70-4685 ROSOWSKI, James Ray, 1938- the PYRENOID of ZYGNEMA: ISOLATION and CHARACTERIZATION. University of Arizona, Ph.D., 1969 B

Total Page:16

File Type:pdf, Size:1020Kb

70-4685 ROSOWSKI, James Ray, 1938- the PYRENOID of ZYGNEMA: ISOLATION and CHARACTERIZATION. University of Arizona, Ph.D., 1969 B THE PYRENOID OF ZYGNEMA: ISOLATION AND CHARACTERIZATION Item Type text; Dissertation-Reproduction (electronic) Authors Rosowski, James R. Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 28/09/2021 02:41:35 Link to Item http://hdl.handle.net/10150/290230 This dissertation has been microfilmed exactly as received 70-4685 ROSOWSKI, James Ray, 1938- THE PYRENOID OF ZYGNEMA: ISOLATION AND CHARACTERIZATION. University of Arizona, Ph.D., 1969 Botany- University Microfilms, Inc., Ann Arbor, Michigan THE PYRENOID OF ZYGNBMA: ISOLATION AND CHARACTERIZATION t>y James Ray Rosowslci A Dissertation Submitted to the Faculty of the DEPARTMENT OF BIOLOGICAL SCIENCES In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY WITH A MAJOR IN BOTANY In the Graduate College THE UNIVERSITY OF ARIZONA 19 6 9 THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE I hereby recommend that this dissertation prepared under my direction by James Ray Rosowski entitled The Pyrenoid of Zvenema: Isolation and Characterization be accepted as fulfilling the dissertation requirement of the degree of Ph. D. • / / C ^' j^'c, /V, /U? Dissertation Director After inspection of the final copy of the dissertation, the following members of the Final Examination Committee concur in its approval and recommend its acceptance:* ,f<ySi / IlL /yy/ ' V 7/t 7 /£ ? 1//7 tt? llnifi /)n • Thi/ approval and acceptance (iJs contingent on the candidate's adequate performance and^-tlefense of this dissertation at the final oral examination. The inclusion of this sheet bound into the library copy of the dissertation is evidence of satisfactory performance at the final examination. STATEMENT BY AUTHOR This dissertation has been submitted in partial fulfillment of requirements for an advanced degree at The University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library. Brief quotations from this dissertation are allowable without special permission, provided that accurate acknowledgment of source is made. Requests for permission for extended quotation from o.r reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in his judgment the proposed use of the material is in the interests of scholarship. In all other instances, however, permission must be obtained from the author. SIGNED: A CKN OWL ED GMENTS The author is indebted to Dr. Robert W. Hoshaw for his suggestion of the subject of this dissertation and for his guidance during the research and writing stages. In addition, the author wishes to express here his sincere appreciation to Dr. Iloshaw for time and energies spent in discussions related not only to this dissertation but also to past endeavors. The author would like to thank Dr. Paul G. Bartels, Dr. AlJ.ce M. Boyle, Dr. Robert M. Harris, and Dr. Merritt R. Nelson for reading and criticizing this manuscript. A special thanks goes to Dr. Kaoru Matsuda for en­ couragement of the author to attempt the isolation of pyrenoids, for discussions related to this work, and for provision of the research facilities for this activity. The valuable discussions and assistance of Edward James Pegelow, Jr. are also gratefully acknowledged. The very capable technical assistance of Mrs. Kathie Mitchell was appreciated. The author is indebted to Dr. Wayne R. Ferris for the use of the electron microscope, to Dr. Hebcr P. liostetter for several ultrasections, to Dr. Richard G. Jensen for suggesting Nitex filtration, to Mr. and Mrs. William Clark for typing the manuscript, and to Dr. David J. Wolosliin for his German translations. A very iii special thanks to my wife Sue ^for assistance with th manuscript and for her continual support. TABLE OF CONTENTS Page LIST OF ILLUSTRATIONS vii LIST OF TABLES ' . xiv ABSTRACT xv INTRODUCTION 1 GENERAL MATERIALS AND METHODS 6 Experimental Organisms 6 Isolation Technique 6 Medium and Transfer Technique 7 Growth Conditions 10 Light Photomicrography 12 THE PYRENOID AS A MORPHOLOGICAL UNIT 13 Light Microscopy 13 The Cell 13 Growth l'± Nuclear and Cell Division l6 Division of the Pyrenoid 17 Chloroplast Mutant 19 Electron Microscopy 20 Fixation and Dehydration 21 Embedding 21 Sectioning . 22 Observations 23 Discussion of Pyx-enoid U1 tras true tur e . 2h THE PYRENOID AS AFFECTED BY LIGHT AND BY CHEMICAL AGENTS 27 Starch Synthesis 27 On a 12:12 hr Light:Dark Cycle 28 In Destarched Cells 29 In a Micx"obeam of Light 38 Light Intensity 4l Materials and Methods . 42 Results and Discussion ^3 v vi TABLE OF CONTENTS —Continued * Page Division 45 On ci 12:12 hi" Light:Dark Cycle 49 On a .1.2:12 hr Light:Dark Cycle Followed by Continuous Darkness 5^ On a 12:12 hr Light:Dark Cycle Followed !>, Continuous Illumination . 55 On a 6:6:6:6 hr Light:Dark:Light: Dark Cycle 55 Discussion of the Light Cycle Studies . 56 Technique for Staining Pyrenoids 6l Ami do-Schwartz 67 Pronase 68 Triton X-100 70 Sodium Deoxycholate 71 Streptomycin Sulfate 73 B Medium Minus Nitrogen 76 Discussion on the Effects of Chemical Agents 7o ISOLATION OF THE CHLOROPLAST 79 Materials and Methods 79 Observations and Results 82 Discussion 83 ISOLATION OF THE PYRENOID 85 Materials 85 Isolation Procedure 89 Characterization of the Isolated Pyrenoid . 96 Evidence for Loss or Alteration of a Soluble Component. 97 GENERAL DISCUSSION 101 SUMMARY 108 LITERATURE CITED 130 LIST OF ILLUSTRATIONS Figure Page 1. Diagram of inid-prophase. Disintegration of the nucleolus ar.d of the nuclear membrane is shown. Cell wall formation has begun 112 2. Diagram of metaphase 112 3« Diagr"ani of anaphase 112 k. Diagram of telophase 112 5. Diagram of interphase and stage one of pyrenoid division 112 6. Diagram of stage two of pyrenoid division 112 7. Diagram of stage three of pyrenoid division 112 8. Diagram of newly formed daughter cells .... 112 9. Diagram of a normal interphase cell at the end of the light period on a 12:12 hr light: dark cycle 3.12 10. Interphase nuclei of strain 922 after being fixed in Jackson's fixative and stained with propiocannine 113 11. Mid-prophasc nucleus of strain 922 after being fixed in Jackson's fixative and stained with propiocannine 113 12. Late prophase nucleus (11) of strain 922 after being fixed in Jackson's fixative and stained with propiocarmine . 113 13• Anaphase nucleus (a) of strain 922 after being fixed in Jackson's fixative and stained with propiocarmine 113 vii viii LIST OF ILLUSTRATIONS--Continued Figure Page l4. Mid-telophase nuclei (t) of strain 922 after being fixed in Jackson's fixative and stained with propio- carmine 113 15- Interphase nucleus (i) of strain 922 after being fixed in Jackson's fixative and stained with propio- carmine 113 16. Interphase nucleus of strain 922 after being fixed in Jackson's fixative. Phase two of pyrenoid division 113 17* Interphase nucleus of strain 922 after being fijced in Jackson's fixative. Phase three of pyrenoid division is illustrated in one daughter cell (d); the pyrenoid has divided 113 18. Diagram of the interphase nucleus of Gauch's chloroplast mutant strain 1559> top view Il4 19* Diagram of interphase nuclei of daughter cells of Gauch's chloroplast mutant strain 1559? after nuclear division has taken place. Stage one of pyrenoid division, top view Il4 20. Diagram of stage two of pyrenoid division in daughter cells of Gauch's chloro­ plast mutant strain 1559? top view Il4 21. Same as in Figure l8 but a side view ll^t 22. Same as in Figure 19 but a side view. The nuclei have completed their first stage of migration ll't 23. Same as in Figure 20 but a side view. The nuclei are passing between the pair of chloroplasts in each daughter cell ll'l ix LIST OF ILLUSTRATIONS--Continued Figure Page 2k. El ectron micrograph of the pyrenoid area of Zygnenia circumcar.1 natum strain 42 fixed in 1% potassium permanganate. A section through starch grains (S) tangential to the pyrenoid 115 25- Electron micrograph of the pyrenoid of Zy gnenia circ um carinat um strain 'l2 fixed in1%potassium permanganate ..... 115 26. Elec tron micrograph of the pyrenoid of Zygnema circum carin a t um strain k2 fixed in1%potassium permanganate. Tubular branched thylakoids are in the upper half of the pyrenoid while disc-thylakoids are in the lower half . Il6 27• A diagramatic interpretation of a membrane structure found in Figure 26 116 28. Demonstration of propiocarmine stain on pyrenoids of a cell of strain 922 fixed in Jackson1 s fixative 117 29* Cell same as in Figure 28 but treated directly with IKI after fixation in Jackson's fixative. The protoplasts including the pyrenoids show severe shrinkage 117 30. Cell of strain 922 in the dark for six days, unfixed. Treatment with IKI gives no conclusive indication of starch 117 31• Cell same as in Figure 30 but fixed in Jackson's fixative and treated graduall y with IKI to avoid plasinolysis . No conclusive evidence for starch 117 32. Cell same as in Figure 30 but placed under 2,l60 lux intensity for" 1/2 hr, fixed in Jackson's fixative, and trecited gradually with IKI to avoid plasinolysis 117 X LIST OF ILLUSTRATIONS--Continned 0 Figure Page 33 • Cell same as in. Figure 30 but placed under 2,l6o lux intensity for 1 hr, fixed in Jackson's fixative, and treated gradually with IKI to avoid plasmolysis 117 Cell as in Figure 30 but placed under 2 ,l60 1ux intensity for 2 hr, fixed in Jackson's fixative, and treated gradually with IKI to avoid plasinolysis 117 35• Cell as in Figure 30 but placed under 2, 160 lux intensity for 3 hr •> fixed in Jackson's fixative, and t.ree\ted gradually with IKI to avoid V plasmolysis 117 36.
Recommended publications
  • Chlorophyta, Trebouxiophyceae) in Lake Tanganyika (Africa)*
    Biologia 63/6: 799—805, 2008 Section Botany DOI: 10.2478/s11756-008-0101-4 Siderocelis irregularis (Chlorophyta, Trebouxiophyceae) in Lake Tanganyika (Africa)* Maya P. Stoyneva1, Elisabeth Ingolič2,WernerKofler3 &WimVyverman4 1Sofia University ‘St Kliment Ohridski’, Faculty of Biology, Department of Botany, 8 bld. Dragan Zankov, BG-1164 Sofia, Bulgaria; e-mail: [email protected], [email protected]fia.bg 2Graz University of Technology, Research Institute for Electron Microscopy, Steyrergasse 17,A-8010 Graz, Austria; e-mail: [email protected] 3University of Innsbruck, Institute of Botany, Sternwartestrasse 15,A-6020 Innsbruck, Austria; e-mail: werner.kofl[email protected] 4Ghent University, Department Biology, Laboratory of Protistology and Aquatic Ecology, Krijgslaan 281-S8,B-9000 Gent, Belgium; e-mail: [email protected] Abstract: Siderocelis irregularis Hindák, representing a genus Siderocelis (Naumann) Fott that is known from European temperate waters, was identified as a common phytoplankter in Lake Tanganyika. It was found aposymbiotic as well as ingested (possibly endosymbiotic) in lake heterotrophs, mainly Strombidium sp. and Vorticella spp. The morphology and ultrastructure of the species, studied with LM, SEM and TEM, are described with emphasis on the structure of the cell wall and the pyrenoid. Key words: Chlorophyta; cell wall; pyrenoid; symbiosis; ciliates; Strombidium; Vorticella Introduction ics of symbiotic species in general came into alignment with that of free-living algae and the term ‘zoochlorel- Tight partnerships between algae and aquatic inver- lae’ was abandoned as being taxonomically ambiguous tebrates, including symbiotic relationships, have long (e.g. Bal 1968; Reisser & Wiessner 1984; Taylor 1984; been of interest and a number of excellent reviews are Reisser 1992a).
    [Show full text]
  • Toxicity, Physiological, and Ultrastructural Effects of Arsenic
    International Journal of Environmental Research and Public Health Article Toxicity, Physiological, and Ultrastructural Effects of Arsenic and Cadmium on the Extremophilic Microalga Chlamydomonas acidophila Silvia Díaz 1, Patricia De Francisco 1,2, Sanna Olsson 3 , Ángeles Aguilera 2,*, Elena González-Toril 2 and Ana Martín-González 1 1 Department of Genetics, Physiology and Microbiology, Faculty of Biology, Universidad Complutense de Madrid (UCM), C/José Antonio Novais, 12, 28040 Madrid, Spain; [email protected] (S.D.); [email protected] (P.d.F.); [email protected] (A.M.-G.) 2 Astrobiology Center (INTA-CSIC), Carretera de Ajalvir km 4, Torrejón de Ardoz, 28850 Madrid, Spain; [email protected] 3 Department of Forest Ecology and Genetics, INIA Forest Research Center (INIA-CIFOR), Carretera de A Coruña km 7.5, 28040 Madrid, Spain; sanna.olsson@helsinki.fi * Correspondence: [email protected]; Tel.: +34-91-520-6434 Received: 17 December 2019; Accepted: 24 February 2020; Published: 3 March 2020 Abstract: The cytotoxicity of cadmium (Cd), arsenate (As(V)), and arsenite (As(III)) on a strain of Chlamydomonas acidophila, isolated from the Rio Tinto, an acidic environment containing high metal(l)oid concentrations, was analyzed. We used a broad array of methods to produce complementary information: cell viability and reactive oxygen species (ROS) generation measures, ultrastructural observations, transmission electron microscopy energy dispersive x-ray microanalysis (TEM–XEDS), and gene expression. This acidophilic microorganism was affected differently by the tested metal/metalloid: It showed high resistance to arsenic while Cd was the most toxic heavy metal, showing an LC50 = 1.94 µM.
    [Show full text]
  • Closing the Circle in Chlamydomonas the Different Stages of the Calvin-Benson Cycle Take Place in Separate Locations Within the Chloroplast
    INSIGHT CARBON FIXATION Closing the circle In Chlamydomonas the different stages of the Calvin-Benson cycle take place in separate locations within the chloroplast. MARYLOU C MACHINGURA AND JAMES V MORONEY terrestrial plants and both groups have Rubisco Related research article Ku¨ ken A, Sommer enzymes with similar properties. However, land F, Yaneva-Roder L, Mackinder LCM, Ho¨ hne plants rarely have pyrenoids because CO2 dif- M, Geimer S, Jonikas MC, Schroda M, Stitt fuses 10,000 times more rapidly in air than in M, Nikoloski Z, Mettler-Altmann T. 2018. water. Once an aquatic organism has fixed CO2, Effects of microcompartmentation on flux it takes a long time for the next molecule to distribution and metabolic pools in Chlamy- arrive, hence the need for a carbon concentra- domonas reinhardtii chloroplasts. eLife 7: tion mechanism that kicks in when the levels of e37960. DOI: 10.7554/eLife.37960 CO2 get too low. The carbon concentration mechanism in Chla- - mydomonas takes bicarbonate (HCO3 ) from outside the cells and converts it into CO2 that can be used by Rubisco inside the pyrenoid. hen the unicellular green alga Chla- There, Rubisco catalyzes the addition of CO2 mydomonas reinhardtii is viewed onto a molecule known as RuBP to create two W under a microscope, the most promi- molecules of a compound called 3PGA; this is nent object in the cell is a structure called the the first step in the Calvin-Benson cycle, a chain pyrenoid. Located within the chloroplast, the of reactions which results in the creation of organelle where photosynthesis takes place, the organic molecules that the cell needs.
    [Show full text]
  • Effects of Microcompartmentation on Flux Distribution and Metabolic Pools
    RESEARCH ARTICLE Effects of microcompartmentation on flux distribution and metabolic pools in Chlamydomonas reinhardtii chloroplasts Anika Ku¨ ken1,2, Frederik Sommer1†, Liliya Yaneva-Roder1, Luke CM Mackinder3‡, Melanie Ho¨ hne1, Stefan Geimer4, Martin C Jonikas3§, Michael Schroda1†, Mark Stitt1, Zoran Nikoloski1,2, Tabea Mettler-Altmann1,5,6* 1Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany; 2Bioinformatics Group, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany; 3Department of Plant Biology, Carnegie Institution for Science, Stanford, United States; 4Institute of Cell Biology, University of Bayreuth, Bayreuth, Germany; 5Cluster of Excellence on Plant Sciences, Heinrich-Heine University, Du¨ sseldorf, Germany; 6Institute of Plant Biochemistry, Heinrich-Heine University, Du¨ sseldorf, Germany Abstract Cells and organelles are not homogeneous but include microcompartments that alter *For correspondence: [email protected] the spatiotemporal characteristics of cellular processes. The effects of microcompartmentation on metabolic pathways are however difficult to study experimentally. The pyrenoid is a † Present address: Molecular microcompartment that is essential for a carbon concentrating mechanism (CCM) that improves the Biotechnology and Systems photosynthetic performance of eukaryotic algae. Using Chlamydomonas reinhardtii, we obtained Biology, University of experimental data on photosynthesis, metabolites, and proteins in CCM-induced and CCM- Kaiserslautern, Kaiserslautern,
    [Show full text]
  • Cryptophyte Farming by Symbiotic Ciliate Host Detected in Situ
    Cryptophyte farming by symbiotic ciliate host detected in situ Dajun Qiua, Liangmin Huanga, and Senjie Linb,1 aChinese Academy of Sciences Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; and bDepartment of Marine Sciences, University of Connecticut, Groton, CT 06340 Edited by David M. Karl, University of Hawaii, Honolulu, HI, and approved September 8, 2016 (received for review July 28, 2016) Protist–alga symbiosis is widespread in the ocean, but its character- as the causative species of the bloom, with no detectable crypto- istics and function in situ remain largely unexplored. Here we report phytes and hardly any other organisms present in the bloom water − the symbiosis of the ciliate Mesodinium rubrum with cryptophyte (Fig. 1B). At 1.03 × 106 cells L 1, M. rubrum abundance in the bloom cells during a red-tide bloom in Long Island Sound. In contrast to was over 100-fold higher than the annual peak in Long Island Sound the current notion that Mesodinium retains cryptophyte chloroplasts (15). Each Mesodinium cell harbored 20 to 30 cryptophyte cells (n = or organelles, our multiapproach analyses reveal that in this bloom 16), which packed the peripheral region of the M. rubrum cells (Fig. the endosymbiotic Teleaulax amphioxeia cells were intact and 1E), with complete cell structures, including cell membranes, nuclei, expressing genes of membrane transporters, nucleus-to-cytoplasm and chloroplasts (Fig. 1C). Taking advantage of the large cell size of RNA transporters, and all major metabolic pathways. Among the Mesodinium spp. (width, 20 to 23 μm; length, 25 to 26 μm), we most highly expressed were ammonium transporters in both organ- picked M.
    [Show full text]
  • A Taxonomic Reassessment of Chlamydomonas Meslinii (Volvocales, Chlorophyceae) with a Description of Paludistella Gen.Nov
    Phytotaxa 432 (1): 065–080 ISSN 1179-3155 (print edition) https://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2020 Magnolia Press Article ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.432.1.6 A taxonomic reassessment of Chlamydomonas meslinii (Volvocales, Chlorophyceae) with a description of Paludistella gen.nov. HANI SUSANTI1,6, MASAKI YOSHIDA2, TAKESHI NAKAYAMA2, TAKASHI NAKADA3,4 & MAKOTO M. WATANABE5 1Life Science Innovation, School of Integrative and Global Major, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan. 2Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan. 3Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0052, Japan. 4Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa, 252-8520, Japan. 5Algae Biomass Energy System Development and Research Center, University of Tsukuba. 6Research Center for Biotechnology, Indonesian Institute of Sciences, Jl. Raya Bogor KM 46 Cibinong West Java, Indonesia. Corresponding author: [email protected] Abstract Chlamydomonas (Volvocales, Chlorophyceae) is a large polyphyletic genus that includes numerous species that should be classified into independent genera. The present study aimed to examine the authentic strain of Chlamydomonas meslinii and related strains based on morphological and molecular data. All the strains possessed an asteroid chloroplast with a central pyrenoid and hemispherical papilla; however, they were different based on cell and stigmata shapes. Molecular phylogenetic analyses based on 18S rDNA, atpB, and psaB indicated that the strains represented a distinct subclade in the clade Chloromonadinia. The secondary structure of ITS-2 supported the separation of the strains into four species.
    [Show full text]
  • The Fine Structure of Chloroplasts and Pyrenoids in Some Marine Dinoflagellates
    J. Cell Sri. 3, 41-48 (1968) 41 Printed in Great Britain THE FINE STRUCTURE OF CHLOROPLASTS AND PYRENOIDS IN SOME MARINE DINOFLAGELLATES J. D. DODGE Department of Botany, Birkbeck College, London, W.C. 1 SUMMARY The chloroplasts of some members of the Dinophyceae are bounded by an envelope consist- ing of three membranes and having a mean thickness of 230 A. Within the chloroplast are arranged, in a more or less parallel manner, many lamellae normally composed of three apposed thylakoids, although the number of thylakoids often varies and may reach 30 in a single stack. By study of disintegrated chloroplasts it was found that the thylakoids are circular in shape with a diameter of 0*15-3-6 /* and a mean thickness of 240 A. Ribosomes, lipid droplets and DNA areas are present in the chloroplast stroma. No connexions were seen between the chloroplasts and any other organelles, nor did the chloroplasts contain girdle lamellae. Stalked pyrenoids, which are found in some dinoflagellates, are shown to arise from the inner face of the chloroplasts, to contain a finely granular material and to be frequently surrounded by an electron-transparent area. These findings are discussed in relation to the fine structure of the chloroplasts and pyrenoids of other algal classes. INTRODUCTION Although the chloroplasts and pyrenoids of many algae have been extensively studied by electron microscopy over the past few years, those of dinoflagellates have received little attention. The first published electron micrograph of a sectioned dinoflagellate was of Amphidinium elegans (Grell & Wohlfarth-Botterman, 1957). This showed the chloroplast to be lamellate with each lamella consisting of a number of parallel membranes.
    [Show full text]
  • Variation of Storage Polysaccharides in Phototrophic Microorganisms
    J. Appl. Glycosci., 60, 21‒27 (2013) doi:10.5458/jag.jag.JAG-2012_016 ©2013 The Japanese Society of Applied Glycoscience Special Issue: Starch Metabolism, Structure and Properties Review Variation of Storage Polysaccharides in Phototrophic Microorganisms (Received October 24, 2012; Accepted December 3, 2012) (J-STAGE Advance Published Date: January 25, 2013) Eiji Suzuki1,* and Ryuichiro Suzuki1 1Department of Biological Production, Faculty of Bioresource Sciences, Akita Prefectural University (241‒438 Kaidobata-Nishi, Nakano, Shimoshinjo, Akita 010‒0195, Japan) Abstract: Phototrophic eukaryotes were established by the engulfment of oxygenic phototrophic prokary- otes (cyanobacteria) by a heterotrophic host. This process, called primary endosymbiosis, gave rise to the taxon Archaeplastida, which comprises green plants, rhodophytes and glaucophytes. Further rounds of endosymbiotic events produced a variety of phototrophic organisms, which could accumulate α-1,4-/α-1,6- glucans (including starch) or β-1,3-/β-1,6-glucans. In this article, we review the recent progress in the study of the intracellular localization and molecular forms of storage glucan, especially starch, among the known phototrophs and related organisms. Key words: Archaeplastida, cyanobacteria, endosymbiosis, semi-amylopectin, starch Starch is produced and stored in plastids of plant tissues characteristics of these polysaccharides, especially starch-like (chloroplasts in leaves and amyloplasts in seeds and tubers). α-glucans in representative organisms from each lineage, as It is widely accepted that the organelle was derived from an revealed by recent studies are discussed. independent organism, which was closely related to the extant cyanobacteria, through an event known as endosym- The form of storage polysaccharide and the site of its biosis.1) During the course of evolution of photosynthetic accumulation in various phototrophic organisms.
    [Show full text]
  • Principles of Plant Taxonomy, VIII
    PRINCIPLES OF PLANT TAXONOMY, VIII*. JOHN H. SCHAFFNER. In the seventh paper of this series, a phylogenetic synopsis was presented of the orders of the META-THALLOPHYTA. A similar synopsis is now given of the orders of THALLOPHYTA. The two diagramatic "trees" of relationships may be put together and thus a crude picture of the phyletic relationships of the entire plant kingdom will be represented from the lowest stage to the highest with all the multitudinous ramifications out to the orders. The Archemycetas as described in the Ohio Jour, of Sci. 27: 250, 1927, should be shifted in the list to immediately follow the Myxomycetae and re-defined as being mostly sexual; since it now appears that most of them have some sort of a conjugation process. There are many problems of a fundamental nature in the thallophytes which cannot be solved at present, because of a lack of knowledge of life histories. This is especially true of the lower green algae, the lower brown algae, the archemycetes, and the ascomycetes. So long as the genera and families are not properly segregated, it will be impossible to deal con- clusively with the larger groups. This fact should not deter us, however, from attempting to make a correct phyletic taxonomy. Every careful attempt will bring the true tax- onomic view nearer. The older morphological speculations, which did not distinguish progressive series from digressive movements or segregations, could not construct a true tax- onomic system because they made no definite attempt to judge structures and individuals on a phyletic basis, but merely compared similarities and differences, and frequently deduced phylogenetic sequences which required a series of re-creations, if the one form was actually to be evolved from the other.
    [Show full text]
  • Flagellar Regeneration in Chlamydomonas Introduction: Chlamydomonas Are Single-Celled, Motile Green Algae
    Biology 29 Cell Structure and Function Spring, 2009 Lab 4 - Flagellar regeneration in Chlamydomonas Introduction: Chlamydomonas are single-celled, motile green algae. They move by rotating two flagella that extend from the anterior end of the cell. Figure 1 shows a typical cell. These are photosynthetic eukaryotic cells that contain a nucleus, and a single large cup-shaped chloroplast. Within the chloroplast is a carbon-fixation region called the pyrenoid. The pyrenoid is encased in highly refractive starch molecules and so appears as a bright spot in phase microscopy. The flagella contain cytoskeletal structures called Figure 1: Phase contrast image of microtubules which are in turn polymers of protein called C. reinhardtii, showing locations of chloroplast, pyrenoid and flagella tubulin (see Figure 2). The microtubules are arrayed into a cylindrical shape called an axoneme (see Figure 3), surrounded by an extension of the cell membrane. Chlamydomonas loses its flagella just before dividing and after mating. The cell can regenerate its flagella by rebuilding the microtubule polymers of the axoneme. As the new flagellum grows, monomeric tubulins are transported to the distal end by molecular motors called kinesins, and added to the growing structure at this end. The process of regeneration is triggered by signals transduced through both Calcium ion and cAMP-activated pathways. Figure 3: Cross-section of a flagellar axoneme, with microtubule polymers visible as rings (adapted from Alberts et al, 2008) Figure 2: composition of microtubules showing tubulin monomers (adapted from Alberts et al, 2008) 1 The experiment 1. Each lab group will start by familiarizing themselves with Chlamydomonas reinhardtii cells with intact flagella.
    [Show full text]
  • <I>Ceratodon Purpureus</I>
    Portland State University PDXScholar Dissertations and Theses Dissertations and Theses Winter 3-23-2018 Effect of Microbes on the Growth and Physiology of the Dioecious Moss, Ceratodon purpureus Caitlin Ann Maraist Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds Part of the Biology Commons, and the Plant Sciences Commons Let us know how access to this document benefits ou.y Recommended Citation Maraist, Caitlin Ann, "Effect of Microbes on the Growth and Physiology of the Dioecious Moss, Ceratodon purpureus" (2018). Dissertations and Theses. Paper 4353. https://doi.org/10.15760/etd.6246 This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Effect of Microbes on the Growth and Physiology of the Dioecious Moss, Ceratodon purpureus by Caitlin Ann Maraist A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Biology Thesis Committee: Sarah M. Eppley, Chair Todd N. Rosenstiel Mitchell B. Cruzan Bitty A. Roy Portland State University 2018 © 2018 Caitlin Ann Maraist ABSTRACT The microorganisms colonizing plants can have a significant effect on host phenotype, mediating such processes as pathogen resistance, stress tolerance, nutrient acquisition, growth, and reproduction. Research regarding plant-microbe interactions has focused almost exclusively on vascular plants, and we know comparatively little about how bryophytes – including mosses, liverworts, and hornworts – are influenced by their microbiomes. Ceratodon purpureus is a dioecious, cosmopolitan moss species that exhibits sex-specific fungal communities, yet we do not know whether these microbes have a differential effect on the growth and physiology of male and female genotypes.
    [Show full text]
  • Kingdom Protistaprotista Brown Algae Green Algae
    KingdomKingdom ProtistaProtista Brown algae Green algae Simple Eukaryotes Red algae J e KingdomKingdom ProtistaProtista DivisionDivision Phaeophyta,Phaeophyta, first brown plants land plants evolve •Recentplants, ~500 mya • “Standard” eukaryote cells No multinucleate cells Motile cells usual • Non-standard chloroplasts ThingsThings wewe willwill covercover forfor brownbrown algaealgae •• GeneralGeneral featuresfeatures -- definingdefining characteristicscharacteristics •• MorphologicalMorphological lineageslineages –– -- useuse morphologymorphology toto anticipateanticipate evolutionevolution -- revealreveal variationsvariations inin lifelife historyhistory && gametesgametes •• EcologyEcology –– understandingunderstanding interactionsinteractions withwith environmentenvironment andand otherother speciesspecies •• CommercialCommercial interestsinterests –– exploitexploit ecologyecology && lifelife historyhistory •• EvolutionEvolution –– diversitydiversity && changechange overover timetime GeneralGeneral featuresfeatures OceanOcean loverslovers 2,0002,000 speciesspecies (60(60 inin HIHI oceans)oceans) Ocean Forests 250+250+ generagenera (29(29 inin HI)HI) MorphologicalMorphological RangeRange:: filaments to complex multicell organisms Intertidal RecentlyRecently arrivedarrived Subtidal eukaryoteseukaryotes -- Reef algae wellwell suitedsuited toto Natives and invasives coastalcoastal habitatshabitats Natives and invasives DiversityDiversity GeneralGeneral featuresfeatures PigmentsPigments -- StorageStorage GrowthGrowth photosynthesis ProductsProducts
    [Show full text]