active extracts and pure substances, many of them of phenolic nature. They are usually obtained by using organic solvents, such as diethyl ether. In this paper the usefulness of ether for the obtainment of
    [Show full text]
  • Inventarizacija Raznolikosti Lišajeva Hrvatske
    Inventarizacija raznolikosti lišajeva Hrvatske Mehmedović, Azra Master's thesis / Diplomski rad 2019 Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Science / Sveučilište u Zagrebu, Prirodoslovno-matematički fakultet Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:217:770640 Rights / Prava: In copyright Download date / Datum preuzimanja: 2021-09-26 Repository / Repozitorij: Repository of Faculty of Science - University of Zagreb SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO-MATEMATIČKI FAKULTET BIOLOŠKI ODSJEK Azra Mehmedović INVENTARIZACIJA RAZNOLIKOSTI LIŠAJEVA HRVATSKE Diplomski rad Zagreb, 2019. Ovaj rad, izrađen u Zagrebu, pod vodstvom izv. prof. dr. sc. Siniše Ozimeca i doc. dr. sc. Sare Essert, predan je na ocjenu Biološkom odsjeku Prirodoslovno-matematičkog fakulteta Sveučilišta u Zagrebu radi stjecanja zvanja magistra eksperimentalne biologije. Zahvaljujem se ponajviše Maji Maslać-Mikulec na ideji i potpori, bez koje ovog rada nebi bilo. Hvala Luki Antoliću na tehničkoj podršci i Draganu Prliću na ustupljenim umotvorinama. Također, hvala prof. Siniši Ozimecu i doc. Sari Essert, koji su mi omogućili izradu ovog rada. Hvala „tetama iz referade“, Vlatki Marjan i Sanjici Mihaljević, koje su bile stup mog fakultetskog obrazovanja. Hvala svim kolegama koje sam kroz sve ove godine upoznala što su učinili moje studentske dane vrijednima. I na kraju, hvala mojim roditeljima i teti, kojima posvećujem ovaj rad. TEMELJNA DOKUMENTACIJSKA KARTICA ______________________________________________________________________________ Sveučilište u Zagrebu Prirodoslovno-matematički fakultet Biološki odsjek Diplomski rad INVENTARIZACIJA RAZNOLIKOSTI LIŠAJEVA HRVATSKE Azra Mehmedović Roosveltov trg 6, 10000 Zagreb, Hrvatska Stvorena je jedinstvena prostorna baza podataka za sve nalaze lišajeva na području Republike Hrvatske od 1802. do 2018. godine. Znanstveni nazivi svojti su revidirani po važećoj taksonomiji.
    [Show full text]